JPS6120339B2 - - Google Patents
Info
- Publication number
- JPS6120339B2 JPS6120339B2 JP53130245A JP13024578A JPS6120339B2 JP S6120339 B2 JPS6120339 B2 JP S6120339B2 JP 53130245 A JP53130245 A JP 53130245A JP 13024578 A JP13024578 A JP 13024578A JP S6120339 B2 JPS6120339 B2 JP S6120339B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- ferrous carbonate
- ferrous
- carbonate
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【発明の詳細な説明】
本発明は脱酸素剤に関する。更に各種食品など
の保存に適した脱酸素剤に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to oxygen scavengers. Furthermore, the present invention relates to an oxygen absorber suitable for preserving various foods.
従来油菓子、ポテトチツプ、ピーナツなど油を
含んでいる食品は空気に曝すと酸化物、過酸化物
が生じ風味を損うばかりででなく時には毒物とな
ることが報じられている。又果物は収穫後空気中
に放置すると呼吸作用によつて短期間に過熱して
商品価値が著しく低下する。野菜や魚などは保存
中にカビの発生、腐敗が起る。更に毛皮や衣類は
保管中に虫に喰われたり、カビの害を受けること
はしばしば見られるところである。 It has been reported that when foods containing oil, such as oil sweets, potato chips, and peanuts, are exposed to air, they produce oxides and peroxides, which not only impair flavor but also sometimes become poisonous. Furthermore, if fruits are left in the air after harvesting, they will overheat in a short period of time due to respiration, significantly reducing their commercial value. Mold and rot occur in vegetables and fish during storage. Furthermore, fur and clothing are often eaten by insects or damaged by mold during storage.
これらの被害から保管物を保護するために冷凍
法、冷蔵法、真空パツク法、不活性ガス置換法、
防虫剤、防カビ剤などを用いる方法などが行わ
れ、更には酸化防止剤等の食品添加物が用いられ
ている。しかしながら冷凍法などの措置について
は大がかりな装置や複雑な操作が必要であり、高
価であると云う欠点を持つ。又防虫、防カビ剤は
多くの場合人体に対し有害であり、食添用酸化防
止剤も人体に対する影響が種々議論されており、
その使用が規制される方向である。 To protect stored items from these damages, freezing methods, refrigeration methods, vacuum packing methods, inert gas substitution methods,
Methods using insect repellents, fungicides, etc. are used, and food additives such as antioxidants are also used. However, measures such as freezing methods require large-scale equipment and complicated operations, and have the drawback of being expensive. In addition, insect repellents and fungicides are often harmful to the human body, and the effects of antioxidants used as food additives on the human body are also being debated.
The trend is for its use to be regulated.
油類の酸化を防止し、カビや細菌或いは更に高
等な生物である虫などの生存、増殖を防止し、果
物の過熱を抑制するには、食物などを収納する容
器、袋内雰囲気より酸素を除去し、除去した酸素
ガス量より少くない量の炭酸ガスを導入し、容
器、袋内部を幾分加圧状態に保つとともに炭酸ガ
スによる菌類の増殖抑制効果、果実の過熱防止効
果を活用するのが適切な手段である。 In order to prevent oils from oxidizing, to prevent the survival and proliferation of mold, bacteria, and even higher organisms such as insects, and to suppress overheating of fruits, it is necessary to remove oxygen from the atmosphere inside containers and bags that store food. In this method, carbon dioxide gas is introduced in an amount not less than the amount of oxygen gas removed, and the inside of the container or bag is maintained in a somewhat pressurized state, and the carbon dioxide gas suppresses the growth of fungi and prevents the fruit from overheating. is the appropriate method.
われわれはかゝる目的に適する脱酸素剤を種種
検討した結果、炭酸第1鉄が酸素除去効果と共に
炭酸ガス発生機能をも兼ね備えていることを見出
した。 After examining various oxygen scavengers suitable for this purpose, we discovered that ferrous carbonate has both an oxygen removing effect and a carbon dioxide gas generating function.
炭酸第1鉄は天然には菱鉄鉱として産出する六
方晶系の結晶であり、普通第1鉄塩の溶液に空気
を絶つて炭酸アルカリを加えて沈殿を生じさせ、
150℃に加熱すると得られる。このものは湿つた
空気中で徐々に分解して水酸化第2鉄となる。 Ferrous carbonate is a hexagonal crystal that occurs naturally as siderite, and is usually produced by adding alkali carbonate to a solution of ferrous salt in the absence of air to form a precipitate.
Obtained by heating to 150℃. This material gradually decomposes in humid air to form ferric hydroxide.
しかしながらこれら通常得られる炭酸第1鉄
は、脱酸素剤として使用するには分解がおそく従
つて脱酸素速度が徐々で脱酸素剤としての通常の
用途に適さない。 However, these commonly obtained ferrous carbonates are too slow to decompose for use as oxygen scavengers, and therefore their oxygen scavenging rate is slow, making them unsuitable for general use as oxygen scavengers.
われわれ発明者等は実用性に優れた脱酸素剤を
開発すべく更に種々検討したところ、炭酸第1鉄
の表面積と脱酸素能力との間に相関々係があり、
炭酸第1鉄が特定の比表面積を有するものである
ことが必要なことを更に見い出し、本発明に到達
した。 In order to develop a highly practical oxygen scavenger, we the inventors further investigated various aspects and discovered that there is a correlation between the surface area of ferrous carbonate and its oxygen scavenging ability.
The inventors have further discovered that ferrous carbonate needs to have a specific specific surface area, and have arrived at the present invention.
すなわち、本発明は比表面積が少なくとも20
m2/gの炭酸第1鉄を主成分とする脱酸素剤にあ
る。 That is, the present invention has a specific surface area of at least 20
m 2 /g of ferrous carbonate as a main component.
以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.
本発明に係る脱酸素剤の主成分たる炭酸第1鉄
は例えば硫酸第1鉄のような第1鉄塩を水に溶解
し、空気を絶つて炭酸ソーダ等の炭酸アルカリを
添加して、炭酸第1鉄を生成させ、適宜凝集剤等
を加えて沈殿を凝集させ、空気を絶つた状態で
別、乾燥して製造する。 Ferrous carbonate, which is the main component of the oxygen scavenger according to the present invention, is produced by dissolving a ferrous salt such as ferrous sulfate in water, removing air, and adding an alkali carbonate such as soda carbonate. Ferrous iron is produced, a coagulant is added as appropriate to coagulate the precipitate, and the product is separated and dried in an air-free state.
炭酸第1鉄を脱酸素剤として使用するには一定
量以上の水分が必要であり、その量は炭酸第1鉄
に対して5wt%以上であるが15wt%を超えると脱
酸素速度の増加は少なくなる。しかし一方炭酸ガ
ス発生速度は大きくなる。 To use ferrous carbonate as an oxygen scavenger, a certain amount of water is required, and the amount is 5wt% or more relative to ferrous carbonate, but if it exceeds 15wt%, the deoxidation rate will not increase. It becomes less. However, on the other hand, the rate of carbon dioxide gas generation increases.
炭酸第1鉄はその比表面積が20m2/g以上のも
のが適しており、更に50m2/g以上のものが実用
的である。また結晶子を調べたところ400Å以下
のものが好ましい特性を示す。 Ferrous carbonate having a specific surface area of 20 m 2 /g or more is suitable, and one with a specific surface area of 50 m 2 /g or more is more practical. Further, when examining the crystallites, crystallites with a diameter of 400 Å or less show favorable characteristics.
炭酸第1鉄を脱酸素剤として使用する場合、必
要に応じて他の成分を併用してもよい。例えばシ
リカゲル等の乾燥剤、その他鉄粉等の他の脱酸素
剤を併用してもよい。 When ferrous carbonate is used as an oxygen scavenger, other components may be used in combination as necessary. For example, a desiccant such as silica gel or another oxygen scavenger such as iron powder may be used in combination.
炭酸第1鉄を脱酸素剤としての形にするには、
先ず炭酸第1鉄を所要量秤量し、これをガス透過
性の小さい袋に充てんし、口をシールする。これ
を高ガスバリヤー性容器に収納して水分を絶つて
保存する。使用に当つてはこれを取り出し、酸素
の存在をきらう対象物、例えば食品類と共に水分
量を調整して高ガスバリヤー性の容器に挿入すれ
ばよい。水分は、通常の空気中に含まれるような
量では不足するので、被処理物が水分を十分含ん
でいない場合には炭酸第1鉄中に補充してやる必
要がある。こうすることにより炭酸第1鉄は対象
物の周囲に存在する空気中の酸素と水分と徐々に
反応して炭酸ガスを放出し、酸素から対象物を保
護する。 To form ferrous carbonate as an oxygen scavenger,
First, the required amount of ferrous carbonate is weighed, filled into a small gas-permeable bag, and the opening is sealed. Store this in a high gas barrier container to remove moisture. To use it, take it out, adjust the moisture content, and insert it into a high gas barrier container together with an object that does not want the presence of oxygen, such as food. Moisture is insufficient in the amount contained in normal air, so if the object to be treated does not contain sufficient moisture, it is necessary to replenish it into ferrous carbonate. By doing so, the ferrous carbonate gradually reacts with oxygen and moisture in the air surrounding the object, releases carbon dioxide gas, and protects the object from oxygen.
使用に当つては対象物の種類、量、そしてそれ
を保存する条件、特に温度、水分量、更に炭酸ガ
ス発生量などよく検討の上炭酸第1鉄の量、加え
る水分量を決定すべきである。 When using the product, the amount of ferrous carbonate and amount of water to be added should be determined after careful consideration of the type and amount of the object and the conditions under which it will be stored, especially the temperature, amount of moisture, and amount of carbon dioxide gas generated. be.
以上の説明より明らかなように本発明の脱酸素
剤は酸素除去能が高いばかりでなく、還元鉄を用
いた場合の様にハロゲン化金属、水を供給するた
めの結晶水を持つた化合物などの助剤の共存を必
要としない適合範囲が広く、又酸素吸収に伴つて
炭酸ガスを発生するので、食品などの保存容器が
減圧にならず、又炭酸ガス発生による好気性細菌
の生育、果物の過熱に対する抑制効果もあるなど
脱酸素剤としても望ましい特性を持つている。 As is clear from the above explanation, the oxygen scavenger of the present invention not only has a high oxygen removal ability, but also contains metal halides, such as when reduced iron is used, and compounds with crystallized water for supplying water. It has a wide range of compatibility and does not require the coexistence of auxiliary agents, and since carbon dioxide gas is generated when oxygen is absorbed, food storage containers do not have reduced pressure, and the carbon dioxide generation prevents the growth of aerobic bacteria and fruits. It also has desirable properties as an oxygen scavenger, such as its ability to suppress overheating.
更に炭酸第1鉄に含まれている15wt%(W,
B湿潤ベース)程度の水分は乾燥剤によつて容易
には乾燥されず、従つてCaC2シリカゲルなど
の乾燥剤との併用が可能である点にも大きな特長
がある。 Furthermore, 15wt% (W,
Another great advantage is that moisture of the level B (wet base) cannot be easily dried by a desiccant, and therefore it can be used in combination with a desiccant such as CaC2 silica gel.
次に実施例を挙げて本発明を更に具体的に説明
するが、本発明はその要旨を超えない限りこれら
の実施例に制限されるものではない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.
実施例 1
硫酸第1鉄7水塩1Kgを蒸留水6に溶かし、
攬拌下窒素雰囲気中で炭酸ナトリウム0.4Kgを添
加し、炭酸第1鉄を得た。炭酸ソーダ添加後のPH
は7.5であつた。その後凝集剤ダイヤクリヤーMA
―3000Hを反応液に対し5ppm加え炭酸第1鉄の
沈澱を凝集させた。過は窒素置換したドライボ
ツクス内で行い、蒸留水で3回デカンテーシヨン
し硫酸ナトリウムの付着分を除去した。窒素置換
した真空乾燥機に炭酸第1鉄渣を入れ、減圧
下、120℃約3時間乾燥した。Example 1 Dissolve 1 kg of ferrous sulfate heptahydrate in 6 parts of distilled water,
0.4 kg of sodium carbonate was added in a nitrogen atmosphere while stirring to obtain ferrous carbonate. PH after adding soda carbonate
was 7.5. After that, the flocculant Diamond Clear MA
-3000H was added at 5 ppm to the reaction solution to coagulate the ferrous carbonate precipitate. The filtration was carried out in a dry box purged with nitrogen, and the mixture was decanted three times with distilled water to remove adhering sodium sulfate. The ferrous carbonate residue was placed in a vacuum dryer purged with nitrogen and dried at 120° C. for about 3 hours under reduced pressure.
乾燥品はドライボツクス内で小分け秤量して、
水分測定、鉄2価イオンの分析及び脱酸素実験に
供した。水分は気化器を250℃で操作し、気化ガ
スをカールフシツシヤー試薬液に導入し測定した
ところ13.8%含まれていた。鉄2価イオンは全試
料に対し41%であつた。又試料を硫酸溶液に加え
発生した炭酸ガスから、炭酸第1鉄量を求める
と、試料中の炭酸第1鉄純度は約85%であつた。
X線を用いて結晶回析を行つたところ大部分は結
晶領域の小さな粒子であつた。BET法による比
表面積は70m2/gであつた。 Dried products are divided into portions and weighed in a dry box.
It was used for moisture measurement, divalent iron ion analysis, and deoxidation experiments. The moisture content was determined to be 13.8% when the vaporizer was operated at 250°C and the vaporized gas was introduced into the Karl Fuschier reagent solution. Iron divalent ions accounted for 41% of the total sample. When the sample was added to a sulfuric acid solution and the amount of ferrous carbonate was determined from the carbon dioxide gas generated, the purity of ferrous carbonate in the sample was approximately 85%.
Crystal diffraction using X-rays revealed that most of the particles were small particles in the crystalline region. The specific surface area determined by the BET method was 70 m 2 /g.
ドライボツクス内で試料5.0gを秤り取りガスバ
リヤー性の小さなポリ塩化ビニル製の袋に入れ、
ホツトシールした。高ガスバリヤー性のゴム栓サ
ンプル口の付いた大きな袋にまず炭酸第1鉄5g
の入つた小袋を入れ、ホツトシールした後、ガス
サンプラーで空気500ccを注入する。20℃の部屋
にしばらく保持した後小袋を破り炭酸第1鉄を空
気と接触させた。経過時間に従つた酸素の減少、
炭酸ガスの増加を図1に示す。 Weigh out 5.0g of the sample in a dry box and place it in a small polyvinyl chloride bag with gas barrier properties.
Hot sealed. First, put 5g of ferrous carbonate into a large bag with a high gas barrier rubber stopper sample opening.
After putting in the sachet with the inside and hot-sealing it, inject 500cc of air with a gas sampler. After being kept in a room at 20°C for a while, the sachet was broken and the ferrous carbonate was brought into contact with air. decrease in oxygen over time,
Figure 1 shows the increase in carbon dioxide gas.
図中、〓線は酸素残存量の変化を示し、〓線は
炭酸ガス発生量の変化を示す。 In the figure, the ≦ line indicates a change in the residual amount of oxygen, and the ≦ line indicates a change in the amount of carbon dioxide gas generated.
実施例 2
粉砕した炭酸第1鉄を種晶として、取得される
べき炭酸第1鉄の1%を加え、先に記した原料と
同じ量関係の原料を用いて70℃で熟成1.5時間を
置いて炭酸第1鉄の沈殿を得た。実施例1と同じ
操作で過乾燥後水分含有率は13.6%、第1鉄イ
オンの含有率は全鉄量に対して86%であつた。Example 2 Using crushed ferrous carbonate as a seed crystal, 1% of the ferrous carbonate to be obtained was added, and the material was aged at 70°C for 1.5 hours using the same amounts of raw materials as described above. A precipitate of ferrous carbonate was obtained. After overdrying using the same procedure as in Example 1, the moisture content was 13.6%, and the ferrous ion content was 86% based on the total iron content.
BET法による比表面積は21m2/gであつた。
脱酸素及び炭酸ガスの発生速度の測定は実施例1
と同じ方法で行つた。結果を図2に示す。 The specific surface area determined by the BET method was 21 m 2 /g.
Measurement of deoxidation and carbon dioxide generation rate was carried out in Example 1.
I went the same way. The results are shown in Figure 2.
比較例 1
西ドイツ産の菱鉄鉱を粉砕し、0.1〜1μ程度
とした。粉砕菱鉄鉱の比表面積は7.3m2/gであ
つた。これに含水シラスバルーンを加え、ウエツ
トベースで菱鉄鉱に対する水分含有率を19%と
し、実施例1と同じ方法で脱酸素速度を測定し、
これを図3にa線で示す。図3には実施例1のサ
ンプルを更に乾燥し、含水率を6.7%とした試料
b及びこれに含水シラスバルーンを加え全水分量
をウエツトベースで14%とした時の結果もb線及
びc線で併記した。図から判るように含水シラス
バルーンを添加した場合も、予め含水された炭酸
第1鉄を用いた場合も脱酸素速度には差は認めら
れない。以上より比表面積20m2/g以上で、酸素
吸収に必要な水分を含んだ炭酸第1鉄は実用的な
脱酸素速度を示すことが理解される。一方比表面
積が小さいか或いは必要水分量に満たない含水率
の炭酸第1鉄は酸素吸収速度及び炭酸ガス発生速
度が遅く脱酸素剤としての実用的な価値は低いこ
とが理解される。Comparative Example 1 Siderite from West Germany was crushed to a size of about 0.1 to 1μ. The specific surface area of the crushed siderite was 7.3 m 2 /g. Adding a hydrated shirasu balloon to this, the moisture content relative to siderite was 19% on a wet basis, and the deoxidation rate was measured in the same manner as in Example 1.
This is shown in FIG. 3 by line a. Figure 3 also shows sample b, which was obtained by further drying the sample of Example 1 and had a moisture content of 6.7%, and the b-line and c-line results when a hydrous Shirasu balloon was added to this sample to make the total moisture content 14% on a wet basis. Also listed in. As can be seen from the figure, there is no difference in the deoxidation rate when a hydrous Shirasu balloon is added or when pre-hydrated ferrous carbonate is used. From the above, it is understood that ferrous carbonate, which has a specific surface area of 20 m 2 /g or more and contains moisture necessary for oxygen absorption, exhibits a practical oxygen removal rate. On the other hand, it is understood that ferrous carbonate having a small specific surface area or a water content less than the required water content has a low oxygen absorption rate and a slow carbon dioxide generation rate, and has low practical value as an oxygen scavenger.
なおX線回析図において2θ゜(Fe)=40.5゜
の回析線の振幅からシエラーの式を用いて求めた
結晶子の大きさを実施例1〜2及び比較例1のサ
ンプルについて示すと次の通りである。 In addition, the crystallite size obtained using the Sierer formula from the amplitude of the diffraction line at 2θ° (Fe) = 40.5° in the X-ray diffraction diagram is shown for the samples of Examples 1 and 2 and Comparative Example 1. It is as follows.
サンプル名 結晶子の大きさ 実施例1 150Å 2 800Å 比較例1(菱鉄鉱) 1700Å Sample name Crystallite size Example 1 150Å 2 800Å Comparative example 1 (siderite) 1700Å
図1及び図2はそれぞれ酸素量と炭酸ガス量の
経時変化を示すグラフであり、図3は酸素量の経
時変化を示すグラフである。
1 and 2 are graphs showing changes over time in the amount of oxygen and carbon dioxide, respectively, and FIG. 3 is a graph showing changes over time in the amount of oxygen.
Claims (1)
を主成分とする脱酸素剤。1 Oxygen scavenger based on ferrous carbonate with a specific surface area of at least 20 m 2 /g.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13024578A JPS5556834A (en) | 1978-10-23 | 1978-10-23 | Deoxidation agent |
US06/087,498 US4299719A (en) | 1978-10-23 | 1979-10-23 | Deoxidizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13024578A JPS5556834A (en) | 1978-10-23 | 1978-10-23 | Deoxidation agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5556834A JPS5556834A (en) | 1980-04-26 |
JPS6120339B2 true JPS6120339B2 (en) | 1986-05-21 |
Family
ID=15029600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13024578A Granted JPS5556834A (en) | 1978-10-23 | 1978-10-23 | Deoxidation agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5556834A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63183038A (en) * | 1987-01-27 | 1988-07-28 | 大日本印刷株式会社 | Method and apparatus for forming medical image print |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5878554A (en) * | 1981-11-04 | 1983-05-12 | Mitsubishi Gas Chem Co Inc | Preservation of cut raw rice cake |
JPS58141779A (en) * | 1982-02-19 | 1983-08-23 | Mitsubishi Gas Chem Co Inc | Cultivation of anaerobic bacteria |
JP2701999B2 (en) * | 1990-05-16 | 1998-01-21 | 株式会社上野製薬応用研究所 | Oxygen absorber |
US6037022A (en) * | 1997-09-16 | 2000-03-14 | International Paper Company | Oxygen-scavenging filled polymer blend for food packaging applications |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5829069B2 (en) * | 1978-04-04 | 1983-06-20 | 凸版印刷株式会社 | Freshness preserving agent |
-
1978
- 1978-10-23 JP JP13024578A patent/JPS5556834A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63183038A (en) * | 1987-01-27 | 1988-07-28 | 大日本印刷株式会社 | Method and apparatus for forming medical image print |
Also Published As
Publication number | Publication date |
---|---|
JPS5556834A (en) | 1980-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4299719A (en) | Deoxidizer | |
US4192773A (en) | Oxygen absorbent | |
US4166807A (en) | Oxygen absorbent | |
US4337276A (en) | Method for storing produce and container and freshness keeping agent therefore | |
US4384972A (en) | Foodstuff freshness keeping agents | |
US4256773A (en) | Brominated carbonaceous molecular sieve and method of use therefor | |
US3169068A (en) | Preservative of oxygen-labile substances, e.g., foods | |
US4104192A (en) | Oxygen absorbent | |
JPS6120339B2 (en) | ||
JPS6094056A (en) | Bag for preserving broccoli sprouts | |
US3946118A (en) | Process for retaining freshness of fruits, vegetables and cereals | |
US4102803A (en) | Oxygen-consuming composition | |
US1589644A (en) | Fungicide composition | |
JPS629376B2 (en) | ||
JPS6147131B2 (en) | ||
JPS5939243A (en) | Freshness-keeping agent | |
JPS6078570A (en) | Method for sterilizing food | |
JP2002186420A (en) | Method for sustaining freshness of fruit/vegetable of flowering plant | |
KR830001818B1 (en) | Deoxidant | |
JPS6227785B2 (en) | ||
JP2633302B2 (en) | Ethylene remover and method for maintaining freshness of fruits and vegetables using the ethylene remover | |
JPS6125340B2 (en) | ||
JPS59210844A (en) | Preservation of coffee | |
JPS6342676A (en) | Preservation of food | |
JPS6120252B2 (en) |