[go: up one dir, main page]

JPH0582346B2 - - Google Patents

Info

Publication number
JPH0582346B2
JPH0582346B2 JP60051048A JP5104885A JPH0582346B2 JP H0582346 B2 JPH0582346 B2 JP H0582346B2 JP 60051048 A JP60051048 A JP 60051048A JP 5104885 A JP5104885 A JP 5104885A JP H0582346 B2 JPH0582346 B2 JP H0582346B2
Authority
JP
Japan
Prior art keywords
powder
aln
binder
silicon carbide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60051048A
Other languages
Japanese (ja)
Other versions
JPS61209954A (en
Inventor
Yukifumi Sakai
Hiroshi Tashiro
Teruyasu Tamamizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP60051048A priority Critical patent/JPS61209954A/en
Publication of JPS61209954A publication Critical patent/JPS61209954A/en
Publication of JPH0582346B2 publication Critical patent/JPH0582346B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は炭化珪素質耐火材料の製造方法にか
かるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon carbide refractory material.

炭化珪素は耐熱性、耐熱衝撃性に優れた耐火材
料として従来から使用されている。その製造方法
は加圧焼結あるいは常圧焼結が行なわれている
が、加圧焼結法においては緻密で高強度のものが
得られる反面、単純形状のものしか製造できず装
置も複雑で高価なものである。
Silicon carbide has been conventionally used as a refractory material with excellent heat resistance and thermal shock resistance. The manufacturing method is pressure sintering or pressureless sintering, but while pressure sintering can produce dense and high-strength products, it can only produce products with simple shapes and requires complicated equipment. It's expensive.

又常圧焼結も行なわれているが硼素および炭素
の添加によるもので、固相反応であるため、添加
剤の分散状態によつて特性が影響され、その信頼
性は必ずしも満足できるものではなかつた。
Pressureless sintering has also been carried out, but since it involves the addition of boron and carbon and is a solid phase reaction, the properties are affected by the dispersion state of the additives, and its reliability is not always satisfactory. Ta.

この発明においては炭化珪素本来の保有する耐
熱性、耐熱衝撃性の特徴を生かし、常圧で焼結す
ることによつて信頼性の高い高密度、高強度の焼
結体を製造する方法である。
This invention is a method of manufacturing a highly reliable, high-density, high-strength sintered body by sintering at normal pressure by taking advantage of the inherent heat resistance and thermal shock resistance of silicon carbide. .

従来の常圧焼結法においては超微粉を使用し、
固相反応を利用して焼結するため約20%の体積収
縮を起す。このため焼結体にひずみが残りやす
い。
In the conventional pressureless sintering method, ultrafine powder is used,
Because it is sintered using a solid phase reaction, the volume shrinks by approximately 20%. For this reason, strain tends to remain in the sintered body.

本発明者等はこのひずみの発生についてその原
因を求明したところ、主原料のSiCにおける表面
酸化状態の如何によつて大きく影響されることが
明らかとなつた。
The inventors investigated the cause of this strain and found that it is greatly affected by the surface oxidation state of SiC, the main raw material.

炭化珪素はその粒子表面は常温でも空気によつ
て酸化され、1μ以下のような超微粒子の場合程
著しい。すなわちその酸化量は時間、温度の他に
表面積にも比例することが明らかである。
The surface of silicon carbide particles is oxidized by air even at room temperature, and this is more noticeable in the case of ultrafine particles of 1 μm or less. That is, it is clear that the amount of oxidation is proportional to surface area as well as time and temperature.

この炭化珪素表面の酸素は硼酸その他の焼結助
剤による反応に影響を与えるが特にAlNを使用
した場合に著しく認められる。AlNはSiC−AlN
−C系において2000〜2200℃では液相で反応が進
むため、均質性の点で明らかに硼酸等よりは好ま
しい焼結助剤であるが、前述のようにSiC表面の
酸素による妨害を受け易い。
This oxygen on the surface of silicon carbide affects the reaction with boric acid and other sintering aids, and is particularly noticeable when AlN is used. AlN is SiC−AlN
In the -C system, the reaction proceeds in the liquid phase at 2000 to 2200°C, so it is clearly a more preferable sintering aid than boric acid in terms of homogeneity, but as mentioned above, it is susceptible to interference by oxygen on the SiC surface. .

反応系の中にCを含有せしめることによつてこ
の妨害を抑制することが可能であるが、これだけ
では充分ではない。
This interference can be suppressed by incorporating C into the reaction system, but this alone is not sufficient.

従来の常圧焼結法においてAlNを焼結助剤と
して用いることは知られているが、この場合は
WC、BC、B、Al2O3等の他の焼結助剤と共に用
いられており、本願発明の如くAlN−Cのみで
は充分緻密なもの(理論密度の90%以上)は得ら
れていなかつた。これはすなわち成形体中の水分
による影響について配慮されていなかつたためで
ある。
It is known that AlN is used as a sintering aid in the conventional pressureless sintering method, but in this case
It is used together with other sintering aids such as WC, BC, B, Al 2 O 3 , etc., and it is not possible to obtain a sufficiently dense product (more than 90% of the theoretical density) with AlN-C alone as in the present invention. Ta. This is because no consideration was given to the influence of moisture in the molded article.

このため本発明においては乾燥させた配合粉を
使用し、かつ粘結剤中の水分を1%以下に抑制し
たものを使用するものである。これは、SiC表面
の酸化量は水分が存在すると増加する傾向にあつ
てこの酸素による妨害を少くするためであり、ま
た、特にAlNが常温下でも混合物中などに容易
に水分と反応して分解してしまうためで水分によ
つて配合したAlNが変質してその焼結助剤とし
ての効果を表わさなくなることが明らかとなつた
ためである。そこで成形体中に水分が混入しない
ようにするために、原料粉のみでなく使用する粘
結剤中の水分も考慮に入れたものである。
Therefore, in the present invention, a dried blended powder is used, and the moisture content in the binder is suppressed to 1% or less. This is because the amount of oxidation on the SiC surface tends to increase when moisture is present, and this is to reduce the interference caused by oxygen.AlN, in particular, easily reacts with moisture and decomposes in mixtures even at room temperature. This is because it has become clear that the AlN blended with water changes in quality due to moisture and becomes ineffective as a sintering aid. Therefore, in order to prevent moisture from entering the molded article, consideration must be given to moisture not only in the raw material powder but also in the binder used.

SiC、AlN及び粉末として添加する場合はCの
粒状体であるため、乾燥状態とすることは比較的
容易である。このような乾燥は公知の方法、例え
ば恒温槽中において150℃で10時間程度保持する
こと等によつて粒子表面から水分を揮散させるこ
とができる。乾燥状態の原料粉末は含水率0.1%
程度あるいはそれ以下である。
When SiC, AlN, and powder are added, they are C granules, so it is relatively easy to dry them. Such drying can be carried out by a known method, such as by holding the particles at 150° C. for about 10 hours in a constant temperature bath, to volatilize water from the surface of the particles. Dry raw material powder has a moisture content of 0.1%
degree or less.

しかるに通常の粘結剤は疎水性のものであつて
も水分を含有していることが多く、しかも焼成に
際しても粒子表面に付着した水分程容易に揮散す
ることはなく、主原料として使用する炭化珪素粉
を表面酸化の少ないものを使用したとしても、こ
の粘結剤中の水分によつて容易に酸化され、これ
がSiC−AlN−Cの反応系に悪影響を与えること
になる。
However, even though ordinary binders are hydrophobic, they often contain water, and even during firing, they do not volatilize as easily as the water attached to the particle surface. Even if silicon powder with low surface oxidation is used, it will be easily oxidized by the moisture in the binder, which will have an adverse effect on the SiC-AlN-C reaction system.

粘結剤は、そのままで使用するものあるいは溶
剤で希釈するもの等任意に選び得るが、前述の反
応に影響を与えないあるいは無視し得る水分量は
含水率1%以下、好ましくは実質的に水分を含ま
ないものとする。このような粘結剤は、一般に市
販されている粘結剤を脱水処理することによつて
得ることができる。この脱水処理は公知の方法に
よつて行えばよく、例えばシリカゲル等の乾燥剤
を粘結剤中に投入してもよいし、反応を起こさな
ければ濃硫酸を添加する等が挙げられる。
The binder can be used as it is or diluted with a solvent, etc., but the water content that does not affect the above reaction or can be ignored is 1% or less, preferably substantially no water content. shall not be included. Such a binder can be obtained by dehydrating a generally commercially available binder. This dehydration treatment may be carried out by a known method, such as adding a desiccant such as silica gel to the binder, or adding concentrated sulfuric acid if no reaction occurs.

本発明で添加されるCは、粉末状態でもよい
し、粘結剤に含まれ、焼成時に残留炭素として混
合されるCでもよく、又その両者を用いてもよ
い。いずれにしても添加されるCの合量は1〜10
重量%の範囲である。
The C added in the present invention may be in powder form, or may be C included in the binder and mixed as residual carbon during firing, or both may be used. In any case, the total amount of C added is 1 to 10
% by weight.

以下、この発明を実施例により説明する。 This invention will be explained below with reference to Examples.

実施例 平均粒径 0.5μのSiC粉 90部 平均粒径 4.0μのAlN粉 5部 の乾燥状態(含水率0.1%)の混合粉末に、脱水
処理を施した炭化率50%の、 フエノールレジン(含水率0.3%) 10部 アセトン(含水率0.2%) 100部 を加えて調合し、造粒成形した。
Example: 90 parts of SiC powder with an average particle size of 0.5μ 5 parts of AlN powder with an average particle size of 4.0μ Dehydrated mixed powder (moisture content 0.1%) with a carbonization rate of 50%, phenol resin ( 10 parts of acetone (water content: 0.3%) and 100 parts of acetone (water content: 0.2%) were added and granulated.

この成形体をAr雰囲気中で2100℃に常圧焼結
した。このものの密度は3.15(理論密度の98%に
相当する)常温曲げ強度は550MPa、1200℃にお
ける曲げ強度は650MPaであつた。
This compact was pressureless sintered at 2100°C in an Ar atmosphere. The density of this material was 3.15 (corresponding to 98% of the theoretical density), the bending strength at room temperature was 550 MPa, and the bending strength at 1200°C was 650 MPa.

比較例として通常使用されているフエノールレ
ジン(含水率1.1%)及びアセトン(含水率1.3
%)のものを使用し、実施例と同様にして焼結体
を得た。
As a comparative example, commonly used phenol resin (water content 1.1%) and acetone (water content 1.3%) were used.
%), and a sintered body was obtained in the same manner as in the example.

このものの密度は2.75、室温強度は250MPaで
あつた。AlN及びCの添加割合はいずれもSiCに
対し1〜10重量%の範囲内であることが好まし
く、この範囲を逸脱するといずれも高密度、高強
度のものは得られない。焼成温度も2000〜2200℃
の範囲を逸脱すると同様に好ましい密度及び強度
のものは得られない。
This material had a density of 2.75 and a room temperature strength of 250 MPa. The addition ratio of AlN and C is preferably within the range of 1 to 10% by weight relative to SiC, and if it deviates from this range, high density and high strength cannot be obtained. Firing temperature is also 2000-2200℃
If the range is exceeded, the same desirable density and strength cannot be obtained.

Claims (1)

【特許請求の範囲】 1 いずれも乾燥状態のSiCの粉末80〜98重量%
及びAlN粉末1〜10重量%に、乾燥状態のC粉
末及び/又は低含水率で焼成時に残留炭素として
混合されるC原料を合量で1〜10重量%添加混合
し、含水率1%以下の粘結合剤を調合して成形
し、非酸化性雰囲気下2000〜2200℃で焼成するこ
とを特徴とする炭化珪素質耐火材料の製造方法。 2 粘結剤が実質的に水分を含まないものである
ことを特徴とする特許請求の範囲第1項記載の炭
化珪素質耐火材料の製造方法。
[Claims] 1 80 to 98% by weight of SiC powder in dry state
And 1-10% by weight of AlN powder, a total of 1-10% by weight of dry C powder and/or C raw material which is mixed as residual carbon during firing with low moisture content is added and mixed, and the moisture content is 1% or less. 1. A method for producing a silicon carbide refractory material, which comprises mixing and molding a viscous binder, followed by firing at 2000 to 2200°C in a non-oxidizing atmosphere. 2. The method for producing a silicon carbide refractory material according to claim 1, wherein the binder contains substantially no water.
JP60051048A 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material Granted JPS61209954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051048A JPS61209954A (en) 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051048A JPS61209954A (en) 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material

Publications (2)

Publication Number Publication Date
JPS61209954A JPS61209954A (en) 1986-09-18
JPH0582346B2 true JPH0582346B2 (en) 1993-11-18

Family

ID=12875915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051048A Granted JPS61209954A (en) 1985-03-14 1985-03-14 Manufacture of silicon carbide base refractory material

Country Status (1)

Country Link
JP (1) JPS61209954A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553396A (en) * 1978-06-15 1980-01-11 Carborundum Co Silicon carbideealuminum nitride sintered product and its manugacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553396A (en) * 1978-06-15 1980-01-11 Carborundum Co Silicon carbideealuminum nitride sintered product and its manugacture

Also Published As

Publication number Publication date
JPS61209954A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US4701426A (en) Silicon carbide-graphite composite material
KR980001966A (en) Silicon Carbide Sintered Body and Manufacturing Method Thereof
US4336216A (en) Process for producing silicon carbide heating elements
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JP2525074B2 (en) Aluminum nitride granules and method for producing the same
US4023975A (en) Hot pressed silicon carbide containing beryllium carbide
JPH0481541B2 (en)
US5002904A (en) Process for producing shaped refractory products
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
US4661740A (en) Polycrystalline sintered bodies based on lanthanum hexaboride, and a process for their manufacture
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPH0341426B2 (en)
US4372902A (en) Preparation of dense ceramics
JPH0582346B2 (en)
US4788018A (en) Method for producing high-density sintered silicon carbide articles
US4518702A (en) Silicon carbide-boron carbide carbonaceous body
JPH0569765B2 (en)
JPS589785B2 (en) Manufacturing method of silicon carbide sintered body
JPS6212191B2 (en)
JP2531871B2 (en) Method for manufacturing high-density boron nitride pressureless sintered body
JPS6331433B2 (en)
JP2959402B2 (en) High strength porcelain
JPH0522669B2 (en)
JPS5817146B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPS62283871A (en) Manufacture of silicon carbide sintered body