[go: up one dir, main page]

JPS61200667A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPS61200667A
JPS61200667A JP60041213A JP4121385A JPS61200667A JP S61200667 A JPS61200667 A JP S61200667A JP 60041213 A JP60041213 A JP 60041213A JP 4121385 A JP4121385 A JP 4121385A JP S61200667 A JPS61200667 A JP S61200667A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
electrode active
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60041213A
Other languages
Japanese (ja)
Other versions
JPH0467750B2 (en
Inventor
Yoji Sakurai
庸司 櫻井
Takeshi Okada
岡田 武司
Junichi Yamaki
準一 山木
Hideaki Otsuka
大塚 秀昭
Toshiro Hirai
敏郎 平井
Shigeto Okada
重人 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60041213A priority Critical patent/JPS61200667A/en
Priority to US06/796,084 priority patent/US4675260A/en
Priority to DE19853540074 priority patent/DE3540074A1/en
Priority to CA495009A priority patent/CA1265842C/en
Priority to FR8516875A priority patent/FR2573250B1/en
Publication of JPS61200667A publication Critical patent/JPS61200667A/en
Publication of JPH0467750B2 publication Critical patent/JPH0467750B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity of charging and discharging with compact size by using amorphous V2O5 as an active material for a positive electrode and lithium or lithium alloy as an active material for a negative electrode, and utilizing an electrolyte which is chemically stable against both the active materials and can move lithium ions. CONSTITUTION:A sealing plate 1 for an opening portion, on which a metallic lithium electrode 4 is pressed and mounted is inserted into the recessed portion of a gasket 2, and a coin type cell is manufactured by mounting a separator 5 and a positive electrode mixture pellet 6 on the negative electrode 4 in this order, in the opening recessed portion of the sealing plate 1 for the opening portion, and covering the sealing plate with a positive electrode case 3 to calk therewith after injecting a suitable amount of, for example, 1.5 N- LiAsF6/2MeTHF as an electrolytic solution to cause it to impregnate. The pellet 6 is formed by mixing an amorphous material V2O5 as an active material for a positive electrode, black EC and polytetrafluoroethylene in the weight percent of, for example, 70:25:5. Thus, it is possible to increase the capacity of charging and discharging with compact size.

Description

【発明の詳細な説明】 [技術分野] 本発明は、小型にして充放電容量の大きいリチウム電池
、詳細には、リチウムもしくはリチウム合金を負極活物
質とし、非晶質Vユ0.を正極活物質として用いる充放
電可能なリチウム電池に間するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a lithium battery that is small in size and has a large charge/discharge capacity, in particular, lithium or a lithium alloy is used as a negative electrode active material, and an amorphous VU0. It is used in chargeable and dischargeable lithium batteries that use lithium oxide as the positive electrode active material.

[従来技術] 従来から、リチウムを負極活物質として用いる高エネル
ギー密度電池に関して多くの提案がなされている。例え
ば、正極活物質として黒鉛および弗素のインターカレー
ション化合物、負極活物質としてリチウム金属をそれぞ
れ使用した電池が知られている(たとえば、米国特許第
3,514,337号明細書参考)、さらにまた、弗化
黒鉛を正極活物質に用いたリチウム電池や、二酸化マン
ガンを正極活物質として用いたリチウム電池がすでに市
販されている。しかし、これらの電池は一次電池であり
、充電できない欠点があった。
[Prior Art] Many proposals have been made regarding high energy density batteries that use lithium as a negative electrode active material. For example, batteries are known that use graphite and fluorine intercalation compounds as positive electrode active materials and lithium metal as negative electrode active materials (see, for example, U.S. Pat. No. 3,514,337); Lithium batteries using fluorinated graphite as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries are primary batteries and have the disadvantage that they cannot be recharged.

リチウムを負極活物質として用いる二次電池については
、正極活物質としてチタン、ジルコニウム、ハフニウム
、ニオビウム、タンタル、バナジウムの硫化物、セレン
化合物、テルル化合物を用いた電池(たとえば、米国特
許第4.009,052号明細書参考)、あるいは酸化
クロム、セレン化ニオビウム等を用いた電池(J、EI
ectrochem、Soc、。
Regarding secondary batteries using lithium as a negative electrode active material, batteries using titanium, zirconium, hafnium, niobium, tantalum, vanadium sulfides, selenium compounds, and tellurium compounds as positive electrode active materials (for example, U.S. Pat. No. 4.009 , 052 specification), or batteries using chromium oxide, niobium selenide, etc. (J, EI
electrochem, Soc.

124(7) 、!3f!8および325.(1977
))等が提案されているが、これらの電池はその電池特
性および経済性が必ずしも十分であるとはいえなかった
124(7),! 3f! 8 and 325. (1977
)), etc. have been proposed, but these batteries cannot necessarily be said to have sufficient battery characteristics and economical efficiency.

また、非晶質物質を正極活物質に用いたリチウム電池に
ついては、MOS:II 、Mo53 、V2S5の場
合(J、Electroanal、Che+s、118
.229(1981) )やL+V30、の場合(J、
Non −Cry、ttal目ne 5olids、4
4,217(1981))等が提案されている。しかし
、大電流密度での放電や充放電特性の点で問題があった
Regarding lithium batteries using an amorphous material as the positive electrode active material, in the case of MOS:II, Mo53, V2S5 (J, Electroanal, Che+s, 118
.. 229 (1981)) or L+V30 (J,
Non-Cry, 5 solids, 4
4, 217 (1981)) etc. have been proposed. However, there were problems with discharge at high current density and charge/discharge characteristics.

結晶質のV2O5を正極活物質として用いることは、 
J、Electrochem、Soc、Meeting
(↑oronto、May  11−18.1975.
No、27)で提案されている。しかし、容量が小さく
充放電特性も十分とは言えなかった。
Using crystalline V2O5 as a positive electrode active material
J, Electrochem, Soc, Meeting
(↑oronto, May 11-18.1975.
No. 27). However, the capacity was small and the charge/discharge characteristics were not sufficient.

V2O5と2205との固溶体については特願昭58−
8885号に開示されてい名が、この固溶体は空気中で
急冷して得られ、結晶質と非晶質の混在したものである
ので、特性の再現性の点で若干問題があった。さらにま
た、P2O5にP2O5を加え、溶融後急冷することに
より得られる非晶質物質については、特願昭59−23
7778号に提案されているが、原料調整および作製に
手間がかかるという欠点を有していた。
Regarding the solid solution of V2O5 and 2205, patent application 1982-
The solid solution disclosed in No. 8885 was obtained by rapid cooling in air and was a mixture of crystalline and amorphous materials, so there were some problems in terms of reproducibility of characteristics. Furthermore, regarding an amorphous material obtained by adding P2O5 to P2O5 and rapidly cooling it after melting, Japanese Patent Application No. 59-23
This method was proposed in No. 7778, but it had the disadvantage that it took a lot of time and effort to prepare the raw materials and produce it.

[目 的] そこで、本発明の目的は、上記現状を改良して、小型で
充放電容量が大きく、すぐれた電池特性をもつリチウム
電池を提供することにある。
[Objective] Therefore, an object of the present invention is to improve the above-mentioned current situation and provide a lithium battery that is small in size, has a large charge/discharge capacity, and has excellent battery characteristics.

[発明の構成] かかる目的を達成するために、本発明リチウム電池では
、正極活物質としてば、非晶質V2O5を用いる0本発
明では、非晶質v205を正極活物質として用いること
により従来のリチウム電池より充放電容量が大きく、か
つ格段にすぐれた電池特性をもつ小型のリチウム電池を
構成できることを確め、その認識の下に本発明を完成し
た。
[Structure of the Invention] In order to achieve the above object, the lithium battery of the present invention uses amorphous V2O5 as the positive electrode active material. We have confirmed that it is possible to construct a small lithium battery that has a larger charge/discharge capacity than a lithium battery and has significantly superior battery characteristics, and based on this recognition, we have completed the present invention.

この正極活物質を用いてず極を形成するには。To form an electrode without using this positive electrode active material.

この非晶質物質粉末またはこれとポリテトラフルオロエ
チレンの如き結合剤粉末との混合物をニッケル、ステン
レス等の支持体上に膜状に圧着成形する。
This amorphous material powder or a mixture of the amorphous material powder and a binder powder such as polytetrafluoroethylene is pressure-molded into a film on a support such as nickel or stainless steel.

あるいは、かかる非晶質物質粉末に導電性を付与するた
めアセチレンブラックのような導電体粉末を混合し、こ
れに更にポリテトラフルオロエチレンのような結合剤粉
末を所要に応じて加え、この混合物を金属容器に入れ、
あるいは前述の混合物をニッケルやステンレス等の支持
体上に圧着成形する等の手段によって形成することがで
きる。
Alternatively, a conductive powder such as acetylene black is mixed in order to impart conductivity to such amorphous substance powder, and a binder powder such as polytetrafluoroethylene is further added thereto as required. Put it in a metal container
Alternatively, the above-mentioned mixture can be formed by pressure molding on a support such as nickel or stainless steel.

負極活物質としては、リチウムもしくはリチウム合金を
用いる。かかるリチウムもしくはリチウム合金は、一般
のリチウム電池の場合と同様に、シート状に展延し、ま
たはそのシートをニッケルやステンレス等の導電体網に
圧着して負極として形成することができる。
Lithium or a lithium alloy is used as the negative electrode active material. Such lithium or lithium alloy can be formed into a negative electrode by being spread into a sheet, or by pressing the sheet onto a conductor network such as nickel or stainless steel, as in the case of general lithium batteries.

さらに、電解質としては、正極活物質および負極活物質
に対して化学的に安定であり、かつ、リチウムイオンが
正極活物質と電気化学反応をするための移動を行い得る
物質を用いる。たとえばプロピレンカーボネート、2−
メチルテトラヒドロフラン、ジオキソレン、テトラヒド
ロフラン、1゜2−ジメトキシエタン、エチレンカーボ
ネート、γ−ブチロラクトン、ジメチルスルホキシド、
アセトニトリル、ホルムアミド、ジメチルホルムアミド
、ニトロメタン等の一種以上の非プロトン性有機溶媒と
LiCAO午、 LiAE文。、LiBF4  。
Further, as the electrolyte, a substance is used that is chemically stable with respect to the positive electrode active material and the negative electrode active material, and is capable of moving lithium ions for electrochemical reaction with the positive electrode active material. For example, propylene carbonate, 2-
Methyltetrahydrofuran, dioxolene, tetrahydrofuran, 1゜2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide,
one or more aprotic organic solvents such as acetonitrile, formamide, dimethylformamide, nitromethane, LiCAO, LiAE. , LiBF4.

LiC1、LiPF6 、  LiAsF6等のリチウ
ム塩との組合せまたはLi+を伝導体とする固体電解質
あるいは溶融塩など、一般にリチウムを負極活物質とし
て用いた電池で使用される既知の電解質を本発明におい
ても電解質として用いることができる。
In the present invention, known electrolytes generally used in batteries using lithium as a negative electrode active material, such as combinations with lithium salts such as LiC1, LiPF6, LiAsF6, or solid electrolytes or molten salts using Li+ as a conductor, can be used as electrolytes in the present invention. Can be used.

また、電池構成上、必要に応じて微孔性セパレータを用
いるときなどは、多孔質ポリプロピレン等より成る薄膜
を使用してもよい。
Further, when a microporous separator is used as necessary in the battery configuration, a thin film made of porous polypropylene or the like may be used.

[実 施 例] 以下に図面を参照して次に本発明を実施例により詳細に
説明する。
[Examples] The present invention will be described in detail below with reference to the drawings.

なお、本発明は以下の実施例にのみ限定されるものでは
なく、種々に変更して実施できる。以下の実施例におい
て、電池の作成および測定は全てアルゴン雰囲気中で行
なった。
Note that the present invention is not limited to the following examples, and can be implemented with various modifications. In the following examples, all battery preparations and measurements were performed in an argon atmosphere.

実施例1 前記正極活物質としての非晶質v205を双ロール法に
より作製した。その非晶質化はX線回折により確認した
。得られた非晶質v205のX線回折図形を第1図に示
す、第1図かられかるように、CuKa線で2θ=28
°付近に非常にブロードな山を持つX線的に無定形なパ
ターンを示しており、非晶質化していることがわかる。
Example 1 Amorphous v205 as the positive electrode active material was produced by a twin roll method. The amorphization was confirmed by X-ray diffraction. The X-ray diffraction pattern of the obtained amorphous v205 is shown in Figure 1.As can be seen from Figure 1, 2θ = 28 with CuKa line.
It shows an X-ray amorphous pattern with very broad peaks around °, indicating that it has become amorphous.

非晶質v205の作製法としては、双ロール法以外にス
プラット冷却、真空蒸着、電子ビーム蒸着、スパッタ等
の方法も用いることができる。
In addition to the twin roll method, methods such as splat cooling, vacuum evaporation, electron beam evaporation, and sputtering can also be used to produce the amorphous v205.

第2図は、本発明リチウム電池の一具体例としてのコイ
ン型電池の断面の概略を示す0図中、lはステンレス製
封口板、2はポリプロピレン製ガスケット、3はステン
レス製正極ケース、4はリチウム負極、5はポリプロピ
レン製セパレータ、6は正極合剤ペレットを示す。
FIG. 2 is a schematic cross-sectional view of a coin-type battery as a specific example of the lithium battery of the present invention, in which l is a stainless steel sealing plate, 2 is a polypropylene gasket, 3 is a stainless steel positive electrode case, and 4 is a stainless steel cathode case. A lithium negative electrode, 5 a polypropylene separator, and 6 a positive electrode mixture pellet.

封口板1上に金属リチウム負極4を加圧載置したものを
、ガスケット2の凹部に挿入し、封口板lの開口凹部に
おいて、リチウム負極4の上にセパレータ5、正極合剤
ペレット6をこの順序に載置し、電解液としての1.5
N−LiAsF6 / 2MeTHFを適量注入し含浸
させた後、正極ケース3をかぶせてかしめることにより
、直径23mm 、厚さ2IIII6のコイン型電池を
作製した。
A metal lithium negative electrode 4 placed under pressure on the sealing plate 1 is inserted into the recess of the gasket 2, and a separator 5 and positive electrode mixture pellets 6 are placed on top of the lithium negative electrode 4 in the opening recess of the sealing plate l. 1.5 as electrolyte, placed in order
After injecting and impregnating an appropriate amount of N-LiAsF6/2MeTHF, a positive electrode case 3 was placed and caulked to produce a coin-shaped battery with a diameter of 23 mm and a thickness of 2III6.

正極合剤ペレット6を形成するにあたっては、正極活物
質としての非晶質物質v205とケッチェンブラックE
Cおよびポリテトラフルオロエチレンを重量比で70:
25:5の割合で 漬機によって混合した。その混合物
をロール成形して厚み0.8rnraとしたものをポン
チで打ち抜いて、直径1easのディスク状正極(面積
2crn”)を得た。
In forming the positive electrode mixture pellet 6, amorphous material v205 and Ketjen black E as positive electrode active materials are used.
C and polytetrafluoroethylene in a weight ratio of 70:
The mixture was mixed using a pickler at a ratio of 25:5. The mixture was roll-formed to a thickness of 0.8 rnra and punched out to obtain a disk-shaped positive electrode (area 2 crn'') with a diameter of 1 eas.

このようにして作製したリチウム電池を用いて、2mA
および4+eAの定電流で放電した結果を第3図および
第1表に示す。
Using the lithium battery produced in this way, 2 mA
The results of discharging at a constant current of 4+eA are shown in FIG. 3 and Table 1.

第  1  表 実施例2 実施例1と同様にして作製したリチウム電池を用いて1
mAの定電流で充放電を行った。充放電サイクルは放電
16時間、休止1時間、充電18時間、休止1時間とし
た。これは約40%の充°放電深さく正極活物質重量当
り約150Ah/kgの充放電容量)に相当する。
Table 1 Example 2 Using a lithium battery prepared in the same manner as in Example 1,
Charging and discharging were performed at a constant current of mA. The charge/discharge cycle was 16 hours of discharging, 1 hour of rest, 18 hours of charging, and 1 hour of rest. This corresponds to a charge/discharge depth of about 40% and a charge/discharge capacity of about 150 Ah/kg per weight of positive electrode active material.

第4図はこのような充放電試験の結果を示す。FIG. 4 shows the results of such a charge/discharge test.

図中の数字は充放電回数を示す、5サイクル以降の可逆
性は非常に良く、130回以上の充放電が可能であり、
良好な充放電特性を示した。
The numbers in the figure indicate the number of times of charging and discharging.The reversibility after the 5th cycle is very good, and more than 130 charging and discharging times are possible.
It showed good charge/discharge characteristics.

実施例3 実施例1と同様にして作製したリチウム電池を用いて、
1mAの定電流で2V−3,5V間で電圧規制充放電を
行った。充放電サイクル数と放電容量との関係を第5図
に示す。10回目程度から安定した充放電容量を示し、
正極活物質重量当り約180Ah/kgの充放電容量を
示しつつ85サイクルを経過後面続行中である。
Example 3 Using a lithium battery produced in the same manner as Example 1,
Voltage-regulated charging and discharging was performed between 2V and 3 and 5V at a constant current of 1 mA. FIG. 5 shows the relationship between the number of charge/discharge cycles and discharge capacity. Showing stable charge/discharge capacity from about the 10th time,
The battery is currently being used after 85 cycles, showing a charge/discharge capacity of approximately 180 Ah/kg per weight of positive electrode active material.

非晶質1205作製法として、双ロール法以外に、スプ
ラット冷却、真空蒸着、電子ビーム蒸着、スパッタによ
っても非晶質v205を作製することができ、上述の双
ロール法により得た非晶質V2O5と同様に良好な充放
電特性を示すことを確認した。
As a method for producing amorphous 1205, in addition to the twin roll method, amorphous v205 can also be produced by splat cooling, vacuum evaporation, electron beam evaporation, and sputtering. It was confirmed that the battery exhibited good charge-discharge characteristics as well.

[効 果] 以上説明したように、本発明リチウム電池によれば、充
放電容量の大きい小型高エネルギー密度のリチウム電池
を構成することができ、かかる本発明電池はコイン型電
池など種々の分野に利用できるという利点を有する。
[Effects] As explained above, according to the lithium battery of the present invention, it is possible to construct a small, high energy density lithium battery with a large charge/discharge capacity, and the battery of the present invention can be used in various fields such as coin-type batteries. It has the advantage of being available.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における正極活物質のX線回折図形を示
す線図、 第2図は本発明の一実施例としてコイン型電池の構成を
示す断面図、 第3図は本発明の実施例における電池の放電特性を示す
特性図。 第4図および第5図は本発明の実施例における電池の充
放電特性を示す特性図である。 l・・・ステンレス製封口板、 2・・・ポリプロピレン製ガスケット、3・・・ステン
レス製正極ケース、 4・・・リチウム負極、 5・・・ポリプロピレン製セパレータ。 6・・・正極合剤ペレット。 特許出願人  日本電信電話公社 代 理 人  弁理士 谷  義 − カランと(任免尺度) 電 シセ2 電 天L(V)
Fig. 1 is a diagram showing the X-ray diffraction pattern of the positive electrode active material in the present invention, Fig. 2 is a sectional view showing the structure of a coin-type battery as an embodiment of the present invention, and Fig. 3 is an embodiment of the present invention. FIG. 3 is a characteristic diagram showing the discharge characteristics of a battery. FIG. 4 and FIG. 5 are characteristic diagrams showing the charging and discharging characteristics of the battery in the example of the present invention. l... Stainless steel sealing plate, 2... Polypropylene gasket, 3... Stainless steel positive electrode case, 4... Lithium negative electrode, 5... Polypropylene separator. 6... Positive electrode mixture pellet. Patent applicant Nippon Telegraph and Telephone Public Corporation agent Patent attorney Yoshi Tani - Karan and (appointment scale) Den Sise 2 Den Ten L (V)

Claims (1)

【特許請求の範囲】[Claims] 非晶質V_2O_5を正極活物質とし、リチウムまたは
リチウム合金を負極活物質とし、前記正極活物質および
前記負極活物質に対して化学的に安定であり、かつ、リ
チウムイオンが前記正極活物質と電気化学反応をするた
めの移動を行い得る物質を電解質物質としたことを特徴
とするリチウム電池。
Amorphous V_2O_5 is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and the material is chemically stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions are electrically bonded to the positive electrode active material. A lithium battery characterized in that an electrolyte is a substance that can move to cause a chemical reaction.
JP60041213A 1984-11-12 1985-03-04 Lithium cell Granted JPS61200667A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60041213A JPS61200667A (en) 1985-03-04 1985-03-04 Lithium cell
US06/796,084 US4675260A (en) 1984-11-12 1985-11-08 Lithium battery including vanadium pentoxide base amorphous cathode active material
DE19853540074 DE3540074A1 (en) 1984-11-12 1985-11-12 LITHIUM BATTERY
CA495009A CA1265842C (en) 1984-11-12 1985-11-12 Lithium battery including vanadium pentoxide base amorphous cathode active material
FR8516875A FR2573250B1 (en) 1984-11-12 1985-11-12 LITHIUM BATTERY COMPRISING AN AMORPHOUS CATHODE CONSISTING OF AN ACTIVE MATERIAL BASED ON VANADIUM PENTOXIDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041213A JPS61200667A (en) 1985-03-04 1985-03-04 Lithium cell

Publications (2)

Publication Number Publication Date
JPS61200667A true JPS61200667A (en) 1986-09-05
JPH0467750B2 JPH0467750B2 (en) 1992-10-29

Family

ID=12602122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041213A Granted JPS61200667A (en) 1984-11-12 1985-03-04 Lithium cell

Country Status (1)

Country Link
JP (1) JPS61200667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208256A (en) * 1990-01-10 1991-09-11 Furukawa Battery Co Ltd:The Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode
CN118073738A (en) * 2024-01-25 2024-05-24 宜昌力佳科技有限公司 High-tightness negative electrode structure with sealant cavity and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224064A (en) * 1983-06-01 1984-12-15 Hitachi Ltd Cathode material for lithium batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224064A (en) * 1983-06-01 1984-12-15 Hitachi Ltd Cathode material for lithium batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208256A (en) * 1990-01-10 1991-09-11 Furukawa Battery Co Ltd:The Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode
CN118073738A (en) * 2024-01-25 2024-05-24 宜昌力佳科技有限公司 High-tightness negative electrode structure with sealant cavity and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0467750B2 (en) 1992-10-29

Similar Documents

Publication Publication Date Title
US5490320A (en) Method of making a positive electrode for lithium secondary battery
JP3369583B2 (en) Non-aqueous electrolyte battery
JP2004220819A (en) Electrolyte, anode, and battery
US6764791B2 (en) Rechargeable lithium battery
JP2964732B2 (en) Rechargeable battery
JPH06342673A (en) Lithium secondary battery
JPH06231764A (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
JP2000164207A (en) Non-aqueous electrolyte secondary battery
JPS61200667A (en) Lithium cell
JPS62176054A (en) Lithium battery
JPS61116758A (en) Lithium battery
JP2559055B2 (en) Lithium battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP2000133261A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JPH02215043A (en) Nonaqueous solvent secondary battery
JP3289259B2 (en) Negative electrode for lithium secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH0424829B2 (en)
JPH0415584B2 (en)
JP2002056848A (en) Lithium ion secondary battery
JP2559054B2 (en) Lithium battery
JP2000277113A (en) Lithium secondary battery
JPH0350385B2 (en)