JPH0338056B2 - - Google Patents
Info
- Publication number
- JPH0338056B2 JPH0338056B2 JP57011240A JP1124082A JPH0338056B2 JP H0338056 B2 JPH0338056 B2 JP H0338056B2 JP 57011240 A JP57011240 A JP 57011240A JP 1124082 A JP1124082 A JP 1124082A JP H0338056 B2 JPH0338056 B2 JP H0338056B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- temperature
- shape memory
- tightening
- deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 25
- 229910000734 martensite Inorganic materials 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 15
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000003446 memory effect Effects 0.000 claims description 12
- 229910001369 Brass Inorganic materials 0.000 claims description 10
- 239000010951 brass Substances 0.000 claims description 10
- 230000002441 reversible effect Effects 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
この発明は、黄銅系形状記憶合金製締め付け部
品の締め付け方法に関する。
形状記憶合金とは、相変態により形状が変化す
る合金であり、低温相(マルテンサイト相)で変
形したものを昇温し、高温相(母相)にすると、
低温相で与えた変形が消失して元の形状にもどる
性質を持つている。更に低温相で変形しその変形
が元にもどらないように拘束加熱を行なう等、適
当な処理を施すと、低温相と高温相とで可逆的に
形状が変化する。
これらの性質を利用してパイプ継手、クランプ
等の締め付け方法がNi−Ti系形状記憶合金で採
用されている。しかしNi−Ti系形状記憶合金は
製造が困難な上に価格が高いという欠点を持つて
いる。
このため、安価で製造し易い黄銅系の形状記憶
合金製締め付け部品が開発されているが、このも
のの従来の締め付け方法は、常温でマルテンサイ
ト相のものに加工を加えて、締め付け部にセツト
した後に、母相温度にまで加熱する方法であつ
た。
しかしながらこの従来の方法では、加熱した後
に常温になると低温相(マルテンサイト相)にも
どるため、強度的に問題があつた。
一方本発明者等は、黄銅系形状記憶合金が、低
温相(マルテンサイト相)から高温相(母相)に
変化すると、マルテンサイト相で与えた変形が消
失して変形前の形状にもどるいわゆる形状記憶効
果と、更に加熱されて、母相β組織中にα相が再
析出しだす温度200℃以上では、逆の方向にもう
一段形状が変化して、再びマルテンサイト状態で
変形した形状にもどるいわゆる高温形状記憶効果
とを有することを初めて見い出した。
すなわち、本発明者等は、黄銅系形状記憶合金
が、通常の形状記憶効果と高温形状記憶効果との
二種類の形状記憶性質を持つていることを初めて
見い出したのである。
そして本発明方法は、本発明者等が初めて見い
出した黄銅系形状記憶合金における上記高温形状
記憶効果を巧みに利用して、上記従来例方法の欠
点を解消すると共に、少なくとも締め付け現場に
おいて締め付けるときには液体窒素等の冷媒を必
要とせず、製造が簡単で、強度が大きく、且つ安
価な黄銅系形状記憶合金による締め付け方法を提
供することを目的としている。
即ち、本発明方法は、200℃以上の高温に加熱
すると更に形状が変化する高温形状記憶効果を利
用したもので、常温で母相またはマルテンサイト
相に製造された締め付け部品をマルテンサイト相
にて治具等を用いて絞り加工または押し拡げ加工
等の変形加工を施し、次いで母相状態にもどしこ
の変形を消失させ、この変形が消失された母相状
態の締め付け部品を所定締め付け部にセツト後に
200℃以上に加熱昇温するだけで締め付ける方法
である。
この方法の大きな特徴は、最終的に締め付ける
ときに液体窒素等の冷媒を必要としない、即ち締
め付け現場にて深冷処理を施す必要がないことで
あり、またバーナーにて高温にし過ぎても外れる
ことがないということである。また高温に一度す
ることにより、組織中に再析出α相が生じ、それ
により強度が大きくかつ伸びのあるものとなるこ
とである。
なお、200℃以上の高温加熱による径変化と二
次α相析出とが対応していることが、ミクロ組織
観察によりわかつたが、径の変化は、この二次α
相の析出が絞り加工したときに生じる応力誘起マ
ルテンサイトに対応して析出することにより生じ
るものと推定される。
また、本発明において、母相内にα相が再析出
して高温形状記憶効果を出現させる加熱温度は、
200℃以上であるが、800℃を超える温度では、締
め付け部品自体の融解が始まつてしまうので好ま
しくない。従つて800℃までの加熱は可能ではあ
る。しかし、締め付け部品の材料強度を充分に保
持させた状態での加熱温度は、400℃以内が望ま
しいと言える。
第1図および第2図は、本発明方法の各実施例
を図にして示したものである。
先ず第1図について説明するが、予め、常温で
母相に製造された黄銅系形状記憶合金製のスリー
ブを液体窒素により−196℃に深冷処理しマルテ
ンサイト相とし絞り加工後可逆化処理を施す。な
お、こゝに言う可逆化処理とは、二方向(可逆)
(2way)形状記憶効果を持たせるように処理する
ことを意味し、その処理方法としては、強加工法
と拘束加熱法とが知られている。また、この場合
の深冷処理はスリーブ製造の生産工場において行
なわれるもので、上記した締め付け現場において
行なうものではない。
上記の如く予め生産工場において加工処理され
たスリーブ1bを、常温状態(母相状態)のスリ
ーブ1にもどし、締め付け部にセツトする(i)。セ
ツト後に200℃〜400℃に加熱し(j)α析出相を形成
させると、スリーブ1は絞り加工された状態のス
リーブ1bに変形し、別の管2,3をしつかり掴
み、気密に確実に締め付ける(k)。これを常温にも
どしても(l)、元の形状に回復することはないの
で、締付力は大きく、接触が確実なパイプの接合
を完成することができる(m)。
次に第2図について説明するが、予め、常温で
マルテンサイト相に製造されたスリーブを常温に
て治具等を用いて絞り加工後拘束を施しながら70
〜180℃に加熱するという可逆化処理(拘束加熱
法)を施す。このように予め加工処理されたスリ
ーブ1を、50〜100℃に加熱し(n)、母相状態の
スリーブ1cとし、締め付け部にセツトする
(o)。
セツト後に200℃〜400℃に加熱し(p)、α析
出相にすると、スリーブ1cはマルテンサイト相
での形状に変化し(q)、別の管2,3をしつか
り掴み、締め付け力の大きいパイプ接合を成す。
これを常温にもどしても(r)、スリーブ1は締
付力が大きく確実に接合させている(s)。
この第2図に示す実施例では、締め付け現場は
勿論、スリーブの生産工場においても冷媒による
深冷処理を行なわなくともよいことになり、且つ
締め付け力の大きい締め付け方法を提供すること
ができる。
なお本発明方法における通常の形状記憶効果の
付与に際しては、深冷処理及び可逆化処理を省く
ことも可能であるが、深冷処理及び可逆化処理を
行なつた場合、α相析出時の径の変化量が大きく
なるので好ましいのである。
さらに、上記各実施例方法を具体例に基づいて
説明すると次の通りである。
重量比で、Zn:30〜32%、Al:2.1%、Fe:
2.5%および残部Cuより成る黄銅を溶解、鋳造し、
φ28×φ22×30mmのスリーブに加工し、次に850℃
に加熱し急冷することにより、常温で母相あるい
はマルテンサイト相とする。この常温における母
相あるいはマルテンサイト相の決定は、Zn量を
変化させて行なうことができる。
上記スリーブが常温で母相の場合は深冷処理し
てマルテンサイト相とし、常温でマルテンサイト
相のものはそのままの状態で、治具を用いて押し
拡げまたは絞り加工を行ない、拘束したままで加
熱し、可逆的形状記憶合金とした。なお、押し拡
げおよび絞り加工はそれぞれ径で0.5mm行なつた。
このように処理した形状記憶合金スリーブは、
第3図および第4図に示すように、二段階の形状
変化を示した。第3図は押し拡げ加工(+0.5mm)
の場合、第4図は絞り加工(−0.5mm)の場合の
それぞれマルテンサイト相(A)、母相(B)、高温200
℃〜400℃(C)間の径の変化を説明する図である。
なお、(C)では40℃に15分間保持後空冷して径の
変化を測定したものである。この第3図および第
4図に示す径の変化を利用して、上記各実施例方
法によるパイプの締め付け、接合等を簡単に行な
うことができる。
次に示す表は本発明に係る実施例形状記憶合金
の各相における常温引張り試験結果である。
The present invention relates to a method for tightening fastening parts made of brass-based shape memory alloy. Shape memory alloys are alloys whose shape changes through phase transformation, and when a deformed low-temperature phase (martensitic phase) is heated to become a high-temperature phase (mother phase),
It has the property of returning to its original shape after the deformation caused by the low-temperature phase disappears. Furthermore, if appropriate treatment such as restraint heating is performed to prevent deformation in the low temperature phase from returning to its original state, the shape reversibly changes between the low temperature phase and the high temperature phase. Taking advantage of these properties, Ni-Ti shape memory alloys are used to tighten pipe joints, clamps, etc. However, Ni-Ti-based shape memory alloys have the drawbacks of being difficult to manufacture and expensive. For this reason, fastening parts made of brass-based shape memory alloys, which are cheap and easy to manufacture, have been developed, but the conventional fastening method for these parts is to process martensite phase material at room temperature and set it in the fastening part. This method was followed by heating to the matrix temperature. However, in this conventional method, when the temperature reaches room temperature after heating, the material returns to a low temperature phase (martensitic phase), which caused a problem in terms of strength. On the other hand, the present inventors have discovered that when a brass-based shape memory alloy changes from a low-temperature phase (martensitic phase) to a high-temperature phase (base phase), the deformation caused by the martensitic phase disappears and it returns to its pre-deformed shape. Due to the shape memory effect, at temperatures above 200°C where α phase begins to re-precipitate in the matrix β structure due to further heating, the shape changes one more step in the opposite direction and returns to the deformed shape in the martensitic state. It was discovered for the first time that it has a so-called high-temperature shape memory effect. That is, the present inventors have discovered for the first time that a brass-based shape memory alloy has two types of shape memory properties: a normal shape memory effect and a high temperature shape memory effect. The method of the present invention cleverly utilizes the high-temperature shape memory effect of the brass-based shape memory alloy first discovered by the present inventors, and eliminates the drawbacks of the conventional method. The object of the present invention is to provide a fastening method using a brass-based shape memory alloy that does not require a refrigerant such as nitrogen, is easy to manufacture, has high strength, and is inexpensive. That is, the method of the present invention utilizes the high-temperature shape memory effect, in which the shape further changes when heated to a high temperature of 200°C or higher. After applying deformation processing such as drawing or pushing expansion using a jig, etc., then returning to the matrix state to eliminate this deformation, and setting the clamping part in the matrix state in which the deformation has disappeared in a predetermined clamping part.
This is a method of tightening by simply raising the temperature to 200℃ or higher. The major feature of this method is that it does not require a refrigerant such as liquid nitrogen when final tightening, that is, there is no need for deep cooling at the tightening site, and it will not come off even if the temperature is too high with a burner. This means that there is no such thing. Furthermore, once exposed to high temperatures, a redecipitated α phase is generated in the structure, thereby increasing the strength and elongation. Furthermore, microstructure observation revealed that the change in diameter due to high-temperature heating of 200°C or higher corresponds to the precipitation of the secondary α phase.
It is presumed that phase precipitation is caused by precipitation corresponding to stress-induced martensite that occurs during drawing. In addition, in the present invention, the heating temperature at which the α phase re-precipitates in the matrix and the high-temperature shape memory effect appears is as follows:
Although the temperature is 200°C or higher, temperatures exceeding 800°C are not preferable because the fastening parts themselves will begin to melt. Therefore, heating up to 800°C is possible. However, it can be said that the heating temperature is desirably within 400°C while maintaining sufficient material strength of the fastening parts. FIGS. 1 and 2 diagrammatically illustrate embodiments of the method of the invention. First, referring to Fig. 1, a sleeve made of a brass-based shape memory alloy that has been manufactured as a matrix at room temperature is deep-cooled to -196°C with liquid nitrogen to form a martensitic phase, and after drawing, a reversible treatment is performed. give Note that the reversible processing referred to here refers to two-way (reversible) processing.
(2-way) means processing to give a shape memory effect, and the strong processing method and restrained heating method are known as the processing method. Furthermore, the deep cooling treatment in this case is carried out at the production factory where the sleeve is manufactured, and is not carried out at the above-mentioned tightening site. The sleeve 1b, which has been previously processed in the production factory as described above, is returned to the sleeve 1 at room temperature (matrix state) and set in the tightening part (i). After setting, the sleeve 1 is heated to 200°C to 400°C to form an α precipitate phase (j), and the sleeve 1 transforms into a drawn sleeve 1b, which firmly grips the other tubes 2 and 3 to ensure airtightness. Tighten (k). Even if it is returned to room temperature (l), it will not recover to its original shape, so the clamping force is large and the pipe can be joined with reliable contact (m). Next, referring to Fig. 2, a sleeve manufactured in the martensitic phase at room temperature is drawn at room temperature using a jig, etc., and then restrained.
Perform reversible treatment (constrained heating method) by heating to ~180°C. The sleeve 1 processed in advance in this manner is heated to 50 to 100°C (n) to form the sleeve 1c in a matrix state, and is set in the tightening part (o). After setting, the sleeve 1c is heated to 200°C to 400°C (p) to form the α precipitation phase, and the sleeve 1c changes to the martensitic phase (q), grips the other tubes 2 and 3 tightly, and reduces the tightening force. Forms large pipe joints.
Even when the sleeve 1 is returned to room temperature (r), the sleeve 1 has a large tightening force and is reliably joined (s). In the embodiment shown in FIG. 2, there is no need to carry out deep cooling treatment using a refrigerant not only at the tightening site but also at the sleeve production factory, and it is possible to provide a tightening method with a large tightening force. Note that when imparting the usual shape memory effect in the method of the present invention, it is possible to omit the deep cooling treatment and reversible treatment, but if the deep cooling treatment and reversible treatment are performed, the diameter at the time of α phase precipitation This is preferable because the amount of change in is large. Furthermore, the methods of each of the above embodiments will be explained based on specific examples as follows. Weight ratio: Zn: 30-32%, Al: 2.1%, Fe:
Brass consisting of 2.5% and the balance Cu is melted and cast,
Processed into a sleeve of φ28×φ22×30mm, then heated at 850℃
By heating to and rapidly cooling, it becomes a parent phase or martensitic phase at room temperature. The parent phase or martensitic phase at room temperature can be determined by changing the amount of Zn. If the above-mentioned sleeve is in the matrix phase at room temperature, it is deep-cooled to make it into the martensitic phase, and if it is in the martensitic phase at room temperature, it is expanded or drawn using a jig while being restrained. It was heated to form a reversible shape memory alloy. Note that the pressing and drawing processes were each performed to a diameter of 0.5 mm. The shape memory alloy sleeve treated in this way is
As shown in FIGS. 3 and 4, two stages of shape change were shown. Figure 3 shows push-spreading process (+0.5mm)
In the case of , Figure 4 shows the martensite phase (A), parent phase (B), and high temperature 200 mm in the case of drawing (-0.5 mm).
It is a figure explaining the change of the diameter between degreeC - 400 degreeC (C). In (C), the change in diameter was measured after being held at 40°C for 15 minutes and then air-cooled. By utilizing the changes in diameter shown in FIGS. 3 and 4, the pipes can be easily tightened, joined, etc. by the methods of each of the embodiments described above. The following table shows the room temperature tensile test results for each phase of the example shape memory alloy according to the present invention.
【表】
* 母相からマルテンサイト相に変化し始め
る温度
この表から明らかなように、常温で母相、ある
いは一度高温にしたものの引張性質が常温でマル
テンサイト相のものより非常に優れていることが
わかる。
以上説明したように、本発明方法は従来の欠点
を解消し、少なくとも締め付け現場においては液
体窒素等の冷媒を必要とせず、製造が簡単で、強
度が大きく、かつ安価な締め付け部品の締め付け
方法を提供することができる。[Table] * Temperature at which the parent phase begins to change to the martensitic phase As is clear from this table, the tensile properties of the parent phase at room temperature or once heated to high temperature are much superior to those of the martensitic phase at room temperature. I know that there is. As explained above, the method of the present invention eliminates the drawbacks of the conventional methods, and provides a fastening method for fastening parts that does not require a refrigerant such as liquid nitrogen, is easy to manufacture, has high strength, and is inexpensive, at least at the fastening site. can be provided.
第1図および第2図は本発明方法の各実施例を
説明する図。第3図および第4図は本発明実施例
方法の形状記憶効果を示す説明図。
FIG. 1 and FIG. 2 are diagrams explaining each embodiment of the method of the present invention. FIG. 3 and FIG. 4 are explanatory diagrams showing the shape memory effect of the method according to the embodiment of the present invention.
Claims (1)
て、マルテンサイト相と母相とで形状が変化する
形状記憶効果と、更に200℃以上の高温で母相内
にα相が再析出する時に再度形状が変化する高温
形状記憶効果とを利用して、常温で母相またはマ
ルテンサイト相に製造された上記締め付け部品を
マルテンサイト相にて治具等を用いて絞り加工ま
たは押し拡げ加工等の変形加工を施し、次いで母
相状態にもどしこの変形を消失させ、この変形が
消失された母相状態の締め付け部品を所定締め付
け部にセツト後に200℃以上に加熱昇温させるこ
とを特徴とする黄銅系形状記憶合金製締め付け部
品の締め付け方法。 2 常温でマルテンサイト相に製造された締め付
け部品をマルテンサイト相にて変形加工後に可逆
化処理を施し、次いで母相状態にもどしこの変形
を消失させ、この変形が消失された母相状態の締
め付け部品を所定締め付け部にセツト後に200℃
以上に加熱昇温させることを特徴とする特許請求
の範囲第1項記載の締め付け方法。[Claims] 1. In a fastening part made of a brass-based shape memory alloy, the shape memory effect in which the shape changes between the martensitic phase and the matrix phase, and furthermore, the α phase regenerates in the matrix at a high temperature of 200°C or higher. Utilizing the high-temperature shape memory effect in which the shape changes again during precipitation, the above-mentioned fastening parts manufactured in the parent phase or martensitic phase at room temperature are drawn or expanded using a jig etc. in the martensitic phase. It is characterized by applying deformation processing such as machining, then returning it to the matrix state to eliminate this deformation, and heating the tightening part in the matrix state where the deformation has disappeared to a predetermined tightening part and raising the temperature to 200 ° C or more. A method for tightening fastening parts made of brass-based shape memory alloy. 2 A tightening part manufactured in the martensitic phase at room temperature is deformed in the martensitic phase, then subjected to reversible treatment, then returned to the matrix state to eliminate this deformation, and tightened in the matrix state in which this deformation has disappeared. 200℃ after setting the parts in the specified tightening area
The tightening method according to claim 1, characterized in that the tightening method is heated to a temperature higher than that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124082A JPS58128516A (en) | 1982-01-27 | 1982-01-27 | Method of clamping clamping part made of brass group form memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124082A JPS58128516A (en) | 1982-01-27 | 1982-01-27 | Method of clamping clamping part made of brass group form memory alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58128516A JPS58128516A (en) | 1983-08-01 |
JPH0338056B2 true JPH0338056B2 (en) | 1991-06-07 |
Family
ID=11772407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1124082A Granted JPS58128516A (en) | 1982-01-27 | 1982-01-27 | Method of clamping clamping part made of brass group form memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58128516A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60193699A (en) * | 1984-03-15 | 1985-10-02 | 三菱鉛筆株式会社 | Method of joining part in writing utensil |
JPH0698114B2 (en) * | 1984-05-09 | 1994-12-07 | オリンパス光学工業株式会社 | Fixing device for coupled members |
JPS6267159A (en) * | 1985-09-20 | 1987-03-26 | Nhk Spring Co Ltd | Tubular product made of shape memory alloy and its production |
JPS648616U (en) * | 1987-07-03 | 1989-01-18 | ||
JPH0232201U (en) * | 1988-08-24 | 1990-02-28 | ||
JPH0614090Y2 (en) * | 1990-01-08 | 1994-04-13 | 加藤発条株式会社 | Shaft or pipe joint |
DE102011053823A1 (en) * | 2011-09-21 | 2013-03-21 | Phoenix Contact Gmbh & Co. Kg | Clamping body for an electrical conductor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56124713A (en) * | 1980-02-29 | 1981-09-30 | Fujikura Ltd | Manufacture of joint device |
-
1982
- 1982-01-27 JP JP1124082A patent/JPS58128516A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56124713A (en) * | 1980-02-29 | 1981-09-30 | Fujikura Ltd | Manufacture of joint device |
Also Published As
Publication number | Publication date |
---|---|
JPS58128516A (en) | 1983-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1239569A (en) | Shape-memory alloys | |
US4654092A (en) | Nickel-titanium-base shape-memory alloy composite structure | |
JPH02142627A (en) | Instrument for composite joint | |
US4740253A (en) | Method for preassembling a composite coupling | |
JPH0338056B2 (en) | ||
JPS6039744B2 (en) | Straightening aging treatment method for age-hardening titanium alloy members | |
EP1574587B1 (en) | METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC | |
JPS59166427A (en) | Method of connecting pipes with the use of shape memory alloy | |
EP0095336A1 (en) | Forged joints | |
JPS59170246A (en) | Production of titanium nickel alloy parts having reversible shape memory effect | |
JPS6075562A (en) | Reversible shape memory pipe joint | |
JPH0447008B2 (en) | ||
US3320102A (en) | Method of shaping metal | |
JP3755032B2 (en) | SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME | |
JPS616486A (en) | Method of connecting pipe by using shape memory alloy | |
SU594191A1 (en) | Method of treating welded joints made from precipitation-hardening steels of martensitic class | |
JPS61106740A (en) | Ti-ni alloy having reversible shape memory effect and its manufacture | |
JPH1017963A (en) | Shape memory alloy tube and its production | |
JPH01177329A (en) | Alloy for high-temperature thermomotive element and high-temperature thermomotive element | |
SU1381299A1 (en) | Method of manufacturing thermomechanical coupling | |
JPS5956554A (en) | Shape memory titanium alloy | |
JPS61190052A (en) | Manufacturing method of titanium fin tube | |
JPH03285021A (en) | Method for improving stress in pipe welded joints | |
JPH01111820A (en) | Method for adjusting liquid-phase distributed joining composition | |
JPH02149651A (en) | Manufacture of ti-ni series superelastic alloy |