[go: up one dir, main page]

JPH0281434A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPH0281434A
JPH0281434A JP23242488A JP23242488A JPH0281434A JP H0281434 A JPH0281434 A JP H0281434A JP 23242488 A JP23242488 A JP 23242488A JP 23242488 A JP23242488 A JP 23242488A JP H0281434 A JPH0281434 A JP H0281434A
Authority
JP
Japan
Prior art keywords
microwave
plasma
transmitting window
thin film
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23242488A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ohara
大原 和博
Toru Otsubo
徹 大坪
Ichiro Sasaki
一郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23242488A priority Critical patent/JPH0281434A/en
Publication of JPH0281434A publication Critical patent/JPH0281434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form a high density plasma under a high gas pressure condition and improve a treatment speed by a method wherein an electromagnetic field intensified by a resonator is introduced through a microwave transmitting window into a plasma CVD treatment chamber to which a magnetic field with ECR conditions can be applied. CONSTITUTION:A magnetron 3 which is a microwave generator is attached to a cavity resonator 1 through a waveguide 2. A metal thin film 6 having a thickness about a surface current skin depth is formed on a microwave transmitting window 4. The microwave introduced by the cavity resonator 1 is reflected by the metal thin film 6 formed on the microwave transmitting window 4. Although a surface current is applied to the metal thin film 6, in accordance with the electromagnetic field of the microwave, the microwave is transmitted through the microwave transmitting window 4 and emitted into a treatment chamber 5. As a magnetic field with ECR conditions is applied to the treatment chamber 5, a high density plasma of CVD raw gas is formed by the cyclotron resonance of electrons.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体デバイスの製造に係り、半導体基板の
プラズマCVDやスパッタおよびドライエツチングなど
のプラズマ処理に好適なプラズマ発生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the manufacture of semiconductor devices, and relates to a plasma generation method suitable for plasma processing of semiconductor substrates such as plasma CVD, sputtering, and dry etching.

〔従来の技術〕[Conventional technology]

半導体デバイス07′2ズマ処理におけるプラズマCV
D法は、真空雰囲気の処理室に原料ガスを導入してプラ
ズマを形成し、原料ガスの電離や解離過程によって化学
的に反応性の高いイオンやラジカル(中性活性種)を生
成して、半導体基板上に反応生成物としての薄膜を形成
させるものである。例えば、シリコン窒化膜(SiNx
 )の形成においては、原料ガスとしてSiH4+ N
H31SiH4+N2などの混合ガスが用いられており
、 プラズマ中で5iH−?NHなどのイオンやラジカ
ルを生成する。これらのイオンやラジカルは、半導体基
板上でSiH+ xNH+(1+x)H−+SiNx+
 (1+x)Hxなどの反応により半導体基板上にシリ
コン窒化膜(SiNx )を形成する。
Plasma CV in semiconductor device 07'2 Zuma processing
In method D, a source gas is introduced into a processing chamber in a vacuum atmosphere to form plasma, and chemically highly reactive ions and radicals (neutral active species) are generated through the ionization and dissociation process of the source gas. A thin film is formed as a reaction product on a semiconductor substrate. For example, silicon nitride film (SiNx
), SiH4+N is used as the raw material gas.
A mixed gas such as H31SiH4+N2 is used, and 5iH-? Generates ions and radicals such as NH. These ions and radicals form SiH+ xNH+(1+x)H-+SiNx+ on the semiconductor substrate.
A silicon nitride film (SiNx) is formed on a semiconductor substrate by a reaction such as (1+x)Hx.

このようにイオンやラジカルの生成や反応を利用するプ
ラズマ処理装置においては、処理速度の向上を図るため
はイオンやラジカルの濃度を高める必要があり、その九
めには高密度のプラズマを形成する必要がある。この目
的を達成する方法の一つとしてマイクμ波を用いたプラ
ズマ発生方式が提案されている。
In this way, in plasma processing equipment that utilizes the generation and reaction of ions and radicals, in order to improve the processing speed, it is necessary to increase the concentration of ions and radicals, and the ninth step is to form high-density plasma. There is a need. A plasma generation method using microwaves and μ waves has been proposed as one method for achieving this objective.

マイクロ波によりプラズマを発生させる場合、マグネト
ロンにより発生したマイクロ波を低圧にした処理室に導
入しても、マイクロ波の電界強度が十分でないためプラ
ズマ中の電子に十分なエネルギが供給されず、プラズマ
を発生させることは困難である。その念め、マイクロ波
を用い次プラズマ発生方式では、高密度プラズマを得る
ため、例えば特開昭60−415255号公報に示すよ
うに、2.45GHzのマイクロ波に磁場を利用した電
子サイクロトロン共鳴(E(:R)方式のプラズマ処理
装置がある。この方式のプラズマ処理装置は、マイクロ
波の電力をプラズマ中に効率良く投入するために、NC
R条件を満たすような外部磁場を印加してプラズマ中の
電子にサイクロトロン共鳴を起こさせることによりプラ
ズマ密度の向上を図っている。
When plasma is generated using microwaves, even if the microwaves generated by a magnetron are introduced into a low-pressure processing chamber, the electric field strength of the microwaves is not sufficient, so sufficient energy is not supplied to the electrons in the plasma, and the plasma is difficult to generate. To keep this in mind, in order to obtain high-density plasma in the plasma generation method using microwaves, for example, as shown in Japanese Patent Application Laid-Open No. 60-415255, electron cyclotron resonance (electron cyclotron resonance) using a magnetic field in microwaves of 2.45 GHz is used. There is an E(:R) type plasma processing equipment.This type of plasma processing equipment uses NC to efficiently input microwave power into the plasma.
The plasma density is improved by applying an external magnetic field that satisfies the R condition to cause cyclotron resonance in the electrons in the plasma.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来技術のプラズマ処理装置においては、
電子のサイクロトロン運動がプラズマ中でのガス分子と
の衝突によって乱されるような高い圧力条件下では、マ
イクロ波電界による電子の加速効率が低下して、プラズ
マ密度は低下する。
However, in the plasma processing apparatus of the above-mentioned prior art,
Under high pressure conditions, where the cyclotron motion of electrons is disturbed by collisions with gas molecules in the plasma, the efficiency of accelerating electrons by the microwave electric field decreases, resulting in a decrease in plasma density.

また、逆にガス圧力が低くても、衝突によるガス分子の
イオン化や励起の頻度が低下するためにプラズマ密度は
低下する。すなわち、従来のECRマイクロ波プラズマ
処理装置によるプラズマ密度のガス圧力に対する変化は
、第2図の曲線(b)に示すような関係にある。し次が
って、従来のECRプラズマ処理装置においては、!1
iCR条件下でマイクロ波電力をプラズマに効率良く投
入して高密度プラズマが得られるのは、10−2Tor
r台のガス圧力である。
Conversely, even if the gas pressure is low, the plasma density decreases because the frequency of ionization and excitation of gas molecules due to collisions decreases. That is, the change in plasma density with respect to gas pressure in the conventional ECR microwave plasma processing apparatus has a relationship as shown in curve (b) of FIG. 2. Next, in the conventional ECR plasma processing apparatus,! 1
Under iCR conditions, high-density plasma can be obtained by efficiently injecting microwave power into the plasma at 10-2 Tor.
The gas pressure is on the order of r.

プラズマCVDの処理の高速化を図るには、原料ガスの
供給量すなわちガス流量を増すことが不可欠である。し
かしながら、従来のBCR方式の処理装置は高密度プラ
ズマ発生条件が10Torr台の狭いガス圧力範囲に限
られるため、大流量のガスを流すとガス圧力が増大して
プラズマ密度が低下する。また大きなガス流量に対応し
て真空排気系を大型化することも困難であり、処理の高
速化が難しいという問題があった。
In order to speed up plasma CVD processing, it is essential to increase the supply amount of source gas, that is, the gas flow rate. However, in the conventional BCR type processing apparatus, the high-density plasma generation conditions are limited to a narrow gas pressure range of about 10 Torr, so when a large flow of gas is flowed, the gas pressure increases and the plasma density decreases. Furthermore, it is difficult to increase the size of the vacuum evacuation system to accommodate a large gas flow rate, and there is a problem in that it is difficult to increase the processing speed.

また、上記の従来技術では、共振器の中でプラズマを発
生させる構造のため、プラズマが発生するとマイクロ波
の波長がプラズマの密度により変化するので、共振条件
が満たされなくなるという問題もあった。
Further, in the above-mentioned conventional technology, since the structure generates plasma in a resonator, when plasma is generated, the wavelength of the microwave changes depending on the density of the plasma, so there is a problem that the resonance condition is no longer satisfied.

本発明の目的は、ガス圧力の高い条件においても高密度
のプラズマを形成し、処理速度の高いプラズマCVD装
置を提供することにある。
An object of the present invention is to provide a plasma CVD apparatus that can form high-density plasma even under conditions of high gas pressure and has a high processing speed.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、マイクロ波の導波管とプラズマ処理室との
間に共胴共振器を設置し、該共振器を構成しかつプラズ
マ処理室に接して該処理室を真空封止するマイクロ波透
過窓(石英またはアルミナなどの誘電体)にマイクロ波
が透過し得る膜厚の金属薄膜(例えば銅であれば(lL
5μm程度)を形成し、共振器により強められた電磁界
を上記マイクロ波透過窓からBCR条件の磁場を印加で
きるプラズマCVD処理室に導入することにより、達成
される。
The above purpose is to install a resonator between a microwave waveguide and a plasma processing chamber, to configure the resonator, and to contact the plasma processing chamber to seal the processing chamber under vacuum. If it is a thin metal film (for example, copper) that allows microwaves to pass through the window (dielectric material such as quartz or alumina),
This is achieved by forming an electromagnetic field of about 5 μm) and introducing an electromagnetic field strengthened by a resonator through the microwave transmission window into a plasma CVD processing chamber where a magnetic field under BCR conditions can be applied.

〔作用〕[Effect]

上記の本発明によるマイクロ波処理装置においては、導
波管より空胴共振器室に導入されたマイクロ波は、金属
薄膜を形成したマイクロ波透過窓によって反射され、あ
る特定の共振モードになるように設計された空胴共振器
内で定在波を生じて、マイクロ波の電磁界は強められる
。また、マイクロ波透過窓に形成された金属薄膜にはマ
イクロ波の電磁界に応じて表面電流が流れる。金属薄膜
の厚さが表面電流の表皮の深さ程度に薄いため、金属薄
膜を隔て空胴共振器側とは反対のプラズマ処理室側にも
′電磁界が生じる。そのため、マイクロ波はマイクロ波
透過窓を透過してプラズマ処理室に導入される。プラズ
マ処理室にはECR条件の磁場が形成されている。
In the above-mentioned microwave processing device according to the present invention, the microwave introduced into the cavity resonator chamber from the waveguide is reflected by the microwave transmission window formed of a thin metal film, so that it becomes a certain resonance mode. The electromagnetic field of the microwave is strengthened by creating a standing wave in a cavity designed to create a standing wave. Furthermore, a surface current flows through the metal thin film formed on the microwave transmission window in response to the electromagnetic field of the microwave. Since the thickness of the metal thin film is as thin as the skin depth of the surface current, an electromagnetic field is also generated on the plasma processing chamber side opposite to the cavity resonator side across the metal thin film. Therefore, the microwave passes through the microwave transmission window and is introduced into the plasma processing chamber. A magnetic field under ECR conditions is formed in the plasma processing chamber.

本発明によれば、1iICR条件におけるマイクロ波の
電磁界強度が強いため、電子がサイクロトロン運動中に
ガス分子を励起あるいは電離させるに十分なエネルギを
得るまでの時間が短かくなる。そのため、電子の衝突ま
での飛行時間が短かくなる高いガス圧力においても、高
密度プラズマを形成することができ、処理速度の高いプ
ラズマCVD装置を得ることができる。
According to the present invention, since the microwave electromagnetic field strength under the 1iICR condition is strong, the time required for electrons to obtain enough energy to excite or ionize gas molecules during cyclotron motion is shortened. Therefore, high-density plasma can be formed even at high gas pressures where the flight time until electron collision is shortened, and a plasma CVD apparatus with high processing speed can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例をi@1図によシ説明する。第
1図は、本発明によるプラズマCVD装置の構成を示す
処理室の断面を示す。第1図において、1は空胴共振器
であり、導波管2を介して145GHzのマイクロ波発
生器であるマグネトロン3が取り付けられている。また
、空胴共振器1は石英あるいはアルミナ等の誘電体から
成るマイクロ波透過窓4を介して処理室5に接続されて
おり、大気圧の空胴共振器1と真空雰囲気の処理室5と
は分離されている。マイクロ波透過窓4には、アルミニ
ウムを九は銀、銅などの金属薄膜6が蒸着あるいはメツ
キ等により表面電流表皮の深さ程度の厚さ(例えば鋼で
あれば(L5μm程度)で形成され、かつ空胴共振器1
に電気的導通が取れる構造で密着接続されている。処理
室5の内部には、下部電極7が絶縁カバー8によりアー
ス電位の処理室5とは電気的に絶縁されて設置されてお
り、高周波電源9が接続されている。上記下部電極7に
はプラズマ処理される半導体基板10が載置される。処
理室5の外部には同軸コイル11゜12が設置され、処
理室5内部に875Gの磁場を印加することができる。
Hereinafter, one embodiment of the present invention will be explained with reference to Figure i@1. FIG. 1 shows a cross section of a processing chamber showing the configuration of a plasma CVD apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes a cavity resonator, to which a magnetron 3, which is a 145 GHz microwave generator, is attached via a waveguide 2. Further, the cavity resonator 1 is connected to a processing chamber 5 through a microwave transmission window 4 made of a dielectric material such as quartz or alumina, and the cavity resonator 1 at atmospheric pressure and the processing chamber 5 in a vacuum atmosphere are connected to each other. are separated. On the microwave transmission window 4, a metal thin film 6 of aluminum, silver, copper, etc. is formed by vapor deposition or plating to a thickness approximately equal to the depth of the surface current skin (for example, in the case of steel (about L5 μm), and cavity resonator 1
They are closely connected to each other in a structure that allows electrical continuity. Inside the processing chamber 5, a lower electrode 7 is installed so as to be electrically insulated from the processing chamber 5 at ground potential by an insulating cover 8, and is connected to a high frequency power source 9. A semiconductor substrate 10 to be subjected to plasma processing is placed on the lower electrode 7 . Coaxial coils 11 and 12 are installed outside the processing chamber 5, and can apply a magnetic field of 875 G inside the processing chamber 5.

また、処理室5には図示しないガス供給装置が接続され
、供給されたガスは排気口13から図示しない排気装置
によ)排気される。そして、処理室5の圧力は処理中所
定の圧力に制御される。
Further, a gas supply device (not shown) is connected to the processing chamber 5, and the supplied gas is exhausted from the exhaust port 13 (by an exhaust device (not shown)). The pressure in the processing chamber 5 is controlled to a predetermined pressure during processing.

以上の構成により、半導体基板10をプラズマCVDK
よ〕成膜処理する場合の動作について説明する。処理室
5にCVD原料ガス(シリコン窒化膜の場合には例えば
SiH4+N2など)を供給し、所定の圧力に制御する
。続いて、マグネトロンSによp2.45GHzのマイ
クロ波を発生させ、導波管2を経て空胴共振器に導入す
る。空胴共振器1に導入されたマイクロ波は、マイクロ
波透過窓4上に形成した金属薄膜6により反射される。
With the above configuration, the semiconductor substrate 10 is processed by plasma CVDK.
] The operation in the case of film formation processing will be explained. A CVD raw material gas (for example, SiH4+N2 in the case of a silicon nitride film) is supplied to the processing chamber 5 and controlled to a predetermined pressure. Next, a microwave of 2.45 GHz is generated by the magnetron S and introduced into the cavity resonator through the waveguide 2. The microwave introduced into the cavity resonator 1 is reflected by the metal thin film 6 formed on the microwave transmission window 4.

空胴共振器1の管長tは特定共振モード(例えばTl0
11モード)になる様に設計されており、空胴共振器1
では設計モードのマイクロ波の定在波が生じて、マイク
ロ波はその電磁界が強められる。
The tube length t of the cavity resonator 1 corresponds to a specific resonance mode (for example, Tl0
11 mode), and the cavity resonator 1
In this case, a standing wave of the microwave in the design mode is generated, and the electromagnetic field of the microwave is strengthened.

この時、金属薄M6にはマイクロ波の電磁界に応じて表
面電流が流れるが、金属薄膜6の膜厚が表皮の厚さ程度
に薄いので、上記表面電流による電界が処理室5側にも
発生して、マイクロ波はマイクロ波透過窓4を透過して
処理室に放射される。
At this time, a surface current flows through the thin metal M6 in response to the electromagnetic field of the microwave, but since the thickness of the thin metal film 6 is as thin as the skin, the electric field due to the surface current also flows to the processing chamber 5 side. The generated microwaves are transmitted through the microwave transmission window 4 and radiated into the processing chamber.

このとき、処理室5には、同軸コイル11+12によ、
j5)itcR条件の磁場が印加されるので、11C子
のサイクロトロン共鳴によるCVD原料ガスの高密度の
プラズマが形成される。
At this time, the processing chamber 5 is provided with coaxial coils 11+12.
j5) Since a magnetic field under itcR conditions is applied, a high-density plasma of CVD raw material gas is formed due to cyclotron resonance of 11C atoms.

ここで、本実施例の場合には、従来のΣCR方式に比ベ
マイクロ波の電磁界強度が強いために短時間で電子が原
料ガスを励起あるいは電離させるに十分なエネルギを得
るので、高いガス圧力においても高密度のプラズマを維
持することができる。
Here, in the case of this embodiment, compared to the conventional ΣCR method, the electromagnetic field strength of the microwave is stronger, so the electrons can obtain enough energy to excite or ionize the source gas in a short time, so the gas pressure is high. High-density plasma can be maintained even at low temperatures.

さらに、処理中には下部電極7には高周波電源9よりI
AS4M)lzの高周波電力が印加され、印加電力の制
御により半導体基板10に入射するイオンのエネルギを
制御することにより、イオン衝撃によるダメージを抑え
なから膜質の緻密性を得るなどの制御を行うことができ
る。
Furthermore, during the processing, the lower electrode 7 is supplied with I
AS4M)lz high frequency power is applied, and by controlling the energy of ions incident on the semiconductor substrate 10 by controlling the applied power, control is performed such as suppressing damage caused by ion bombardment and obtaining dense film quality. Can be done.

第2図は、本実施例によるプラズマ密度のガス圧力に対
する変化(曲線−))を従来のECR方式(曲線(b)
)と比較して示した。
Figure 2 shows the change in plasma density with respect to gas pressure (curve -) in this example compared to the conventional ECR method (curve (b)).
).

本実施例によれば、第2図に示すように電子のサイクロ
トロン運動が衝突により乱される様な高いガス圧力領域
においても高密度のプラズマが維持でき、かつイオンの
エネルギが任意に制御できるので、高速で良質のCVD
膜を得ることができる。
According to this embodiment, as shown in Fig. 2, a high-density plasma can be maintained even in a high gas pressure region where the cyclotron motion of electrons is disturbed by collisions, and the energy of ions can be controlled arbitrarily. , high speed and high quality CVD
membrane can be obtained.

本発明は、単にプラズマCVDによる成膜処理のみに適
用されるものではなく、半導体基板のプラズマ酸化やド
ライエツチングなどプラズマを用いた処理に適用可能な
ことは明らかである。
It is clear that the present invention is applicable not only to film formation processing by plasma CVD, but also to processing using plasma such as plasma oxidation and dry etching of semiconductor substrates.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ECR方式により形成したプラズマの
密度が低下する様な高いガス圧力領域においても高密度
のプラズマが発生できるので、処理速度の高いプラズマ
処理を実現できるという効果がある。
According to the present invention, high-density plasma can be generated even in a high gas pressure region where the density of plasma formed by the ECR method is reduced, so that plasma processing with high processing speed can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるプラズマ処理装置の処
理室縦断面図、第2図は本発明のプラズマ処理装置と従
来のECR方式におけるプラズマ密度のガス圧力の変化
に対する関係の比較図である。 1・・・・・・空胴共振器、2・・・・・・導波管、5
・・・・・・マグネトロン、4・・・・・・マイクロ波
透過窓、5・・・・・・処理室、6・・・・・・金属薄
膜、7・・・・・・下部電極、8・・・・・・絶縁カバ
ー、9・・・・・・高周波電源、10・・・・・・半導
体基板、11.12・・・・・・同軸コイル、13・・
・・・・排気口。
FIG. 1 is a longitudinal sectional view of a processing chamber of a plasma processing apparatus according to an embodiment of the present invention, and FIG. 2 is a comparison diagram of the relationship between plasma density and gas pressure changes in the plasma processing apparatus of the present invention and a conventional ECR method. be. 1... Cavity resonator, 2... Waveguide, 5
... Magnetron, 4 ... Microwave transmission window, 5 ... Processing chamber, 6 ... Metal thin film, 7 ... Lower electrode, 8...Insulating cover, 9...High frequency power supply, 10...Semiconductor substrate, 11.12...Coaxial coil, 13...
····exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 1、マイクロ波によるプラズマ発生手段、処理ガス供給
手段、排気手段より成るプラズマ処理装置において、プ
ラズマ発生手段が空胴共振器とプラズマ処理室、及び空
胴共振器とプラズマ処理室とを真空分離するマイクロ波
透過窓とから成り、該マイクロ波透過窓に金属薄膜を形
成したことを特徴とするプラズマ処理装置。
1. In a plasma processing apparatus comprising a microwave plasma generation means, a processing gas supply means, and an exhaust means, the plasma generation means vacuum-isolates a cavity resonator and a plasma processing chamber, and a cavity resonator and a plasma processing chamber. 1. A plasma processing apparatus comprising a microwave transmitting window, and a metal thin film is formed on the microwave transmitting window.
JP23242488A 1988-09-19 1988-09-19 Plasma treatment apparatus Pending JPH0281434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23242488A JPH0281434A (en) 1988-09-19 1988-09-19 Plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23242488A JPH0281434A (en) 1988-09-19 1988-09-19 Plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JPH0281434A true JPH0281434A (en) 1990-03-22

Family

ID=16939047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23242488A Pending JPH0281434A (en) 1988-09-19 1988-09-19 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0281434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022085A1 (en) * 1991-05-24 1992-12-10 Lam Research Corporation Window for microwave plasma processing device
US5304277A (en) * 1990-09-28 1994-04-19 Hitachi, Ltd. Plasma processing apparatus using plasma produced by microwaves
US5785807A (en) * 1990-09-26 1998-07-28 Hitachi, Ltd. Microwave plasma processing method and apparatus
US5804033A (en) * 1990-09-26 1998-09-08 Hitachi, Ltd. Microwave plasma processing method and apparatus
US6622650B2 (en) * 1999-11-30 2003-09-23 Tokyo Electron Limited Plasma processing apparatus
US7997152B2 (en) 2007-01-02 2011-08-16 Azuma Shokai Co., Ltd. Magnetostrictive torque sensor and torque detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785807A (en) * 1990-09-26 1998-07-28 Hitachi, Ltd. Microwave plasma processing method and apparatus
US5804033A (en) * 1990-09-26 1998-09-08 Hitachi, Ltd. Microwave plasma processing method and apparatus
US5304277A (en) * 1990-09-28 1994-04-19 Hitachi, Ltd. Plasma processing apparatus using plasma produced by microwaves
WO1992022085A1 (en) * 1991-05-24 1992-12-10 Lam Research Corporation Window for microwave plasma processing device
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
US6622650B2 (en) * 1999-11-30 2003-09-23 Tokyo Electron Limited Plasma processing apparatus
US7997152B2 (en) 2007-01-02 2011-08-16 Azuma Shokai Co., Ltd. Magnetostrictive torque sensor and torque detection method

Similar Documents

Publication Publication Date Title
KR920002864B1 (en) Apparatus for treating matrial by using plasma
US4599135A (en) Thin film deposition
EP0264913B1 (en) Plasma processing apparatus
EP0395415A2 (en) Apparatus for and method of processing a semiconductor device using microwave-generated plasma
JP3706027B2 (en) Plasma processing method
KR0174070B1 (en) Microwave Plasma Processing Apparatus And Method
KR930005012B1 (en) Microwave plasma etching method and apparatus
JPH0319332A (en) Microwave plasma treatment device
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
JPH0281434A (en) Plasma treatment apparatus
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPH07135093A (en) Plasma processing device and processing method
JPS63103088A (en) Plasma treating device
JPH0368771A (en) Microwave plasma treating device
JPH08315998A (en) Microwave plasma processing equipment
JP3156492B2 (en) Plasma processing apparatus and plasma processing method
KR930001857B1 (en) Plasma treatment apparatus and plasma treatment method
JPH01236629A (en) Plasma processor
JPS6390132A (en) Surface-treatment apparatus
JPH1074730A (en) Surface treatment equipment
JP2800766B2 (en) Plasma processing method and apparatus
JPS6267822A (en) plasma processing equipment
JP2727747B2 (en) Microwave plasma generator
JPH0331480A (en) Plasma treating device by microwave
JPS611024A (en) Manufacturing apparatus of semiconductor circuit