JPS61190052A - Manufacturing method of titanium fin tube - Google Patents
Manufacturing method of titanium fin tubeInfo
- Publication number
- JPS61190052A JPS61190052A JP2915085A JP2915085A JPS61190052A JP S61190052 A JPS61190052 A JP S61190052A JP 2915085 A JP2915085 A JP 2915085A JP 2915085 A JP2915085 A JP 2915085A JP S61190052 A JPS61190052 A JP S61190052A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- annealing
- welded
- pipe
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 9
- 239000010936 titanium Substances 0.000 title claims description 9
- 229910052719 titanium Inorganic materials 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000137 annealing Methods 0.000 claims description 22
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 11
- 239000010953 base metal Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 6
- 238000005482 strain hardening Methods 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009172 bursting Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、チタン製フィン管を製造するにあたり、溶接
管を素材として製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a titanium fin tube using a welded tube as a raw material.
従来の技術
チタ/は耐食性に優れ、各種の化学プラント、発電用復
水器等の熱交換器用管として使用されており、近年は、
伝熱面積を拡大し、熱交換器としての性能を向上させ、
装置のコ/バクト化をはかるために、外表面を種々の形
状に加工した異形管が用いられるようになってきた。Conventional technology Chita/ has excellent corrosion resistance and is used as heat exchanger tubes in various chemical plants and power generation condensers.
Expanding the heat transfer area and improving the performance as a heat exchanger,
In order to make devices more compact, irregularly shaped tubes with outer surfaces processed into various shapes have come to be used.
これら異形管の一つとして、フィン管が用いられている
が、該フィン管の製造方法としては、素材としてチタン
管を用い、これに転造加工を施して外表面にフィンを形
成させ、そのままの状態で使用に供する方法が一般的で
ある。A finned tube is used as one of these irregularly shaped tubes, and the manufacturing method for the finned tube is to use a titanium tube as the material, perform rolling processing to form fins on the outer surface, and leave it as it is. A common method is to use the product in this state.
発明が解決しようとする問題点
しかしながら、上記の素材のチタン管として溶接管を用
いるときは、通常使用される条件下では問題ないが、管
の軸方向に、母材部に比べ強度お 。Problems to be Solved by the Invention However, when using a welded titanium tube made of the above material, there is no problem under normal usage conditions, but the strength in the axial direction of the tube is lower than that of the base material.
よび延性が劣る溶接部が存在するため、管の周方向に、
内圧による過度の負荷がかかるような場合は不適当とさ
れ、素材として、溶接管に比ベコストの高いシームレス
管を用いなければならなかった。In the circumferential direction of the pipe, there are welds with poor ductility.
It is considered unsuitable in cases where an excessive load is applied due to internal pressure, and seamless pipes, which are more expensive than welded pipes, had to be used as the material.
問題点を解決するための手段
本発明は、上記従来の欠点を解決することを目的とした
もので、チタンの溶接管の外面に転造加工を施してフィ
ンを形成させたのち、真空あるいは不活性ガス雰囲気中
で、700〜850℃で焼鈍することを要旨とするチタ
ン製フィン管の製造方法である。Means for Solving the Problems The present invention aims to solve the above-mentioned conventional drawbacks.The present invention is aimed at solving the above-mentioned drawbacks of the conventional technology. This is a method for manufacturing a titanium fin tube, the gist of which is annealing at 700 to 850°C in an active gas atmosphere.
以下に、本発明の詳細な説明する。The present invention will be explained in detail below.
溶接管において、溶接部は母材部に比べ強度および延性
が劣るが、このような溶接管の外面に、フィンを形成す
るための転造加工を施した後においても、同様のことが
いえる。すなわち、上記溶接管に転造加工を施すと、母
材部および溶接部のいずれにおいても、フィン部は強い
冷間加工を受け、ヒレの基底部から゛管内表面までの部
分(以下管肉厚部という)にも加工の影響がおよび、母
材部および溶接部ともに加工硬化し、延性が低下する。In a welded pipe, the welded part is inferior in strength and ductility to the base metal part, but the same can be said even after the outer surface of such a welded pipe is rolled to form fins. In other words, when the above-mentioned welded pipe is subjected to rolling processing, the fin part is subjected to strong cold working in both the base metal part and the welded part, and the part from the base of the fin to the inner surface of the pipe (hereinafter referred to as the pipe wall thickness) is subjected to strong cold working. The effect of processing also affects the welded part, and both the base metal part and the welded part become work hardened, resulting in a decrease in ductility.
なかでも溶接部の延性は母材部に比べ著しく劣る。Among these, the ductility of the welded part is significantly inferior to that of the base metal.
本発明の方法は、このような欠点を除くものであって、
素材として溶接管を用い、管外面にフィンを形成させる
ために転造加工を施したのち、真空あるいは不活性ガス
雰囲気中で、700〜850℃の湯度条件で焼鈍する方
法であり、これによって、母材部および溶接部のいずれ
においても、また、強い冷間加工を受けるフィン部およ
び冷間加工を受ける程度がフィン部よりは少ない管肉厚
部のいずれにおいても、十分な延性を任し、シームレス
管を素材として用いた場合と同等の性質を有するフィン
管を製造することができる。The method of the present invention eliminates these drawbacks,
This method uses a welded pipe as the raw material, performs rolling processing to form fins on the outside of the pipe, and then anneals it at a hot water temperature of 700 to 850°C in a vacuum or inert gas atmosphere. , sufficient ductility is ensured in both the base metal part and the welded part, as well as in the fin part, which is subjected to strong cold working, and in the thick part of the pipe, which is subjected to cold working to a lesser extent than the fin part. , it is possible to manufacture a finned tube with properties equivalent to those obtained when a seamless tube is used as the material.
作 用
一般に金属材料においては、冷間加工後焼鈍することに
より再結晶が始まり、微細結晶が生じて、延性が回復す
ることが知られているが、本発明の方法はこの現象を応
用したものである。It is generally known that in metal materials, recrystallization begins when annealing is performed after cold working, producing fine crystals and restoring ductility. The method of the present invention applies this phenomenon. It is.
すなわち、溶接管において、母材部は延性に富む等軸の
α組織であるのに対し、溶接部は鋳造組織、溶接熱影響
部は針伏のトランスフォームドβ組織をなし、いずれも
延性に乏しい組織になっているが、本発明方法は、上記
溶接管の外面にフィンを形成させるための、転造による
冷間加工を加えたのち、700〜850℃の温度条件で
焼鈍することにより、再結晶を起させ、管のいずれの部
分も延性に富むα組織とする方法である。In other words, in a welded pipe, the base metal has a highly ductile equiaxed α structure, while the welded part has a cast structure and the weld heat-affected zone has a needle-shaped transformed β structure, both of which are highly ductile. Although the structure is poor, the method of the present invention involves cold working by rolling to form fins on the outer surface of the welded pipe, and then annealing at a temperature of 700 to 850°C. This is a method of causing recrystallization to create a highly ductile alpha structure in all parts of the tube.
実 施 例 以下、実施例にもとずいて更に詳しく説明する。Example A more detailed explanation will be given below based on examples.
フィン管の素材として、外径19mm、管肉厚1.3鰭
のJ Is H4631,TTH35W 2種溶接
チタン管を用い、転造加工により、外径1911、フィ
ンの高さα8鶴、フィンの基底部の厚さ0、8 @−、
フィンの数30山/1nchのフィン管を製作し、焼鈍
条件を変えてミクロ組織の変化を調べ。As the material for the fin tube, we used a JIS H4631, TTH35W type 2 welded titanium tube with an outer diameter of 19 mm and a tube wall thickness of 1.3 fins, and through rolling processing, the outer diameter was 1911 mm, the fin height was α8, and the base of the fin was Part thickness 0, 8 @-,
A fin tube with 30 fins/1 nch was fabricated, and changes in the microstructure were investigated by changing the annealing conditions.
硬度および管周方向の伸び率を測定した。該伸び率は、
管内に水を溝たして密閉したのち、内圧をかけて破裂さ
せ、破裂時の外周を測定することにより算出した。The hardness and elongation rate in the circumferential direction were measured. The elongation rate is
The calculation was made by filling a groove with water in the tube and sealing it, then applying internal pressure to cause the tube to burst, and measuring the outer circumference at the time of bursting.
第1図〜第4図は焼鈍条件の違いによる母材部および溶
接部に右けるミクロ組織の変化を示すもので、第1図は
転造加工後焼鈍処理を行わなかった場合、第2図は転造
加工後650℃で焼鈍した場合、第3図は同じく700
℃で焼鈍した場合、第4図は本発明の実施により同じ(
850℃で焼鈍した場合である。なお焼鈍はいずれも1
0分間、アルゴン雰囲気中で行った。Figures 1 to 4 show changes in the microstructure of the base metal and weld due to differences in annealing conditions. When annealed at 650℃ after rolling, Figure 3 shows the same temperature at 700℃.
FIG. 4 shows the same (
This is a case of annealing at 850°C. In addition, annealing is 1
The test was carried out for 0 minutes in an argon atmosphere.
上記結果より、焼鈍処理を行わなかった場合は、母材部
、溶接部いずれも素材が加工を受けたままの組織である
が(第1図参照)、650℃で焼鈍した場合は、母材部
の一部で再結晶が進んでおり(第2図参照)、700℃
で焼鈍した場合は、溶接部の一部を除きほとんど再結晶
しく第3図参照)850℃では、母材部、溶接部いずれ
も完全に再結晶していることがわかる(第4図参照)。From the above results, when annealing is not performed, both the base metal part and the welded part have the same structure as the material has been processed (see Figure 1), but when annealing at 650°C, the base metal Recrystallization is progressing in some parts (see Figure 2), and the temperature is 700℃.
When annealed at 850°C, almost all recrystallization occurred except for a part of the welded area (see Figure 3)) It can be seen that both the base metal and the welded area were completely recrystallized at 850°C (see Figure 4). .
第1表は、転造加工後の焼鈍条件を種々変えた場合の管
の破断位置、管周方向の伸び率および硬度の変化を示し
たもので、−1は転造加工後焼鈍処理を行わなかった場
合、地2は600℃、Na3は650℃、Na8は90
0°Cでそれぞれ焼鈍処理した比較例、鷹4は700°
C1Na3は750℃、翫6は800°C,Na7は8
50°cでそれぞれ焼鈍処理した本発明の実施例、画・
9は比較材で、素材としてシームレス管を用い、転造加
工した場合の試験結果である。なお、焼鈍はいずれも1
o分間、アルゴン雰囲気中で行った。Table 1 shows the changes in the fracture position, circumferential elongation, and hardness of the tube when the annealing conditions after rolling were changed. -1 indicates that the annealing was performed after rolling. If not, Earth 2 is 600℃, Na3 is 650℃, Na8 is 90℃.
Comparative example, Taka 4 was annealed at 0°C at 700°
C1Na3 is 750℃, 翫6 is 800℃, Na7 is 8
Examples of the present invention, images and images annealed at 50°C, respectively.
9 is a comparison material, which is the test result when a seamless pipe was used as the material and rolled. In addition, all annealing is 1
o minutes in an argon atmosphere.
第1表において、管内に水圧をかけて破断させたときの
管の破断位置は、転造加工後焼鈍しない場合(同表の画
1の場合)、あるいは焼鈍湯度が第 1 表
点本、5.8.7は本発明の実施例
低い場合(同表のNa2.&3の場合)は溶接部で破断
しているが、焼鈍温度が700〜850℃の場合(同表
の臨4〜坐7の場合)は、破断位置が溶接部のみに集中
することはない。なお破断はいずれも管軸方向に平行で
ある。In Table 1, the fracture position of the pipe when water pressure is applied to the pipe to cause it to rupture is determined when the pipe is not annealed after rolling (in the case of picture 1 in the same table), or when the annealing temperature is the same as in Table 1. 5.8.7 is an example of the present invention. When the annealing temperature is low (Na2. In case 7), the fracture position is not concentrated only in the welded part. Note that the fractures are all parallel to the tube axis direction.
管周方向の伸び率は、焼鈍しない場合(同表のNatの
場合)a5%であるのに対し、焼鈍処理を行なうことに
より増大し、焼鈍温度が700〜850℃の場合(同表
のNA4〜慮7の場合)は、13%程度の値を示す。こ
れは管素材としてシームレス管を用いた場合(同表の陽
9の場合)と同等の伸び率を示すもので、溶接部の組織
が再結晶し、等軸のα組織となったためと考えられる。The elongation rate in the circumferential direction of the tube is a5% when not annealed (for Nat in the same table), but increases by annealing, and when the annealing temperature is 700 to 850°C (for NA4 in the same table) - Cases 7) show a value of about 13%. This shows the same elongation rate as when a seamless pipe is used as the pipe material (positive 9 in the same table), and it is thought that this is because the structure of the welded part recrystallized and became an equiaxed α structure. .
また、管横断面の硬度も焼鈍することにより改善され、
焼鈍しない場合(同表のmtの場合)、ビッカース硬度
(100g>で182程度であるのに対し、焼鈍温度が
700〜850℃の場合(同表の虜4〜7の場合)、1
27〜138程度の低値を示し、素材としてシームレス
管を用いた場合(同表の&9の場合)と同等もしくはそ
れよりも良好な値を示している。In addition, the hardness of the cross section of the pipe is also improved by annealing.
When not annealed (in the case of mt in the same table), the Vickers hardness (100g> is about 182, whereas when the annealing temperature is 700 to 850°C (in the case of 4 to 7 in the same table), it is 1
It shows a low value of about 27 to 138, which is equivalent to or better than the case where a seamless pipe is used as the material (case &9 in the same table).
なお、転造加工後900℃で焼鈍処理した場合(同図の
陽8の場合)は、管が熱応力により変形したため測定不
能であった。すなわち、フィン管を製造後、900℃以
上で焼鈍することは好ましくない。Note that in the case where the tube was annealed at 900° C. after rolling (case 8 in the same figure), measurement was impossible because the tube was deformed due to thermal stress. That is, it is not preferable to anneal the fin tube at 900° C. or higher after manufacturing it.
以上の結果から、転造加工後の焼鈍温度条件は、700
〜850℃とするのが望ましい。From the above results, the annealing temperature conditions after forming are 700
It is desirable to set it as -850 degreeC.
発明の詳細
な説明したように、本発明によれば、溶接管を素材とし
て用いても、転造加工を施してフィンを形成させたのち
、真空あるいは不活性ガス雰囲気中700〜850℃で
焼鈍することにより、溶接部の延性を大幅に改善するこ
とができる。これにより、管の周方向に、内圧による負
荷がかかるような場合でも、高価なシームレス管を素材
としたフィン管を使用する必要がなく、本発明の効果は
極めて大きい。As described in detail, according to the present invention, even if a welded pipe is used as a raw material, it can be annealed at 700 to 850°C in a vacuum or inert gas atmosphere after being subjected to rolling processing to form fins. By doing so, the ductility of the weld can be significantly improved. As a result, even when a load due to internal pressure is applied in the circumferential direction of the tube, there is no need to use a finned tube made of an expensive seamless tube, and the effects of the present invention are extremely large.
m1図〜第4図は各種の焼鈍条件下におけるチタン製フ
ィン管のミクロ組織を示す顕微鏡写真で、第1図は焼鈍
しない場合、第2図は650℃で、第3図は700℃で
、fJ4図は850℃でそれぞれ焼鈍した場合に相当す
る。
311図
秦
<”111部)
部2図
ぐ溶接lター゛
智
第3wJ
ミ 5゛3・・ミ、、Hi、i +。
第4図
(、ミレと頑、・
′、、箔りうS・)Figures m1 to 4 are micrographs showing the microstructure of titanium fin tubes under various annealing conditions. The fJ4 diagram corresponds to the case of annealing at 850°C. Figure 311 Hata <"Part 111) Part 2 Figure Welding L Teru Chi 3 wJ Mi 5゛3... Mi,, Hi, i +. Figure 4 (Mire and Gan,・',, Haku Riu S・)
Claims (1)
させたのち、真空あるいは不活性ガス雰囲気中で、70
0〜850℃で焼鈍することを特徴とするチタン製フィ
ン管の製造方法。After rolling the outer surface of the titanium welded tube to form fins, it is heated for 70 minutes in a vacuum or inert gas atmosphere.
A method for manufacturing a titanium fin tube, characterized by annealing at 0 to 850°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2915085A JPS61190052A (en) | 1985-02-16 | 1985-02-16 | Manufacturing method of titanium fin tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2915085A JPS61190052A (en) | 1985-02-16 | 1985-02-16 | Manufacturing method of titanium fin tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61190052A true JPS61190052A (en) | 1986-08-23 |
Family
ID=12268226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2915085A Pending JPS61190052A (en) | 1985-02-16 | 1985-02-16 | Manufacturing method of titanium fin tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61190052A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101780492A (en) * | 2010-04-06 | 2010-07-21 | 江阴市钛业制管有限公司 | Method for processing titanium and titanium alloy multi-start helical tubes |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5482316A (en) * | 1977-12-14 | 1979-06-30 | Daido Steel Co Ltd | Heat treatment of titanium metal |
JPS56116863A (en) * | 1980-02-18 | 1981-09-12 | Sumitomo Metal Ind Ltd | Continuous annealing of titanium and titanium alloy strip |
-
1985
- 1985-02-16 JP JP2915085A patent/JPS61190052A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5482316A (en) * | 1977-12-14 | 1979-06-30 | Daido Steel Co Ltd | Heat treatment of titanium metal |
JPS56116863A (en) * | 1980-02-18 | 1981-09-12 | Sumitomo Metal Ind Ltd | Continuous annealing of titanium and titanium alloy strip |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101780492A (en) * | 2010-04-06 | 2010-07-21 | 江阴市钛业制管有限公司 | Method for processing titanium and titanium alloy multi-start helical tubes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5145331B2 (en) | High strength and high thermal conductivity copper alloy tube and method for producing the same | |
US5855699A (en) | Method for manufacturing welded clad steel tube | |
US5332454A (en) | Titanium or titanium based alloy corrosion resistant tubing from welded stock | |
JPS61190052A (en) | Manufacturing method of titanium fin tube | |
JPH0234752A (en) | Manufacturing method for seamless pipes made of pure titanium or titanium alloy | |
JPS5844127B2 (en) | Manufacturing method of cast stainless steel elbows with fine straight pipe structure at the end | |
CN110520668A (en) | Non-heat treatable aluminum alloy container and method of making the same | |
CN107781549B (en) | A hollow metal sealing structure | |
US6202281B1 (en) | Method for producing multilayer thin-walled bellows | |
JPH02228456A (en) | Strengthening method for cold-worked mickel-base alloy | |
JP3240211B2 (en) | Copper-aluminum dissimilar metal joint material | |
JPS61115628A (en) | Manufacture of pipe having non-circular sectional form made of alpha+beta type titanium alloy | |
JPH0338056B2 (en) | ||
JP2570785B2 (en) | Welded pure titanium tube for freeze resistance and its manufacturing method | |
JPH10286602A (en) | Titanium seamless tube and method of manufacturing the same | |
JPS6054804B2 (en) | Manufacturing method of titanium alloy tube | |
JPS59166427A (en) | Method of connecting pipes with the use of shape memory alloy | |
JPH01139740A (en) | Corrosion-resisting duplex tube | |
JPH03234314A (en) | Double pipe manufacturing method | |
RU2825502C1 (en) | Titanium alloy pipe | |
SU381496A1 (en) | METHOD OF MAKING BIMETALLIC PIPES | |
JP2749014B2 (en) | Method of manufacturing heat transfer tube made of Ti | |
JPS60245773A (en) | Manufacture of highly corrosion resistant ni base alloy | |
JPH0411618B2 (en) | ||
JPS60196242A (en) | Hollow forging method of large-diameter pipe while preventing cooling of inside surface |