JPH03208256A - Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode - Google Patents
Manufacture of active substance for positive electrode of lithium secondary cell and positive electrodeInfo
- Publication number
- JPH03208256A JPH03208256A JP2002792A JP279290A JPH03208256A JP H03208256 A JPH03208256 A JP H03208256A JP 2002792 A JP2002792 A JP 2002792A JP 279290 A JP279290 A JP 279290A JP H03208256 A JPH03208256 A JP H03208256A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- powder
- crystalline
- lithium secondary
- active substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 27
- 229910052744 lithium Inorganic materials 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000013543 active substance Substances 0.000 title abstract 3
- 239000000843 powder Substances 0.000 claims abstract description 28
- 239000006185 dispersion Substances 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 4
- 239000006258 conductive agent Substances 0.000 claims abstract description 4
- 239000011149 active material Substances 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims 1
- 238000005551 mechanical alloying Methods 0.000 abstract description 10
- 239000003792 electrolyte Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、リチウム二次電池の正極用活物質の製造法並
にその正極に関する.
〔従来の技術〕
リチウム二次電池の正極用活物質として、v21
3
もが活物質固有の容量の大きさ並に放IE電圧の高さの
点などから11目され、種々の検討が成されている.例
えば、市販の結晶質V2へ粉を減圧加熱乾燥後、これと
グラファイト粉とテフロンディスバージョンとを重量比
で45:50:5で混合したものを、ニッケル網がら或
る集電体に加圧結着成形して正極とし、これをリチウム
ブロックから切り出したリチウム片をニッケル網に圧着
成形して戒る負極と組み合わせ、電解液としてプロピレ
ンカーボネートに過塩素酸リチウム(LICJOa)を
溶解した非水溶媒二次電池を作製し、その放電特性を試
験した所、トボ化学反応、いわゆるV2O5結晶中に1
1がインターカレートする反応があり、放1 K圧が3
.4〜3.2V及び2.3〜2.OVで電圧平坦部が現
れ、階段状になることが報告されている.〔熊谷ら電気
化字廿432(1980)) .
か)る結晶質v2OSは、上記の電池特性から考えて、
実用し難い点に鑑み、結晶質V,0,に種々の異種元素
を添加し、複合酸化物の形で非品質化し、これをリチウ
ム二次重池の正極用活物質として、上記の方法で正極を
作製し、これを正極として用いた非水溶媒型リチウム二
次電池は結晶質V205を正極に用いた場合に比し、該
電池の放電特性を改善することが知られている.〔発明
が解決しようとする課題〕
然し乍ら、上記の方法で結晶質V2 0aを複合酸化物
として非品質化したものは、放電時、電圧が急に降下す
るような多段反応はなくなるが、反面、放電時、正極活
物質内に取り込まれたリチウムイオンは、充電時、活物
質内に残り、取り出せなくなる傾向が大きく、その結果
、充放電サイクルを繰り返すと容量の減少傾向が増大す
るという問題がある。又、異種元素、異1a酸化物など
を添加する不経済、製造コストの増大などの不都合を伴
う.
〔課題を解決するための手段〕
本発明は、結晶質V2O5を上記従来法に比し、安価に
且つ迅速に而も異種元素、異種酸化物の添加なしに、経
済的に非品質化をもたらすリチウム二次電池の正極用活
物質の!I!!遣法とこれを用いて放電容量が大きく、
且つサイクル毎の容量低下の減少したリチウム二次8池
をもたらす正極を提供するものである.即ち、本発明の
上記製造法は、結晶質V2 0S粉単独をメカニカルア
ロイング処理し、非晶質化することを特徴とする.
又、本発明のリチウム二次電池の正極は、上記の本発明
の製造法で得た非晶質V2 0S粉体に、導電剤粉と結
着剤ディスバージョンを添加混練、乾燥、粉砕したもの
を、集電体に加圧結@戒形して成る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an active material for a positive electrode of a lithium secondary battery and the positive electrode. [Prior Art] V213 has been selected as the active material for the positive electrode of lithium secondary batteries due to its inherent capacity and high emission IE voltage, and various studies have been conducted. ing. For example, after drying commercially available crystalline V2 powder by heating under reduced pressure, a mixture of graphite powder and Teflon dispersion in a weight ratio of 45:50:5 is pressed against a certain current collector through a nickel mesh. A positive electrode is formed by adhesive molding, and a lithium piece cut from a lithium block is combined with a negative electrode by pressure molding on a nickel mesh.The electrolyte is a non-aqueous solvent in which lithium perchlorate (LICJOa) is dissolved in propylene carbonate. When we fabricated a secondary battery and tested its discharge characteristics, we found that due to the tobochemical reaction, 1
There is a reaction in which 1 intercalates, and the released 1 K pressure is 3
.. 4-3.2V and 2.3-2. It has been reported that at OV, a voltage plateau appears and the voltage becomes step-like. [Kumagai et al. Denkaji 432 (1980)]. Considering the above battery characteristics, the crystalline v2OS
Considering that it is difficult to put it into practical use, various different elements are added to crystalline V,0, and the quality is degraded in the form of a composite oxide. It is known that a non-aqueous solvent type lithium secondary battery using a prepared positive electrode as the positive electrode has improved discharge characteristics compared to a case where crystalline V205 is used as the positive electrode. [Problems to be Solved by the Invention] However, when the crystalline V20a is degraded as a composite oxide by the above method, there is no multi-step reaction such as a sudden drop in voltage during discharge, but on the other hand, Lithium ions taken into the positive electrode active material during discharging have a strong tendency to remain in the active material and become unable to be taken out during charging, and as a result, there is a problem that the tendency for capacity to decrease increases with repeated charge/discharge cycles. . Furthermore, there are disadvantages such as uneconomical addition of different elements, different 1a oxides, etc., and increased manufacturing costs. [Means for Solving the Problems] The present invention provides crystalline V2O5 at a lower cost and speed than the above-mentioned conventional methods, and without adding any different elements or oxides, resulting in economic deterioration of quality. Active materials for positive electrodes of lithium secondary batteries! I! ! By using this method, the discharge capacity is large,
In addition, the present invention provides a positive electrode that provides a secondary lithium battery with a reduced capacity drop during each cycle. That is, the above manufacturing method of the present invention is characterized in that the crystalline V20S powder alone is mechanically alloyed to become amorphous. Further, the positive electrode of the lithium secondary battery of the present invention is obtained by adding conductive agent powder and binder dispersion to the amorphous V20S powder obtained by the above-mentioned manufacturing method of the present invention, kneading, drying, and pulverizing. It is formed by press-bonding the current collector.
即ち、本発明の上記の製造法によれば、結晶質V205
粉体をメカニカルアロイング処理するときは、その処理
前の結晶質v2αは、比較的広範囲に亘り粒径が分布し
ており、その粒子は、花弁状になっているが、その処理
過程でボールミルによるミリング、二一ディングにより
該粉粒のRlIHJ化と凝着などで最終的に粒径は比較
的大きいところに分布し且つその形状は丸みを帯び非晶
質■へ粉体が得られる。That is, according to the above production method of the present invention, crystalline V205
When powder is subjected to mechanical alloying treatment, the crystalline v2α before the treatment has a relatively wide particle size distribution, and the particles are petal-shaped. By milling and diluting, the powder particles are converted into RlIHJ and coagulated, so that the particle size is finally distributed in a relatively large area and the shape is rounded to form an amorphous powder.
かくして、か嶌る非晶質V2O5粉体を原料とし、上記
のように正極を作製しこれをリチウム二次電池に組込む
ときは、その充放電において、該正極はリチウムイオン
のマトリックスへの均一分散が可能となり、広い電圧範
囲内に亘り均一にリチウムイオンを寸逆的に、インター
力レート、脱インターカレートすることができるように
なり、後記するように、放電特性は改善され、又、その
サイクル毎の電圧の低下は減少し、上記従来法による非
晶質V2O5を含む複合酸化物を正極とするに比し、サ
イクル寿命の増大したリチウム二次電池をもたらす.
〔実施例J
本発明のリチウム二次電池の正極用活物質の製造法の実
施例を次に説明する.
市販の結晶質V2O5(平均粒径27μm>約10gを
、タングステンカーバイド製の直径10問のボールと内
容積2 8 7ajの同製のポットとから成るボールミ
ルに入れ、大気中にて130rpl/min (公転)
の回転数で、約60時間ミリング、二一ディングなどを
含むいわゆるメカニカルアロイング処理を行い、千均粒
径53μmの丸みを帯びなV,も粉体を得た。In this way, when a positive electrode is produced as described above using the amorphous V2O5 powder as a raw material and incorporated into a lithium secondary battery, the positive electrode will have lithium ions uniformly dispersed in the matrix during charging and discharging. It has become possible to uniformly intercalate and deintercalate lithium ions over a wide voltage range, and as described later, the discharge characteristics have been improved and the The drop in voltage per cycle is reduced, resulting in a lithium secondary battery with an increased cycle life compared to the conventional method using a composite oxide containing amorphous V2O5 as the positive electrode. [Example J An example of the method for producing the active material for the positive electrode of a lithium secondary battery of the present invention will be described below. Commercially available crystalline V2O5 (average particle size 27 μm>about 10 g) was placed in a ball mill consisting of tungsten carbide balls with a diameter of 10 and a pot of the same type with an internal volume of 287 aj, and was heated at 130 rpl/min in the atmosphere. revolution)
A so-called mechanical alloying process including milling, diluting, etc. was carried out for about 60 hours at a rotational speed of 1,000 µm to obtain a rounded V powder with a uniform particle size of 53 μm.
第l図は、かNるメカニカルアロイング処理前の原料で
ある結晶質VzOs粉体のX線回折パターン、第2図は
、該処理後に得られたV,OS粉体のX線回折パターン
を示す.これから明らかなように、結晶質V2 05は
、該メカニカルアロイング処理により、非晶質化してい
ることが判る。Figure 1 shows the X-ray diffraction pattern of the raw material crystalline VzOs powder before the mechanical alloying process, and Figure 2 shows the X-ray diffraction pattern of the V,OS powder obtained after the process. show. As is clear from this, it can be seen that the crystalline V205 was turned into an amorphous state by the mechanical alloying treatment.
このようにして本発明の方法により得た非晶質V2へ粉
体をリチウム二次電池の正極用活物質として使用し、例
えば、次のようにリチウム一次電池の正極を製造する。The amorphous V2 powder thus obtained by the method of the present invention is used as an active material for a positive electrode of a lithium secondary battery, and, for example, a positive electrode of a lithium primary battery is manufactured as follows.
即ち、該非晶質Visa粉体と、導電剤粉として市販の
アセチレンブラックと、結着剤としてテフロンディスバ
ージョンとを、重量比で80:10:10の混合割合で
混合したものを、乾燥、粉砕し、その混合粉を、集電体
としてニツゲル金網に充填積層し、次で加圧して厚さ
0. 4m、径36關の円形板状の正極に成形した.
一方、リチウム二次電池の負極として、厚さ0. 75
rmのリチウムフォイルを直径36鴻に打ち抜いた円形
板状の負極を作製した。このように作製した正極及び負
極をテフロン製セル容器内に相対向させて収納配設し、
その両極板間に非水溶媒電解液を充填し、気液密の電池
を得た.該電解液としては、例えば、LICI04の1
NPC溶液を調整し使用した.
第3図は、このようにして得られたリチウム次電池を示
し、図面でIは本発明の正極、2は負極、3はセル容器
、4は電解液、5は正極端子、6は負極端子を示す.
比較のため、従来法により、結晶質Vies粉とこれと
は異種の金属又は金属又は金属酸化物とから或る複合酸
化物粉を作製する,例えば、結晶質v20,粉とP2
0s粉とを重量比で8:2の割合で混合して、これを圧
粉成形、粉砕することにより結晶質V2O5が非品質化
された複合酸化物粉を製造し、これをリチウム二次電池
の正極用活物質とし、上記と同機に正極を作製する。即
ち、その複合酸化物とアセチレンブラックとテフロンデ
ィスバージョンとを上記と同じ配合割合、即ち、非晶質
V206粉80: 10: 10となるように混合し、
乾燥、粉砕してこれをニッゲル網集電体に充f#.積層
し、加圧成形して本発明の上記正極の場合と同じ量の非
晶質V205を含有する従来の正極を作製し、この正極
と上記と同じ構或の負極、電解液、セル容器により従来
型のリチウム二次電池を作製した。That is, a mixture of the amorphous Visa powder, commercially available acetylene black as a conductive agent powder, and Teflon dispersion as a binder at a weight ratio of 80:10:10 was dried and pulverized. Then, the mixed powder is filled and laminated on a Nitsugel wire mesh as a current collector, and then pressurized to adjust the thickness.
0. The positive electrode was shaped into a circular plate with a length of 4 m and a diameter of 36 mm. On the other hand, as a negative electrode for a lithium secondary battery, the thickness is 0. 75
A circular plate-shaped negative electrode was prepared by punching out a 36 mm diameter lithium foil. The positive electrode and negative electrode thus prepared were placed in a Teflon cell container facing each other, and
A non-aqueous electrolyte was filled between the two electrode plates to create a gas-liquid-tight battery. As the electrolyte, for example, LICI04 1
An NPC solution was prepared and used. FIG. 3 shows the rechargeable lithium battery thus obtained, in which I is the positive electrode of the present invention, 2 is the negative electrode, 3 is the cell container, 4 is the electrolyte, 5 is the positive terminal, and 6 is the negative terminal. is shown. For comparison, a certain composite oxide powder was prepared from crystalline Vies powder and a different metal or metal or metal oxide by a conventional method, for example, crystalline V20 powder and P2 powder.
0s powder at a weight ratio of 8:2, compacted and crushed to produce composite oxide powder in which crystalline V2O5 has been degraded, and this is used for lithium secondary batteries. A positive electrode active material is used for the positive electrode, and a positive electrode is produced in the same machine as above. That is, the composite oxide, acetylene black, and Teflon dispersion were mixed in the same proportion as above, that is, amorphous V206 powder 80:10:10,
Dry and pulverize it and fill it into a Niggel mesh current collector f#. A conventional positive electrode containing the same amount of amorphous V205 as in the case of the above-mentioned positive electrode of the present invention was prepared by laminating and press-molding, and this positive electrode was combined with the negative electrode, electrolyte, and cell container having the same structure as above. A conventional lithium secondary battery was fabricated.
かくして、上記の本発明の正極を具備した電池と従来の
正極を具備した電池を、放電特性、サイクル特性につき
比較試験を行った。その結果は、夫々第4図及び第5図
に示す通りであった.第4図において、aは、本発明の
上記正極を組込んだ該電池の放電特性曲線、bは、従来
の上記正極を組込んだ該電池の放電特性を示す。Thus, a comparative test was conducted on the discharge characteristics and cycle characteristics of a battery equipped with the above-mentioned positive electrode of the present invention and a battery equipped with a conventional positive electrode. The results were as shown in Figures 4 and 5, respectively. In FIG. 4, a shows a discharge characteristic curve of the battery incorporating the positive electrode of the present invention, and b shows a discharge characteristic curve of the battery incorporating the conventional positive electrode.
第5図において、イは、本発明の上記正極を組込んだ該
電池のサイクル特性曲線、b′は、従来の上記正極を組
込んだ該電池のサイクル特性曲線を示す.
かiる夫々の図における特性曲線a,b及びa′, b
を対比し明らかなように、本発明のように、メカニカル
アロイング処理により、結晶質VzOsを非晶質化した
ものを正極とするときは、従来のように、結晶質V20
hに異種の金属を添加し、複合酸化物を製造することに
より、該結晶質V2O5を、非品質化したものを正極と
する場合に比し、リチウム二次電池の放電特性及びサイ
クル寿命が著しく増大することが判る。In FIG. 5, A shows a cycle characteristic curve of the battery incorporating the above-mentioned positive electrode of the present invention, and b' shows a cycle characteristic curve of the battery incorporating the above-mentioned conventional positive electrode. Characteristic curves a, b and a', b in each of the figures
As is clear from the comparison, when the positive electrode is made of crystalline VzOs made amorphous by mechanical alloying treatment as in the present invention, crystalline V20
By adding different metals to h to produce a composite oxide, the discharge characteristics and cycle life of the lithium secondary battery can be significantly improved compared to when a non-quality crystalline V2O5 is used as the positive electrode. It can be seen that it increases.
このように本発明によるときは、結晶質V2O5単独を
メカニカルアロイング処理により非晶質化したので、こ
れをリチウム二次電池の正極用活物質として正極を作製
し、これをリチウム二次電池に組込むときは、従来法の
結晶質V2 0Sに異種金属を添加し、複合酸化物を作
製することにより、結晶質■2oSを非品質化したもの
をリチウム二次電池の正極用活物質として正極を作製4
し、これをリチウム電池に組込んだ場合に比し、該電池
の放電容量並にサイクル寿命の著しい向上をもたらす効
果を有する.As described above, according to the present invention, since crystalline V2O5 alone is made amorphous by mechanical alloying treatment, a positive electrode is prepared using this as an active material for a positive electrode of a lithium secondary battery, and this is used as a positive electrode active material for a lithium secondary battery. When incorporating, a different metal is added to the conventional crystalline V20S to create a composite oxide, and the crystalline V20S is degraded and used as a positive electrode active material for a lithium secondary battery. 4 and has the effect of significantly improving the discharge capacity and cycle life of the battery compared to when it is incorporated into a lithium battery.
第1図は、メカニカルアロイング処理前の結晶質V2O
SのX線回折パターン、第2図は、メカニカルアロイン
グ処理後のXI1回折パターン、第3図は、本発明の正
極を組込んだリチウム二次電池の断面図、第4図は、電
池の放電特性の比較図、第5図は、そのサイクル特性の
比較図を示す.
1・・・本発明の正極Figure 1 shows crystalline V2O before mechanical alloying treatment.
Figure 2 is the XI1 diffraction pattern after mechanical alloying treatment, Figure 3 is a cross-sectional view of a lithium secondary battery incorporating the positive electrode of the present invention, Figure 4 is the X-ray diffraction pattern of Figure 5 shows a comparison diagram of the cycle characteristics. 1... Positive electrode of the present invention
Claims (1)
処理し、非晶質化することを特徴とするリチウム二次電
池の正極用活物質の製造法。 2、請求項1記載の製造法で得た非晶質V_2O_5粉
体に、導電剤粉と結着剤ディスパージョンとを添加混練
、乾燥、粉砕したものを、集電体に加圧結着成形して成
るリチウム二次電池の正極。[Claims] 1. A method for producing an active material for a positive electrode of a lithium secondary battery, which comprises mechanically alloying crystalline V_2O_5 powder alone to make it amorphous. 2. The amorphous V_2O_5 powder obtained by the manufacturing method described in claim 1 is mixed with conductive agent powder and binder dispersion, dried, and crushed, and then pressure bonded and formed into a current collector. A positive electrode for a lithium secondary battery made of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002792A JPH03208256A (en) | 1990-01-10 | 1990-01-10 | Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002792A JPH03208256A (en) | 1990-01-10 | 1990-01-10 | Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03208256A true JPH03208256A (en) | 1991-09-11 |
Family
ID=11539218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002792A Pending JPH03208256A (en) | 1990-01-10 | 1990-01-10 | Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03208256A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0938147A3 (en) * | 1998-01-30 | 1999-12-22 | Canon Kabushiki Kaisha | Lithium secondary battery and method of manufacturing the lithium secondary battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61200667A (en) * | 1985-03-04 | 1986-09-05 | Nippon Telegr & Teleph Corp <Ntt> | Lithium cell |
-
1990
- 1990-01-10 JP JP2002792A patent/JPH03208256A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61200667A (en) * | 1985-03-04 | 1986-09-05 | Nippon Telegr & Teleph Corp <Ntt> | Lithium cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0938147A3 (en) * | 1998-01-30 | 1999-12-22 | Canon Kabushiki Kaisha | Lithium secondary battery and method of manufacturing the lithium secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7028354B2 (en) | All-solid-state lithium-ion secondary battery | |
EP3392934B1 (en) | Anode mixture, anode comprising the anode mixture, and all-solid-state lithium ion secondary battery comprising the anode | |
JP6927292B2 (en) | All-solid-state lithium-ion secondary battery | |
CN109962221B (en) | Composite positive electrode material, positive plate, preparation method of positive plate and lithium ion battery | |
JP3453099B2 (en) | Method for producing lithium secondary battery | |
JPH10508141A (en) | Method of manufacturing cathode components for use in electrochemical cells | |
US20240014377A1 (en) | All solid state battery | |
EP4235847A1 (en) | Lithium ion battery | |
KR20030028241A (en) | Negative active material for lithium secondary battery and method of preparing same | |
CN114068921A (en) | Lithium iron phosphate positive electrode active material, preparation method thereof, positive plate and battery | |
US12046747B2 (en) | All solid state battery | |
US20240421302A1 (en) | Olivine composite cathode material, preparation method and application thereof, and lithium-ion battery | |
CN114744193B (en) | A lithium iron phosphate cathode material and its preparation method and use | |
JPH03208256A (en) | Manufacture of active substance for positive electrode of lithium secondary cell and positive electrode | |
JP2022153951A (en) | All-solid battery | |
JP6593381B2 (en) | Negative electrode mixture for all solid lithium ion secondary battery, negative electrode including the negative electrode mixture, and all solid lithium ion secondary battery including the negative electrode | |
JP7572500B2 (en) | Method for manufacturing soft carbon and lithium ion secondary battery | |
JP7578649B2 (en) | Anode active material, anode active material layer, lithium ion battery, and method for producing anode active material | |
TWI877700B (en) | Negatively active substances | |
US20240204244A1 (en) | Solid-state battery and method for producing solid-state battery | |
CN119786565A (en) | A positive electrode active material and its preparation method and application | |
JPH02239572A (en) | Polyaniline battery | |
JP2005108457A (en) | Non-sintered electrode for alkaline storage battery and alkaline storage battery | |
CN118054015A (en) | Low-expansion fast-charging negative electrode material of sodium ion battery and preparation method thereof | |
CN117790765A (en) | Antimony-based multielement alloy material and application thereof in lithium ion battery |