[go: up one dir, main page]

JPS61209954A - Manufacture of silicon carbide base refractory material - Google Patents

Manufacture of silicon carbide base refractory material

Info

Publication number
JPS61209954A
JPS61209954A JP60051048A JP5104885A JPS61209954A JP S61209954 A JPS61209954 A JP S61209954A JP 60051048 A JP60051048 A JP 60051048A JP 5104885 A JP5104885 A JP 5104885A JP S61209954 A JPS61209954 A JP S61209954A
Authority
JP
Japan
Prior art keywords
silicon carbide
refractory material
manufacture
carbide base
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60051048A
Other languages
Japanese (ja)
Other versions
JPH0582346B2 (en
Inventor
幸文 酒井
広志 田代
玉水 照康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP60051048A priority Critical patent/JPS61209954A/en
Publication of JPS61209954A publication Critical patent/JPS61209954A/en
Publication of JPH0582346B2 publication Critical patent/JPH0582346B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は炭化珪素質耐火材料の製造方法にがかるもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon carbide refractory material.

炭化珪素は耐熱性、耐熱衝撃性に秀れた耐火材料として
従来から使用されている。その製造方法は加圧焼結ある
いは常圧焼結が行なわれているが、加圧焼結法において
は緻密で高強度のものが得られる反面、単純形状のもの
しか製造できず装置も複雑で高価なものである。
Silicon carbide has traditionally been used as a refractory material with excellent heat resistance and thermal shock resistance. The manufacturing method is pressure sintering or pressureless sintering, but while pressure sintering can produce dense and high-strength products, it can only produce products with simple shapes and requires complicated equipment. It's expensive.

又常圧焼結も行なわれているが硼素および炭素の添加に
よるもので、固相反応であるため、添加剤の分散状態に
よって特性が影響され、その信頼性は必ずしも満足でき
るものではなかった。
Pressureless sintering has also been carried out, but since it involves the addition of boron and carbon and is a solid phase reaction, the properties are affected by the state of dispersion of the additives, and its reliability has not always been satisfactory.

この発明においては炭化珪素本来の保有する耐熱性、耐
熱衝撃性の特徴を生かし、常圧で焼結することによって
信頼性の高い高密度、高強度の焼結体を製造する方法で
ある。
This invention is a method of manufacturing a highly reliable, high-density, high-strength sintered body by sintering at normal pressure by taking advantage of the heat resistance and thermal shock resistance inherent to silicon carbide.

従来の常圧焼結法においては超微粉を使用し、固相反応
を利用して焼結するため約20%の体積収縮を起す。こ
のため焼結体にひずみが残りやすい。
In the conventional pressureless sintering method, ultrafine powder is used and sintering is performed using a solid phase reaction, resulting in a volumetric shrinkage of about 20%. For this reason, strain tends to remain in the sintered body.

本発明者等はこのひずみの発生についてその原因を京間
したところ、主原料のSi Cにおける表面酸化状態の
如何によって大きく影響されることが明らかとなった。
The present inventors investigated the cause of this strain and found that it is greatly influenced by the surface oxidation state of the main raw material, SiC.

炭化珪素はその粒子表面は常温でも空気によって酸化さ
れ、1μ以下のような超微粒子の場合程著しい。すなわ
ちその酸化量は時間、温度の他に表面積にも比例するこ
とが明らかである。
The surface of silicon carbide particles is oxidized by air even at room temperature, and this is more noticeable in the case of ultrafine particles of 1 μm or less. That is, it is clear that the amount of oxidation is proportional to surface area as well as time and temperature.

この炭化珪素表面の酸素は硼酸その他の焼結助剤による
反応に影響を与えるが特にAJ!Nを使用した場合に著
しく認められる。I NはS; C−IN−C系におい
て2000〜2200℃では液相で反応が進むため、均
質性の点で明らかに1Fjl酸等よりは好ましい焼結助
剤であるが、前述のようにSiC表面の酸素による妨害
を受は易い。
This oxygen on the surface of silicon carbide affects the reaction with boric acid and other sintering aids, but especially in AJ! This is noticeable when N is used. IN is S; In the C-IN-C system, the reaction proceeds in the liquid phase at 2000 to 2200°C, so it is clearly a more preferable sintering aid than 1Fjl acid in terms of homogeneity, but as mentioned above, It is susceptible to interference by oxygen on the SiC surface.

反応系の中にCを含有せしめることによってこの妨害を
抑制することが可能であるが、これだけでは充分ではな
い。
Although it is possible to suppress this interference by incorporating C into the reaction system, this alone is not sufficient.

従来の常圧焼結法においてA、l!Nを焼結助剤として
用いることは知られているが、この場合はWC,BC,
B、A、l! 203等の他の焼結助剤と共に用いられ
ており、本願発明の如<AI N−Cのみでは充分緻密
なもの(理論密度の90%以上)は得られていなかった
。これはすなわち成形体中の水分による影響について配
慮されていなかったためである。
In the conventional pressureless sintering method, A, l! It is known that N is used as a sintering aid, but in this case, WC, BC,
B, A, l! It is used together with other sintering aids such as 203, etc., and it has not been possible to obtain a sufficiently dense product (90% or more of the theoretical density) using AI N-C alone as in the present invention. This is because no consideration was given to the influence of moisture in the molded article.

このため本発明においては乾燥させた配合粉を使用し、
かつ粘結剤中の水分を1%以下に抑制したものを使用す
るものである。これは、特にAfINが容易に水分を反
応して分解してしまうためで水分によって配合したiN
が変質してその焼結助剤としての効果を表わさなくなる
ことが明らかとなったためである。そこで成形体中に水
分が混入しないようにするために、原料粉のみでなく使
用する粘結剤中の水分も考慮に入れたものである。
Therefore, in the present invention, dried blended powder is used,
In addition, a binder with moisture content suppressed to 1% or less is used. This is because AfIN in particular easily reacts with moisture and decomposes, so iN mixed with moisture
This is because it has become clear that the substance changes in quality and becomes ineffective as a sintering aid. Therefore, in order to prevent moisture from entering the molded product, consideration must be given not only to the moisture content in the raw material powder but also in the binder used.

炭化珪素、窒化アルミ、炭素は粒状体であるため、乾燥
状態とすることは比較的容易である。すなわち成形体の
焼成に際し加熱初期の低温時に粒子表面から揮散させる
ことができる。
Since silicon carbide, aluminum nitride, and carbon are granular, it is relatively easy to dry them. That is, when firing a molded body, it can be volatilized from the particle surface at a low temperature in the initial stage of heating.

しかるに通常の粘結剤は疎水性のものであっても水分を
含有していることが多く、しかも焼成に際しても粒子表
面に付着した水分程容易に揮散することはなく、主原料
として使用する炭化珪素粉を表面酸化の少ないものを使
用したとしても、この粘結剤中の水分によって容易に酸
化され、これがsr C−A、l! N−Cの反応系に
悪影響を与えることになる。
However, even though ordinary binders are hydrophobic, they often contain water, and even during firing, they do not volatilize as easily as the water attached to the particle surface. Even if silicon powder with low surface oxidation is used, it is easily oxidized by the moisture in the binder, and this causes sr C-A, l! This will have an adverse effect on the NC reaction system.

粘結剤は、そのままで使用するものあるいは溶剤で希釈
するもの等任意に選び得るが、前述の反応に影響を与え
ないあるいは無視し得る水分量は含水率1%以下、好ま
しくは実質的に水分を含まないものとする。
The binder can be used as it is or diluted with a solvent, etc., but the water content that does not affect the above reaction or can be ignored is 1% or less, preferably substantially no water content. shall not be included.

以下にこの発明を実施例により説明する。This invention will be explained below with reference to Examples.

実施例 平均粒径 0.5μのし−S+ C粉   90部平均
粒径 4.0μのAIN粉     5部の乾燥状態(
含水率0.1%)の混合粉末に、フェノールレジ−(含
水率0゜3%>   10部アセトン    (含水率
0.2%>   ioo部を加えて調合し、造粒成形し
た。
Example 90 parts of Shi-S+C powder with an average particle size of 0.5 μ 5 parts of AIN powder with an average particle size of 4.0 μ in dry state (
10 parts of phenol resin (water content: 0.3%) and ioo parts of acetone (water content: 0.2%>) were added to a mixed powder with a water content of 0.1%, and the mixture was granulated.

この成形体をA「雰囲気中で2100℃に常圧焼結した
。このものの密度は3.15(理論密度の98%に相当
する)常温曲げ強度は550MPa 、 1200℃に
おける曲げ強度は650MPaであった。
This compact was sintered under normal pressure at 2100°C in an atmosphere of A.The density of this product was 3.15 (corresponding to 98% of the theoretical density), the bending strength at room temperature was 550 MPa, and the bending strength at 1200°C was 650 MPa. Ta.

比較例として通常使用されているフェノールレジン(含
水率1.1%)及びアセトン(含水率1.3%)のもの
を使用し、実施例と同様にして焼結体を得た。
As a comparative example, commonly used phenol resin (water content 1.1%) and acetone (water content 1.3%) were used, and sintered bodies were obtained in the same manner as in the examples.

このものの密度は2.75、室温強度は250MPaで
あった。AI!N及びCの添加割合はいずれもSi C
に対し1〜10重量%の範囲内であることが好ましく、
この範囲を逸脱するといずれも高密度、高強度のものは
得られない。焼成温度も2000〜2200℃の範囲を
逸脱すると同様に好ましい密度及び強度のものは得られ
ない。
This material had a density of 2.75 and a room temperature strength of 250 MPa. AI! The addition ratios of N and C are both SiC
It is preferably within the range of 1 to 10% by weight,
If it deviates from this range, high density and high strength cannot be obtained. Similarly, if the firing temperature is outside the range of 2000 to 2200°C, preferred density and strength cannot be obtained.

なお、本発明においてはSt C−AIN−C三成分系
のみに限定されるものではなく、水分含有状態に密意し
つつ、BC9A、l!203等の通常の焼結助剤を使用
することもできる。
Note that the present invention is not limited to only the St C-AIN-C ternary system, but is based on the BC9A, l! Conventional sintering aids such as 203 can also be used.

発明者  酒井 幸文 発明者  出代 広志 発明者  王水 照康Inventor Yukifumi Sakai Inventor: Hiroshi Deshiro Inventor: Teruyasu Aquaregia

Claims (2)

【特許請求の範囲】[Claims] (1)いずれも乾燥状態でSiC粉末に1〜10重量%
のCを混合し、含水率1%以下の粘結剤を調合して成形
し、非酸化性雰囲気下2000〜2200℃で焼成する
ことを特徴とする炭化珪素材料の製造方法。
(1) 1 to 10% by weight of SiC powder in dry state
1. A method for producing a silicon carbide material, which comprises mixing C, blending a binder with a moisture content of 1% or less, molding, and firing at 2000 to 2200°C in a non-oxidizing atmosphere.
(2)粘結剤が実質的に水分を含まないものであること
を特徴とする特許請求の範囲第一項記載の炭化珪素質耐
火材の製造方法。
(2) The method for producing a silicon carbide refractory material according to claim 1, wherein the binder contains substantially no water.
JP60051048A 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material Granted JPS61209954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051048A JPS61209954A (en) 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051048A JPS61209954A (en) 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material

Publications (2)

Publication Number Publication Date
JPS61209954A true JPS61209954A (en) 1986-09-18
JPH0582346B2 JPH0582346B2 (en) 1993-11-18

Family

ID=12875915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051048A Granted JPS61209954A (en) 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material

Country Status (1)

Country Link
JP (1) JPS61209954A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553396A (en) * 1978-06-15 1980-01-11 Carborundum Co Silicon carbideealuminum nitride sintered product and its manugacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553396A (en) * 1978-06-15 1980-01-11 Carborundum Co Silicon carbideealuminum nitride sintered product and its manugacture

Also Published As

Publication number Publication date
JPH0582346B2 (en) 1993-11-18

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
JPS63190761A (en) Aluminum nitride sintered body
US5773733A (en) Alumina-aluminum nitride-nickel composites
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
US4500644A (en) Preparation and composition of sialon grain and powder
JPS61209954A (en) Manufacture of silicon carbide base refractory material
JPS5939766A (en) Alumina-silicon carbide complex sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS5950077A (en) High heat conductivity aluminum nitride sintered body
JPS61215253A (en) Chromium oxide base ceramic material
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPH0522669B2 (en)
JPS6311575A (en) Manufacture of aluminum nitride sintered body
JPS61201662A (en) Manufacture of composite ceramics
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS6126566A (en) Method of sintering sic composite body
JPS61266353A (en) Silicon carbide base sintered body
JP2584252B2 (en) Method for producing β-sialon / silicon carbide composite powder
JPS63117966A (en) Manufacture of boron nitride base sintered body
JPS6340771A (en) Normal pressure high density composite sintered body of cubic boron nitride and manufacture
JPS6121980A (en) Zrb2 composite sintered body
JPS63100064A (en) Manufacture of silicon carbide sintered body
JPS6364981A (en) Manufacturing method of porous ceramic sintered body
JPS62275065A (en) Manufacture of silicon carbide sintered body