[go: up one dir, main page]

JPS61186767A - 加熱装置 - Google Patents

加熱装置

Info

Publication number
JPS61186767A
JPS61186767A JP61026654A JP2665486A JPS61186767A JP S61186767 A JPS61186767 A JP S61186767A JP 61026654 A JP61026654 A JP 61026654A JP 2665486 A JP2665486 A JP 2665486A JP S61186767 A JPS61186767 A JP S61186767A
Authority
JP
Japan
Prior art keywords
heat exchange
gas generator
heat
circulation path
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61026654A
Other languages
English (en)
Other versions
JPH0621732B2 (ja
Inventor
ジヨン、ケニス、ラリク、ページ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IC Gas International Ltd
Original Assignee
IC Gas International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IC Gas International Ltd filed Critical IC Gas International Ltd
Publication of JPS61186767A publication Critical patent/JPS61186767A/ja
Publication of JPH0621732B2 publication Critical patent/JPH0621732B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収部ヒートポンプ式加熱装置、たとえば家庭
用の温水器又は(及び)セントラルヒーティング装置の
加熱装置、の改良に関する。
〔従来技術及び問題点〕
従来の吸収型ヒートポンプ式加熱装置は吸収装置を有し
、この吸収装置は冷媒たとえばアンモニアを、吸収剤た
とえば水に吸収させ、前記ヒートポンプ式加熱装置はガ
ス発生装置及び凝縮装置を有し、このガス発生装置に対
して前記冷媒を吸収した担熱媒体が加圧送入され、この
ガス発生装置で前記担熱媒体が冷媒と吸収剤に分離され
、この吸収剤は減圧装置を経由して前記吸収装置に戻さ
れ、前記凝縮装置は前記ガス発生装置からの前記冷媒を
受けてこれを冷却して凝縮させ、前記ヒートポンプ式加
熱装置は蒸発装置を有し、この蒸発装置は膨張弁を経由
して前記凝縮された冷媒を受ける。熱は前記ガス発生装
置及び蒸発装置に供給され、前記凝縮装置及び吸収装置
は担熱媒体循環路、たとえば温水装置又はセントラルヒ
ーティング装置に接続された熱交換装置と共働する。
このような従来の吸収型ヒートポンプ式加熱装置におい
ては、装置の価格をできるだけ下げて装装置の効率を最
大にしようとするのが通常であるために、その最大消費
電力量及び最大熱出力が比較的小さく、たとえばSSC
で1M!程度である。この値は最近のいわゆる省エネル
ギー型の家屋のセントラルヒーティングや温水器には充
分であるが、古くなった家屋又は大きい家屋、特に寒い
季節には不充分であることが判った。
〔発明の目的及び効果〕
本発明は前記欠点を除去し、ヒートポンプ式加熱装置と
して使用することができ、これに付加的な熱出力の増加
を行なわせることかでき、しかも従来のボイラー型加熱
装置としても使用できる加熱装置を提供することを目的
とする。
この本発明に基く加熱装置を使用すれば、通常はヒート
ポンプ式加熱装置として最も効率よく使用でき、もう少
し熱が欲しいという場合に、これに対応して加熱装置の
熱出力を増大させ得ることができる。
〔発明の概要〕
前記目的は冷媒吸収型ヒートポンプ装置及び熱媒体循環
路を有し、前記ヒートポンプ装置はガス発生装置、冷媒
吸収装置、凝縮装置、及び蒸発装置を有し、前記循環路
は前記ヒートポンプ装置から熱エネルギーを取り出すた
めの熱交換装置を有する加熱装置において、前記ガス発
生装置は補助凝縮装置と共働し、この補助凝縮装置は前
記ヒートポンプ装置から分離されて前記ガス発生装置の
中にあり、このガス発生装置によって作られる蒸気にさ
らされ、補助熱交換装置を有し、この補助熱交換装置は
前記循環路に接続することができ、制御装置は前記循環
路の補助熱交換装置の接続を制御する加熱装置によって
達成される。
前記循環路の熱交換装置は第1熱交換装置及び第1熱交
換装置を有し、この側熱交換装置は前記吸収装置及び凝
縮装置と共働してこの吸収装置及び凝縮装置の熱エネル
ギーを取り出し、前記補助熱交換装置は前記第1熱交換
装置及び第1熱交換装置に直列に結合することができる
前記補助熱交換装置はバイパス管路と並列に接続するこ
とができ、前記制御装置は前記バイパス管路又は補助熱
交換装置を通る前記担熱媒体の流れを制御する弁を含む
ことができる。
前記制御装置は前記ガス発生装置へのエネルギ−供給を
制御する装置を含み、この装置は前記弁を作動させて前
記熱媒体を前記補助熱交換装置に流れるようにすること
により、前記ガス発生装置へのエネルギーの供給を制御
することができる。
前記ヒートポンプ装置は担熱媒体を前記吸収装置から前
記ガス発生装置に送入するためのポンプを含み、このポ
ンプは前記ガス発生装置から前記吸収装置に送られる流
体によって駆動される。この流体は前記ガス発生装置か
ら出る液体又は(及び)蒸気より成る。
〔実施例〕
以下、図を用いて本発明に基〈実施例を例示的に説明す
る。
第1図及び第2図に示す加熱装置はヒートポンプ装!(
第1図)t−有し、このヒートポンプ装置は熱媒体循環
路を有する。この加熱装置の部分を第7図及び第2図に
示す。第1図に示す加熱装置は吸収装置11!−有し、
この吸収装置lの中で冷媒たとえばアンモニアが吸収剤
たとえば水に吸収される。前記加熱装置は熱交換器1a
、5a、15及びガス発生器λを含む。冷媒を吸収した
吸収剤(いわゆる強力液)は液体用ポンプで加圧されて
、管路3からガス発生器−に供給され、前記強力液はガ
ス発生器コの中で冷媒を放出し、冷媒を放出した吸収剤
(いわゆる薄刃液)はガス発生器コから管路ダ及び減圧
装置を経由して吸熱装置/に戻る。担熱媒体は管路6か
ら高圧で凝縮器りに送られ、この凝縮器jの中で熱交換
部jaによって凝縮され、この凝縮した冷媒は管路ざ及
びこの管路の膨張弁デを経由して気化器7に送られ、こ
の気化器7の中で冷媒が気化し、この気化した冷媒は気
化器7から管路lOを経由して前記吸収装置に送られる
前記吸収装置/は従来型の吸収装置又は図に示すような
英国特許出願第g!At、7!19号に記載された吸収
装置を使用することができる。このような吸収装置から
液体の担熱媒体が上向きに流れる通路100と戻り管1
0/とが延び、この戻り管10/はリザーバ102を含
む。前記薄刃液は前記ガス発生装置から通路100の下
側の端部に、前記気化器からの冷媒と共に送り込まれる
。この冷媒は通路10θの中を上に流れる時に前記薄刃
液に吸収されながら前記液体の担熱媒体を、前記溶液の
ポンプによる流れとは独立に、通路100の中で上向き
に流す作用を営み、強力液はリザーバ101から気化器
の方に引き出される。通路100は蛇管10Jに取り囲
まれ、この蛇管io3は熱交換装置1a、5a、15を
形成し、この蛇管の中を前記循環路の冷媒が流れ、この
冷媒は通路lOθの中を流れる液体と向流してこの液体
を吸収作用ができるように冷却する。
吸収装置lとガス発生装置−との間にあり、上記強力液
と薄刃溶液のための管路j、  lIのポンプ及び減圧
装置は、従をのもの又は図のように英国特許第5otb
o、26号に記載されているよ5なポンプ//を有する
ものを使用することができる。このポンプ//は上述の
ように過剰の薄刃液を送り出す作用を行ない、この送り
出された薄刃液はロック機能付容器/コに入り、重力の
作用で流下してガス発生装置−に戻る。
吸収装置/から出た強力液は、図のように、冷媒蒸気に
よって整流され、前記ガス発生装置に入る前に予熱され
る。この予熱は、前記強力溶液が、分縮器すなわち整流
作用をする熱交換装置13の中で、前記ガス発生装置か
ら送り出される媒体蒸気と熱交換することにより行なわ
れる。強力溶液はさらに熱交換装置lダの中で、ガス発
生装置コかも送り出される薄刃溶液と熱交換する。前記
薄刃溶液はさらに、他の熱交換装置/Sの中で、前記作
動循環路の冷媒との熱交換により冷却される。
ガス発生袋eコに対する熱の供給は、適当な装置によっ
て行ない、この適当な装置はたとえばオイルバーナー又
は電熱装置でも良いが図のようにガス加熱装置が好まし
い。前記ガス発生装置は、ガスが供給されると、十分に
凝縮ボイラとして作用する。そのために前記ガス発生装
置の煙道/6にコ箇の熱交換装置/7.1gが設けられ
る。この第1の熱交換装置/7は第2図に示すように前
記循環路に接続され、前記第コの熱交換装置/gは気化
器7に接続されて給熱作用をする。気化器7は、従来の
気化器と同様、温度の低い外部熱源装置を有し、担熱媒
体は空気、水、その他の適当な流体でよく、この担熱媒
体は前記低温エネルギー源装置の熱交換装置と熱交換装
置/jを経由して気化器りの熱交換装置に送り込まれる
。熱交換装置/り、/ざは煙道/6の中で効率よく熱の
回収ができる寸法にするのが好ましい。
前記ヒートポンプ式加熱装置の循環路は熱交換装置/ 
h、  !; a、 /!r、 /7を有し、この各熱
交換装置はたとえば第2図に示すように弁lデ、Jに接
続され、この弁/9.X)は前記加熱装置の始動時及び
通常作動時に熱交換装置1a、5a、15、/!r、、
taを通る担熱媒体、たとえば水の相対的な流れを制御
するために設けられる。前記通常作動時には弁/?、J
は前記担熱媒体を前記凝縮器の熱交換装置/j、ja。
及び吸収装置の熱交換装置1a、5a、15K平行に流
す作用をし、この平行に流れる担熱媒体は、弁/?によ
って相対的な流れが調節された後、全て熱交換装置/7
を通って流れる。家庭用の温水加熱装置又はセントラル
ヒーティング装置の場合には、前記熱交換装置は温水加
熱装置の熱交換装置又は(及び)セントラルヒーティン
グ装置の放熱器に接続される。
前記ヒートポンプ式加熱装置は、たとえば、前記ガス発
生器に約6簡のエネルギーが供給される場合、最大出力
が33℃でtKwになるように設計される。
前記最大出力及び温度を上げるために、前記ガス発生器
に補助凝縮装置とを設けるように改良し、この補助凝縮
装置コは前記ガス発生装置の冷媒蒸気にさらされるよう
に前記ガス発生装置の近傍に設けられるが、前記ヒート
ポンプ式加熱装置の一部ではない。図に示すように、補
助凝縮装置コは熱交換装置コaを有し、この熱交換装置
8aは前記循環回路に接続することができ、前記ガス発
生装置の液面より上の蒸気の空間に配設される。熱交換
装置#ILを第1図に示すようにハウジング2&の中に
設け、このハウジング2Aを前記ガス発生装置の頂部か
ら突出させて、熱交換装置コaを使用しない時、たとえ
ば引込むタイプのフラップでハウジングコロの下端部を
閉じた時に、補助凝縮装置コを前記ガス発生装置の蒸気
の空間から隔離する構造にしてもよく、或いは前記ガス
発生装置の蒸気に常にさらされる構造にしてもよい。
第2図に示すように、補助凝縮装置コを前記循環路に平
行に接続させ、バイパス管路27及び弁WVを設ゆ、弁
WVを使用して熱交換装置J&と前記循環路との接続を
断続させることができる。
熱交換装置Qtaを前記循環路から切り離す場合には、
それに対応するように補助凝縮装置8を操作し、前記ガ
ス発生装置から熱エネルギーを取り出さないようにする
のが好ましい。
以上説明した加熱装置を、ヒートポンプ式加熱装置とし
ての最大能力以下の状態で使用する場合には、熱交換装
置Sgを前記循環路から切り離す。
ヒートポンプ式加熱装置としての最大能力より大きい熱
が必要な場合に、弁WVを開き、補助凝縮装置Jを作動
させ、これと同時に、循環路に対する要求、すなわち必
要とする温度に応じて、前記ガス発生装置にエネルギー
を供給する。前記ヒートポンプとして使用する加熱装置
は、最初、熱交換装置、2jaの出力を併用するヒート
ポンプ装置として連続作動させる。しかしながら、前記
循環路の担熱媒体の温度が上昇した時、及び前記吸収装
置の熱交換装置及び凝縮装置を流れる媒体が所定の温度
まで上昇した時が切り換え時期であり、この時点で前記
気化器及び凝縮装置は作動を停止し、前記加熱装置の効
率は、以後、従来のボイラ一式加熱装置と同等になる。
熱交換装置11naが前記循環路に接続するようになる
までは、前記加熱装置の作動効率は、この加熱装置の補
助凝縮装置コかない状態での作動効率になる。熱交換装
置Qtaが前記循環路に接続されると、前記加熱装置の
全体としての作動効率は低下する。
第3図に示す加熱装置は第1図及び第2図の加熱装置に
似たものであり、第1図の加熱装置と異る点は、循環路
の各種熱交換装置の接続部33が異ること及びポンプ/
lがポンプ///VC変ったことである。第3図の符号
は第1図及び第2図と同じである。
第3図におけるポンプ/10はポンプ室///を有し、
このポンプ室///に強力溶液が一方向弁//J経出で
供給され、この一方向弁//2から強力溶液が一方向弁
//3を経由し、前記実施例と同様、管路31分縮装置
/3、及び熱交換装置/lIを経由してガス発生装置に
送り込まれる。ポンプ室///はピストン//II、第
1駆動室/13及び第2駆動室//6より成る。前記ポ
ンプの駆動流体は主として薄刃溶液であり、高圧でガス
発生装置から管路ダに沿って吸収装置に流れ、電磁弁8
V10を経て第1及び第2駆動室//6.  //is
に入り、この駆動室//!;。
//6から前記電磁弁10と交互に開く電磁弁lコ、こ
の時に常時開℃・ている弁SV//′jk経由して吸収
装置に流入する。弁SV/、7は常時閉じている。ピス
トン//’Iの戻りの力は、図に示すように、前記ポン
プ室のハウジングに取り付けられて前記ポンプの下流側
の管路ダに常時偏位しているばね//7で与えられるの
で、低圧の液体を吸い込む。前記吸収を行なう段階では
、前記強力溶液の所定の容量は前記薄刃溶液の所定の容
量より多(、両者の差は前記両溶液の冷媒の濃度によっ
て異る。従って、前記吸収装置からガス発生装置に流れ
る溶液の平均流量は、前記ガス発生装置から吸収装置に
流れる流量より多い。前記ポンプ/10のポンプ室の有
効面積は前記ガス発生装置に入る液体の流量とこのガス
発生装置から出る液体の流量とがアンバランスになるよ
うに、すなわちガス発生装置に送り込まれる液量が吸収
装置に戻される液量より少なくなるように決められる。
従って吸収装置中の液面が所定の液面の位置より上昇す
ることがあり、この液面の高さは前記吸収装置のリザー
バ102の中の液面検知器によって検知される。前記液
面の上昇があった時はポンプの第2駆動室//6には液
体が供給されずガス発生装置から蒸気が供給される。そ
のためにガス発生装置の蒸気の空間は管路//?及び電
磁弁SV/Jに接続され、この電磁弁SV/3は第2駆
動室//6に接続される。リザーバ101の液面がプリ
セットされた高さを越えて上昇した時には、電磁弁SV
/Jは電磁弁5V10と共に開閉し、電磁弁Svl/は
電磁弁Sv/コと共に開閉して、前記ポンプが押出し行
程にある時にはガス発生装置から第1駆動室//!IN
K液体が送られ、第2駆動室//6に蒸気が送られ、前
記ポンプが戻り行程にある時に前記液体及び蒸気が共に
吸収装置に送り込まれる。吸収装置内の液面がプリセッ
トされた位置より下がった時には、電磁弁13が再度閉
じた侭となり、電磁弁l/が開いた侭となり、この状態
では前記両駆動室//!、  //l、にガス発生装置
から液体が送り込まれる。
前記第1の実施例におけると同様、気化器7はガス発生
装置の煙道の熱交換装置/S及び低温熱源装置たとえば
外部熱源の熱交換装置/10から熱を受け、すなわち前
記熱交換装置/g、  /10の熱は循環路/1/を通
って前記気化器の中の熱交換装置に供給され、この熱交
換装置を通る担熱媒体はポンプPU2で送られて循環路
/g/の中を循環する。
前記蒸発装置と凝縮装置を、その通常の性能以上に使用
する場合には、付加的に膨張弁?aを電磁弁SVIと共
に膨張弁9と平列に接続し、電磁弁5v61、液面検知
器/2が検知する前記凝縮装置の液面の高さに応じて作
動させる。
この実施例では、熱交換装置1a、5a、15、/j、
jmは前記循環路に直列に接続され、前記第1の実施例
と同様に熱交換装置コに直列に接続され、この熱交換装
置コはバイパス路コクと並列に接続され、電磁弁WVK
よって制御される。熱交換装置1a、5a、15。
/j、jaの間の接続は循環路に対する要求すなわち加
熱装置としての要求性能に応じて決められるもので、こ
の実施例と第1図及び第1図に示す実施例に示す接続は
例示的なものである。
図に示すように、前記循環路は前記担熱媒体を一定の流
速で循環させるためのポンプPU/を含み、このポンプ
PU/は電磁弁Vと共に接続され、電磁弁Vは温水槽、
301.の中の熱交換装置301.のみ、又はこの熱交
換装置3θ6と線図で示すセントラルヒーティング装置
の放熱器307.又はこの放熱器307のみに対する前
記担熱媒体の供給を制御するためのものである。
前記加熱装置用の制御装置400は、前記加熱装置をヒ
ートポンプとして使用するための制御部材を含む。すな
わち、液面計L/、L2が検知する液面の高さに応じて
電磁弁5V10乃至SV/、?、SV6を制御すると共
に、前記温水槽の温度、前記セントラルヒーティングの
放熱器の周囲の空気の温度、前記循環路を流れる担熱媒
体の温度、前記ボイラーの温度、及び前記ガス発生装置
の煙道の温度に応じて前記加熱装置に対する空気及びガ
スの供給を制御することにより、前記加熱装置を制御す
る。
前記各温度は温度検知器STW、STA、To乃至T2
. Tffによって検知され、温度検知器STW。
STA は前記温水槽及び放熱器外囲空気の温度が所定
の温度になったことを検知する。第3図の実施例におけ
る前記制御部材は第1図及び第2図の実施例にも同様に
取り付けることができる。
前記加熱装置の熱的な出力を、この加熱装置のヒートポ
ンプとしての出力より大きくしなければならない時には
、制御装置qooが弁WVを開いて熱交換装置Raを前
記循環路に接続させ、前記ボイラに供給するエネルギー
を漸増させる。すなわち、前記所要の熱的出力に達する
まで、ガスの弁GVを徐々に開き、空気を送る送風機下
の速度を徐々に上げる。第1図及び第2図の加熱装置と
同様、熱的出力を相当大きくしなければならない時には
、前記吸収装置及び凝縮装置の熱交換装置を通る前記循
環路の担熱媒体の温度を、前記吸収装置及び凝縮装置が
停止する温度まで上げる。このようにすれば前記ヒート
ポンプ式加熱装置は従来のボイラー型加熱装置に変わる
。加熱装置を、そのガス発生装置が(jsOpat )
程度の高圧で作動し、蒸発装置の温度がO℃径程度作動
するヒートポンプ方式とする場合は、担熱媒体の熱交換
装置コaを出る時の温度、すなわち温度検知器で2が検
知する温度が約60℃になる。
第3図の加熱装置のガス発生装置を第q図及び第3図に
、より詳細に示す。このガス発生装置は本体二〇〇を有
し、この本体−00は、下部に高温に耐えるライニング
部分コ01を有すると共に断熱部2Q−で取り囲まれる
。前記本体−〇〇は下部にガスバーナーコolIを入れ
る室コ03を有し、この室203に、ガスの弁GVから
ガスが供給されると共に送風機下によって空気が供給さ
れる。バーナー−井で燃焼したガスは熱交換部分203
の中を上昇し、この部分で循環して煙道/6から出る。
この熱交換部分20!にはアレー型の管206. 20
1.、・・・が設けられ、この管20&は下端部が閉じ
られ、上端部が開いていて本体200の液体が入ってい
る空間20りにつながり、この空間20)に管路3から
強力溶液が供給される。前記薄刃溶液は前記ガス発生装
置から管路グに沿って出る。この管路グは前記管状の熱
交換部分205より高い位置にある前記液体の空間20
7に開口する。
前記本体は、下部がほぼ円筒形であり、上部が蒸気室2
0gを有し、この上部は上になる程小さく、蒸気室は容
積が小さい。蒸気は前記蒸気室の上部に接続された管路
6に沿って前記蒸気室から出て除滴部を通る。この整流
部には従来と同様に精溜皿209が設けられる。前記除
滴型熱交換装置/3は前記蒸気室の上端部に設けられ、
熱交換装置aaを有する補助凝縮装置Jは前記ガス発生
装置の液面より高く、前記精溜皿209より低い位置に
設けられる。第S図に示すように、熱交換装置、26a
はパイプ型であり、このパイプの長さは補助凝縮装置コ
の最大熱出力によって決まる。図のように、前記ガス発
生装置の高さを最小にするために、熱交換装置コat−
平らな波形のコイルにする。この熱交換装置コaは前記
ガス発生装置の蒸気室の中で上に延びる複数のコイルに
することもできる。
以上説明した実施例では、ヒートポンプ式加熱装置は冷
媒としてアンモニアを、また吸収剤として水を用いて作
動するが、本発明は他の冷媒及び吸収剤も同様に使用で
きるものである。
〔効果〕
本発明が提供する加熱装置はヒートポンプ装置を有し、
最も効率よく作動する時間の大部分の時間、ヒートポン
プ式加熱装置として作動することができる。しかしなが
ら、この加熱装置の熱出力をプリ□セットした値より大
きくしなければならない時にはこの加熱装置の熱出力を
補足的に増大させることができ、この熱出力の補足的増
大をする場合には、この加熱装置の作動範囲の上部部分
についてのみ上記ヒートポンプ装置の作動を停止させて
従来のボイラー型加熱装置として作動させることができ
る。
【図面の簡単な説明】
第1図は本発明に基く吸熱ポンプ装置及び加熱装置の作
動回路の一部分の系統図、第1図は第1図の作動回路の
部分系統図、第3図は本発明に基く他の加熱装置の系統
図、第4図は第3図の加熱装置の気化器の断面図、第3
図は第7図の気化器の線V−Vに沿う断面図である。

Claims (1)

  1. 【特許請求の範囲】 1、吸収型ヒートポンプ装置及びこれを作動させるため
    の担熱媒体の循環路を有し、前記ヒートポンプ装置はガ
    ス発生装置(2)と、吸収装置(1)と、凝縮装置(5
    )及び蒸発装置(7)と、担熱媒体を循環させるための
    循環路とを有し、前記循環路に前記ヒートポンプ装置か
    ら熱エネルギーを放出させるための熱交換装置(1a、
    5a、15、17)が設けられた加熱装置において、前
    記ガス発生装置(2)は補助凝縮装置(25)と共働し
    、この補助凝縮装置は前記ヒートポンプ装置から分離さ
    れて前記ガス発生装置(2)の位置にあり、前記ガス発
    生装置で作られる蒸気にさらされ、前記循環路に接続さ
    れた補助熱交換装置(25a)を有し、制御装置(40
    0)は前記補助熱交換装置の前記循環路に対する接続を
    制御するように設けられることを特徴とする加熱装置。 2、前記ガス発生装置は液体の担熱媒体を入れて加熱す
    る液体室と、この液体室の上に設けられた蒸気室(20
    8)とを有し、前記蒸気室は精溜部(209)を含み、
    前記補助熱交換装置(25a)は前記蒸気室(208)
    より高く前記精溜部より低い位置に設けられることを特
    徴とする特許請求の範囲第1項の加熱装置。 3、前記循環路は第1熱交換装置及び第2熱交換装置(
    1a、5a)を有し、この第1及び第2熱交換装置(1
    a、5a)は前記吸収装置(1)及び凝縮装置(5)と
    共働してこの吸収装置及び凝縮装置から熱エネルギーを
    とり出し、前記補助熱交換装置(25a)は前記第1及
    び第2熱交換装置(1a、5a)と直列に接続されるこ
    とを特徴とする特許請求の範囲第1項又は第2項の加熱
    装置。 4、前記補助熱交換装置(25a)はバイパス管路(2
    7)と並列に前記循環路に接続され、前記制御装置(4
    00)は前記バイパス管路(27)又は前記補助熱交換
    装置(25a)を通る担熱媒体の流れを制御する弁(W
    V)を含むことを特徴とする特許請求の範囲第1項乃至
    第3項の何れかの加熱装置。 5、前記制御装置(400)は前記補助熱交換装置(2
    5a)を前記循環路に接続させて前記制御装置(400
    )の作動時に前記ガス発生装置(2)に供給するエネル
    ギーを増加させるように前記ガス発生装置へのエネルギ
    ーの供給を制御する装置を含むことを特徴とする特許請
    求の範囲第1項乃至第4項の何れかの加熱装置。
JP61026654A 1985-02-08 1986-02-08 加熱装置 Expired - Lifetime JPH0621732B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8503287 1985-02-08
GB858503287A GB8503287D0 (en) 1985-02-08 1985-02-08 Heat pump systems

Publications (2)

Publication Number Publication Date
JPS61186767A true JPS61186767A (ja) 1986-08-20
JPH0621732B2 JPH0621732B2 (ja) 1994-03-23

Family

ID=10574167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026654A Expired - Lifetime JPH0621732B2 (ja) 1985-02-08 1986-02-08 加熱装置

Country Status (7)

Country Link
US (1) US4665711A (ja)
EP (1) EP0192369B1 (ja)
JP (1) JPH0621732B2 (ja)
CA (1) CA1257777A (ja)
DE (1) DE3686731T2 (ja)
GB (1) GB8503287D0 (ja)
IE (1) IE59045B1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367884B1 (en) * 1991-03-12 1996-12-31 Phillips Eng Co Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US5271235A (en) * 1991-03-12 1993-12-21 Phillips Engineering Company High efficiency absorption cycle of the gax type
US5570584A (en) * 1991-11-18 1996-11-05 Phillips Engineering Co. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor
US5579652A (en) * 1993-06-15 1996-12-03 Phillips Engineering Co. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US5490393A (en) * 1994-03-31 1996-02-13 Robur Corporation Generator absorber heat exchanger for an ammonia/water absorption refrigeration system
US5456086A (en) * 1994-09-08 1995-10-10 Gas Research Institute Valving arrangement and solution flow control for generator absorber heat exchanger (GAX) heat pump
US5782097A (en) * 1994-11-23 1998-07-21 Phillips Engineering Co. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JP3448201B2 (ja) * 1998-01-28 2003-09-22 三菱重工業株式会社 排水の蒸発濃縮装置
US6237357B1 (en) * 1999-06-07 2001-05-29 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner using heat pump
WO2005065504A1 (ja) * 2004-01-09 2005-07-21 Ono Kougei Kabushiki Kaisha 加熱用プレート及び加熱用プレートの製造方法
DE102005050211B4 (de) * 2005-10-20 2007-10-18 Robert Bosch Gmbh Absorptions- oder Diffusionsabsorptionswärmepumpe
WO2009134271A1 (en) * 2008-05-02 2009-11-05 Utc Power Corporation Combined geothermal and solar thermal organic rankine cycle system
US10363497B2 (en) * 2016-02-18 2019-07-30 Rasirc, Inc. Devices, systems, and methods for controlled delivery of process gases
DE102018217935B4 (de) * 2018-10-19 2021-04-22 Zae Bayern Bay. Zentrum Für Angewandte Energieforschung E.V. Wärmetauscher mit Sorptionseinrichtung
DE102020205166B3 (de) 2020-04-23 2021-05-06 Bayerisches Zentrum für Angewandte Energieforschung e.V. Wärmetauschvorrichtung mit Sorptionseinrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254507A (en) * 1965-05-12 1966-06-07 Whirlpool Co Generator for absorption refrigeration system
FR2412798A1 (fr) * 1977-08-10 1979-07-20 Vaillant Sa Thermopompe a sorption
DE3012061A1 (de) * 1980-03-28 1981-10-08 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum betreiben einer absorptions-heizanlage
DE3031033A1 (de) * 1980-08-16 1982-05-06 Buderus Ag, 6330 Wetzlar Verfahren und vorrichtung zum betreiben einer monovalent alternativen adsorptionsheizanlage
DE3113417A1 (de) * 1980-10-29 1982-09-02 Ruhrgas Ag, 4300 Essen Heizungsanlage mit einer absorptionswaermepumpe und verfahren zu deren betrieb
AT369888B (de) * 1980-12-10 1983-02-10 Shell Austria Anlage zur durchfuehrung eines waermepumpenprozesses fuer heizzwecke
FR2509443A1 (fr) * 1981-07-11 1983-01-14 Volkswagenwerk Ag Montage avec pompe a chaleur a fonctionnement bivalent en parallele comprenant un bruleur qui produit des fumees
DE3145722C1 (de) * 1981-11-19 1983-04-14 Buderus Ag, 6330 Wetzlar Heizungsanlage
US4548048A (en) * 1984-11-13 1985-10-22 The United States Of America As Represented By The United States Department Of Energy Direct fired absorption machine flue gas recuperator

Also Published As

Publication number Publication date
US4665711A (en) 1987-05-19
EP0192369B1 (en) 1992-09-16
CA1257777A (en) 1989-07-25
IE59045B1 (en) 1993-12-15
EP0192369A3 (en) 1987-10-14
DE3686731T2 (de) 1993-03-11
JPH0621732B2 (ja) 1994-03-23
GB8503287D0 (en) 1985-03-13
IE860324L (en) 1986-08-08
DE3686731D1 (de) 1992-10-22
EP0192369A2 (en) 1986-08-27

Similar Documents

Publication Publication Date Title
FI56438C (fi) Foerfarande och anordning foer vaermning av fluider i olika kretsar
US4007776A (en) Heating and cooling system utilizing solar energy
EP0702773B1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US4552208A (en) Heat actuated system for circulating heat transfer fluids
US5067330A (en) Heat transfer apparatus for heat pumps
JPS61186767A (ja) 加熱装置
US4972679A (en) Absorption refrigeration and heat pump system with defrost
GB2024388A (en) Heat activated absorption heat pump apparatus and method of absorption heating
US4246762A (en) Absorption refrigeration system
JPS5925130B2 (ja) 熱回収方法および装置
EP0168169B1 (en) Twin reservoir heat transfer circuit
US4665709A (en) Steam powered heating/cooling systems
JP2000509479A (ja) 発生器―吸収器―熱交換熱移動装置及び方法並びにヒートポンプにおけるその利用
US4407129A (en) Closed loop solar collecting system operating a thermoelectric generator system
US5077986A (en) Energy recovery system for absorption heat pumps
JP3381094B2 (ja) 吸収式冷暖給湯装置
JPH0445363A (ja) 吸収式冷暖給湯機
KR200308333Y1 (ko) 냉동사이클을 이용한 저온수의 가열장치
JP3735745B2 (ja) 吸収式冷暖房装置の冷房運転制御方法
JPH0413618B2 (ja)
JP3559919B2 (ja) 吸収式冷温熱発生装置
JPH0835735A (ja) 吸収式冷凍機
KR840000451B1 (ko) 흡수 냉각장치
JPH0147714B2 (ja)
JPH11257784A (ja) 吸収式冷熱発生装置