JPS61213652A - Light scattering image information analyzing device - Google Patents
Light scattering image information analyzing deviceInfo
- Publication number
- JPS61213652A JPS61213652A JP5336985A JP5336985A JPS61213652A JP S61213652 A JPS61213652 A JP S61213652A JP 5336985 A JP5336985 A JP 5336985A JP 5336985 A JP5336985 A JP 5336985A JP S61213652 A JPS61213652 A JP S61213652A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- optical system
- light
- observation
- luminous flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の属する分野]
本発明は、物体内の微細な構造あるいは組成等を光散乱
または螢光を利用して解析するための装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an apparatus for analyzing minute structures or compositions within an object using light scattering or fluorescence.
[従来技術]
一般に、例えば結晶体などを微細に観察しようとする場
合、顕微鏡が利用される。このような顕微鏡としては、
通常の光学顕微鏡、偏光顕微鏡、位相差顕微鏡、電子顕
微鏡、さらには走査型電子顕微鏡などがある。このよう
な顕微鏡の基本的動作としては、試料観察面に光あるい
は電子線を照射し、観察面の各部位における相対的な色
相あるいは明暗の差異をパターンとしてとらえる。すな
わち、試料観察面における構造、組成の差異による光ま
たは電子線の透過率、反射率あるいは2次電子放射効率
の相対的差異をみようとするものである。したがって観
察面を総括的に把握する上では簡便な方法ということが
できる。[Prior Art] Generally, a microscope is used when attempting to observe, for example, a crystalline object in minute detail. As such a microscope,
There are ordinary optical microscopes, polarizing microscopes, phase contrast microscopes, electron microscopes, and even scanning electron microscopes. The basic operation of such a microscope is to irradiate a sample observation surface with light or an electron beam, and detect the relative hue or difference in brightness of each part of the observation surface as a pattern. That is, the objective is to examine relative differences in light or electron beam transmittance, reflectance, or secondary electron radiation efficiency due to differences in structure and composition on the sample observation surface. Therefore, it can be said to be a simple method for comprehensively understanding the observation aspect.
しかし、例えば結晶体試料内のある断面における特定元
素の配列や、格子欠陥等をパターンとして観察しようと
する場合、従来の顕微鏡ではその他の要素(例えば元素
配列や格子欠陥等)からの情報も重ねられた像として観
察され、また光あるいは電子線の照射角度、結晶体の方
位性などの影響により同種要素から等しい情報が得られ
なかったり、また異種要素から同種の情報があったりす
ることも相まって適確な観察、把握が困難であった。However, when attempting to observe patterns such as the arrangement of specific elements or lattice defects in a certain cross-section within a crystalline sample, conventional microscopes also overlap information from other elements (e.g. element arrangement, lattice defects, etc.). In addition, due to the effects of the irradiation angle of the light or electron beam, the orientation of the crystal, etc., equal information may not be obtained from the same type of elements, or the same type of information may be obtained from different types of elements. Accurate observation and understanding were difficult.
さらに透過型顕微鏡では試料を薄片状態にする必要があ
り、また反射型のものでは観察面を表面に露出させなけ
ればならず、必ずしも最善のものとは言い難い。Furthermore, transmission type microscopes require the specimen to be made into thin sections, and reflection type microscopes require the observation surface to be exposed on the surface, so they are not necessarily the best.
第3図は、このような欠点を除去するために、本発明者
等が先に提案した光散乱画像情報解析装置(特WIal
154−10948811参Fl ) (7)構成e示
t。FIG. 3 shows a light scattering image information analysis device (specially WIal
154-10948811 (Fl) (7) Configuration e.
この装置は、試料に対してその試料を透過し得る光を照
射し、その照射光によって特に試料内部に発生される散
乱光または螢光を、観察のための 。This device irradiates a sample with light that can pass through the sample, and observes scattered light or fluorescent light generated within the sample by the irradiated light.
情報源とするものである。同図において、11はレーザ
光源、12はミラー13および光学系14が固定された
移動台、15は移動用レール、16は試料載置台、17
は試料である。18はビーム光軸りに略垂直な観察光軸
を画定する観察光学系である。また、19は試料11内
部に発生される散乱光を観察のための情報に変換するた
めの情報取得手段で、図には写真乾板のような感光材料
を例示しているが、他に、光電変換素子または撮像素子
等であってもよい。It is intended as a source of information. In the figure, 11 is a laser light source, 12 is a moving table on which a mirror 13 and an optical system 14 are fixed, 15 is a moving rail, 16 is a sample mounting table, and 17
is the sample. Reference numeral 18 denotes an observation optical system that defines an observation optical axis substantially perpendicular to the beam optical axis. Reference numeral 19 is an information acquisition means for converting the scattered light generated inside the sample 11 into information for observation. It may be a conversion element, an image sensor, or the like.
同図において、光源11からのビームLは、ミラー13
で光路を定められ、必要に応じて偏光方向も決められて
、光学系14により細く絞られ、試料11に側方から入
射する。この入射したビームLは試料17を通過し、そ
の過程において散乱される。この散乱光は、試料17が
結晶体であれば、ビーム透過部分における結晶構造の影
響を受けることになる。例えば屈折率変動、コロイダル
粒子の混在、格子欠陥、結晶の方位性不均一などの結果
、均質結晶には見られない散乱を呈する。したがって、
散乱光を観察光学系により観察することにより、試料1
7内の結晶構造について知ることができる。In the figure, the beam L from the light source 11 is reflected by the mirror 13.
The optical path is determined by the optical system 14, the polarization direction is also determined if necessary, the light is narrowed down by the optical system 14, and the light enters the sample 11 from the side. This incident beam L passes through the sample 17 and is scattered in the process. If the sample 17 is a crystal, this scattered light will be affected by the crystal structure in the beam-transmitting portion. For example, as a result of refractive index fluctuations, the presence of colloidal particles, lattice defects, non-uniform orientation of the crystal, etc., it exhibits scattering that is not observed in homogeneous crystals. therefore,
By observing the scattered light with an observation optical system, sample 1
You can learn about the crystal structure within 7.
観察方法は、図のように感光材料19に感光させてもよ
いし、図示しない光電検出器や撮像素子等により光電変
換し電気的に処理してディスプレイ装置にパターンとし
て表示させてもよい。As an observation method, the photosensitive material 19 may be exposed to light as shown in the figure, or it may be photoelectrically converted and electrically processed using a photoelectric detector or an image sensor (not shown), and then displayed as a pattern on a display device.
ここで、試料11内部の切断面での情報を画像として得
るためには、ミラー13および光学系14を保持し矢印
へ方向に移動可能な移動台12により、ビームLを水平
方向に走査しなければならない。さらにこの場合、感光
材料面直前にビームと同方向に細長いスリットを配置し
、ビームの走査に同期してスリットを移動させて記録さ
せるようにすることが望ましい。Here, in order to obtain information on the cut plane inside the sample 11 as an image, the beam L must be scanned in the horizontal direction by a movable stage 12 that holds the mirror 13 and the optical system 14 and is movable in the direction of the arrow. Must be. Furthermore, in this case, it is desirable to arrange an elongated slit in the same direction as the beam just in front of the surface of the photosensitive material, and to move the slit in synchronization with the scanning of the beam to record.
また、ビームLそのものを走査させない場合でも、試料
載置台16を図中の矢印Bの方向に移動させることによ
って試料17に対しビームLを相対的に走査させること
が必要になる。この場合には、像倍率を考慮しながら感
光材料19を試料載置台16の移動と同期して、例えば
同図中矢印C方向に水平走行させなければならない。Furthermore, even if the beam L itself is not scanned, it is necessary to scan the beam L relative to the sample 17 by moving the sample mounting table 16 in the direction of arrow B in the figure. In this case, the photosensitive material 19 must be moved horizontally, for example in the direction of arrow C in the figure, in synchronization with the movement of the sample stage 16 while taking into account the image magnification.
以上述べたように、従来の光散乱画像情報解析装置にお
いては、被検物体の所定の面を観察する場合、光束の走
査または被検物体の走査が必要であり、そのための走査
機構を備えていなGjればならなかった。ざらに光電検
出器により散乱光を観察する場合には、これらの走査と
同期した画像処理を行なうことが必須であり、その場観
察、直接観察はすることができなかった。As mentioned above, in conventional light scattering image information analysis devices, when observing a predetermined surface of a test object, it is necessary to scan the light beam or scan the test object, and the device is not equipped with a scanning mechanism for this purpose. I had to use a GJ. When observing scattered light using a photoelectric detector, it is essential to perform image processing in synchronization with these scans, and in-situ or direct observation is not possible.
[発明の目的]
本発明の目的は、上述の従来系における問題点に鑑み、
被検物体の所望の断面に光束を透過してこの光束による
被検物体内部の散乱光または螢光をもとに上記所望断面
を観察する光散乱画像情報解析装置において、上記光束
をスリット状に集束しラインビームとして被検物体を照
射し上記所望断面の全面に該光束を同時に透過させると
いう構想に基づき、光束または被検物体の走査を不要と
し、さらに画像処理なしで上記所望断面のその場観察お
よび直接観察ができるようにすることにある。[Object of the invention] In view of the problems in the conventional system described above, the object of the present invention is to
In a light scattering image information analysis device that transmits a beam of light to a desired cross section of a test object and observes the desired cross section based on scattered light or fluorescence inside the test object caused by this light beam, the light beam is formed into a slit shape. Based on the concept of irradiating the object to be inspected as a focused line beam and simultaneously transmitting the beam to the entire surface of the desired cross section, there is no need to scan the beam or the object to be inspected, and furthermore, the desired cross section can be illuminated on the spot without image processing. The purpose is to enable observation and direct observation.
[実施例] 以下、実施例に基づき本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail based on Examples.
第1図は、本発明の一実施例に係る光散乱画像情報解析
装置を示す。1はレーザ光源、2はミラー、3は光学系
、4は観察すべき試料である。5は観察光学系、6は感
光材料である。FIG. 1 shows a light scattering image information analysis device according to an embodiment of the present invention. 1 is a laser light source, 2 is a mirror, 3 is an optical system, and 4 is a sample to be observed. 5 is an observation optical system, and 6 is a photosensitive material.
第2図は、光学系3の内部構造を示す。31はシリンド
リカルレンズ(円柱レンズ)、32は球面レンズである
。FIG. 2 shows the internal structure of the optical system 3. 31 is a cylindrical lens, and 32 is a spherical lens.
第、1図および第2図により、本発明の詳細な説明する
。第1図において、光源1からのビームはミラー2で光
路を定められ必要に応じて偏光方向も決められて光学系
3に入射する。光学系3は第2図に示すようにシリンド
リカルレンズと球面レンズにより構成されており、入射
したビームはこれらのレンズにより観察したい断面と平
行な方向のスリット状に集束され、ラインビームLとし
て試料4の側面に図面左方から水平に入射する。これに
より、ラインビームLは試料4を透過するが、その過程
において散乱され、その散乱光のうち図面上方にビーム
Lの光軸と略垂直の光は観察光学系5に入射し観察可能
となる。このように、光束をラインビームとすることに
より1つの光束で試料4の所望の断面の全体を同時に照
射することが可能となり、レーザビームしゃ試料4、感
光材料6等の走査をする必要がなく、試料からの散乱光
を同時に全面に渡って、その場観察、直接W*をするこ
とができる。The present invention will be explained in detail with reference to FIGS. 1 and 2. FIG. In FIG. 1, a beam from a light source 1 enters an optical system 3 with an optical path determined by a mirror 2 and a polarization direction determined as necessary. As shown in Fig. 2, the optical system 3 is composed of a cylindrical lens and a spherical lens, and the incident beam is focused by these lenses into a slit shape in a direction parallel to the cross section to be observed, and is sent to the sample 4 as a line beam L. incident horizontally from the left side of the drawing. As a result, the line beam L passes through the sample 4, but is scattered in the process, and among the scattered light, light that is approximately perpendicular to the optical axis of the beam L in the upper part of the drawing enters the observation optical system 5 and can be observed. . In this way, by using a line beam as the light beam, it becomes possible to simultaneously irradiate the entire desired cross section of the sample 4 with one light beam, and there is no need to scan the sample 4, photosensitive material 6, etc. with a laser beam. , it is possible to simultaneously observe the scattered light from the sample over the entire surface, and perform in-situ observation and direct W*.
また上述の実施例では、90°散乱についてのみ述べて
きたが、他の角度でも散乱像を得ることができる。光の
散乱強度は、粒径が波長より十分小さな散乱体を除くと
、90°散乱より前方散乱の方が大きい。したがって、
前方散乱を用いた光散乱画像情報解析装置も考えられる
。第4図は、前方散乱によって板状欠陥を観察する場合
の配置図である。41はシリンドリカルレンズ、42は
球面レンズである。Further, in the above embodiment, only 90° scattering has been described, but scattering images can be obtained at other angles as well. The scattering intensity of light is larger in forward scattering than in 90° scattering, except for scatterers whose particle size is sufficiently smaller than the wavelength. therefore,
A light scattering image information analysis device using forward scattering is also considered. FIG. 4 is a layout diagram when observing a plate-like defect by forward scattering. 41 is a cylindrical lens, and 42 is a spherical lens.
本発明は、物体内部の情報を散乱光を観察することによ
り得ようとするものである。可視光においては、生物体
ならびに透明結晶体等の欠陥観察に有効であるが、これ
を赤外光とし半導体結晶の内部を観察することもできる
。この場合、半導体結晶では伝導電子による光の吸収が
大きく、赤外光では撮像管の受光感度が悪くなるという
問題点はあるが、それらを透過するような強力な光束を
使用して本発明を実施すれば、半導体結晶内の欠陥を観
察することができる。なお、上述においては、照射光と
同一波長である散乱光を観察する場合について述べたが
、本発明の装置によれば、物体から発生する螢光をもと
に物体の結晶配列や格子欠陥等を観察することもできる
ことは勿論である。The present invention attempts to obtain information inside an object by observing scattered light. Visible light is effective for observing defects in living organisms and transparent crystal bodies, but it can also be used as infrared light to observe the inside of semiconductor crystals. In this case, there are problems in that semiconductor crystals absorb a large amount of light due to conduction electrons, and infrared light reduces the sensitivity of the image pickup tube. If carried out, defects within the semiconductor crystal can be observed. In the above description, we have described the case where scattered light having the same wavelength as the irradiated light is observed, but according to the apparatus of the present invention, the crystal alignment, lattice defects, etc. of the object can be detected based on the fluorescence generated from the object. Of course, it is also possible to observe.
[発明の効果]
以上のように、本発明によると、試料に照射する光束を
スリット状に集束しているため、光束または被検物体の
走査を不要とし、あるいはざらに画像処理をすることな
しに、その場観察、直接観察をすることが可能である。[Effects of the Invention] As described above, according to the present invention, since the light beam irradiating the sample is focused in a slit shape, there is no need to scan the light beam or the object to be examined, or to perform rough image processing. It is possible to conduct in-situ and direct observations.
第1図は本発明の一実施例に係る光散乱画像情報解析装
置の構成図、
第2図は光源からの光を線状に集束する光学系の構成図
、
第3図は従来の光散乱画像情報解析装置の構成図、
第4図は前方散乱によって板状欠陥を観察する場合の配
置図である。
1.11:レーザ光源、3,14:光学系、Lニライン
ビーム、
31.41ニジリントリカルレンズ、
32.42:球面レンズ、4.17:試料、5.18:
[1察光学系、
6.19:情報取得手段(感光材料あるいは撮像管)。Fig. 1 is a block diagram of a light scattering image information analysis device according to an embodiment of the present invention, Fig. 2 is a block diagram of an optical system that focuses light from a light source into a line, and Fig. 3 is a block diagram of a conventional light scattering image information analysis device. FIG. 4 is a configuration diagram of the image information analysis device, and is a layout diagram when observing a plate-like defect by forward scattering. 1.11: Laser light source, 3, 14: Optical system, L Niline beam, 31.41 Nijilintric lens, 32.42: Spherical lens, 4.17: Sample, 5.18:
[1 Sensor optical system, 6.19: Information acquisition means (photosensitive material or imaging tube).
Claims (1)
の光束を照射する照射光学系と、該スリット状光束によ
る被検物体内の散乱光または螢光を該光束の光軸および
該スリットの長手方向の軸を含む面に対して交叉する方
向から観察する観察光学系とを有することを特徴とする
光散乱画像情報解析装置。 2、前記照射光学系が、シリンドリカルレンズと球面レ
ンズにより構成された集束光学系を有する特許請求の範
囲第1項記載の光散乱画像情報解析装置。[Scope of Claims] 1. An irradiation optical system that irradiates a test object with a slit-shaped light beam that passes through the test object; A light scattering image information analysis device comprising an observation optical system for observing from a direction intersecting a plane including an optical axis of a light beam and a longitudinal axis of the slit. 2. The light scattering image information analysis device according to claim 1, wherein the irradiation optical system includes a focusing optical system constituted by a cylindrical lens and a spherical lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60053369A JPH0629853B2 (en) | 1985-03-19 | 1985-03-19 | Light scattering image information analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60053369A JPH0629853B2 (en) | 1985-03-19 | 1985-03-19 | Light scattering image information analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61213652A true JPS61213652A (en) | 1986-09-22 |
JPH0629853B2 JPH0629853B2 (en) | 1994-04-20 |
Family
ID=12940899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60053369A Expired - Lifetime JPH0629853B2 (en) | 1985-03-19 | 1985-03-19 | Light scattering image information analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629853B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010092002A (en) * | 2008-09-12 | 2010-04-22 | Olympus Corp | Optical microscope |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7194037B1 (en) | 2000-05-23 | 2007-03-20 | Marvell International Ltd. | Active replica transformer hybrid |
US6775529B1 (en) | 2000-07-31 | 2004-08-10 | Marvell International Ltd. | Active resistive summer for a transformer hybrid |
US7433665B1 (en) | 2000-07-31 | 2008-10-07 | Marvell International Ltd. | Apparatus and method for converting single-ended signals to a differential signal, and transceiver employing same |
US7113121B1 (en) | 2000-05-23 | 2006-09-26 | Marvell International Ltd. | Communication driver |
US7606547B1 (en) | 2000-07-31 | 2009-10-20 | Marvell International Ltd. | Active resistance summer for a transformer hybrid |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54109488A (en) * | 1978-02-08 | 1979-08-28 | Fuji Photo Optical Co Ltd | Analyzing method and device of optically scattered image information |
JPS5925075A (en) * | 1982-08-04 | 1984-02-08 | Diesel Kiki Co Ltd | Display device for nozzle spray shape |
-
1985
- 1985-03-19 JP JP60053369A patent/JPH0629853B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54109488A (en) * | 1978-02-08 | 1979-08-28 | Fuji Photo Optical Co Ltd | Analyzing method and device of optically scattered image information |
JPS5925075A (en) * | 1982-08-04 | 1984-02-08 | Diesel Kiki Co Ltd | Display device for nozzle spray shape |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010092002A (en) * | 2008-09-12 | 2010-04-22 | Olympus Corp | Optical microscope |
Also Published As
Publication number | Publication date |
---|---|
JPH0629853B2 (en) | 1994-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100743591B1 (en) | Confocal self-interference microscope with side lobe removed | |
JP4030815B2 (en) | System and method for simultaneous or sequential multiple perspective sample defect inspection | |
JP4546830B2 (en) | Dark field inspection system | |
US5805278A (en) | Particle detection method and apparatus | |
US5760951A (en) | Apparatus and method for scanning laser imaging of macroscopic samples | |
EP0458418B1 (en) | Method and apparatus for measuring internal defects | |
US20100118396A1 (en) | Confocal microscope apparatus | |
US7826049B2 (en) | Inspection tools supporting multiple operating states for multiple detector arrangements | |
CN102841083A (en) | Method and system of laser scanning phase-microscope imaging | |
DE19626261A1 (en) | IC pattern and metal surface test object observation differential interference microscope | |
CN108474932A (en) | Big visual field, high-resolution microscope | |
JP2008502929A (en) | Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light | |
US6879391B1 (en) | Particle detection method and apparatus | |
KR970000781B1 (en) | Foreign body inspection device | |
JPH01221850A (en) | Infrared scatter microscope | |
JPS61213652A (en) | Light scattering image information analyzing device | |
EP0624787B1 (en) | Method and device for non-distructive testing of surfaces | |
JP2005173580A (en) | Confocal laser scanning microscope | |
JPH01270644A (en) | Particle analyser | |
WO2020136785A1 (en) | Defect inspection device, inspection method, and optical module | |
JP3034390B2 (en) | Method for inspecting internal defect of transparent plate and sample stage therefor | |
JP2003121385A (en) | Defect inspection method and inspection device inside quartz glass material | |
JPH07139931A (en) | Apparatus for irradiating laser in laser scan microscope | |
JP2004309137A (en) | Defect inspection method and defect inspection device inside quartz glass material | |
JPS61213653A (en) | Device for analyzing information of transmitted and scattered light image by simultaneous observation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |