JPS61176122A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS61176122A JPS61176122A JP1693685A JP1693685A JPS61176122A JP S61176122 A JPS61176122 A JP S61176122A JP 1693685 A JP1693685 A JP 1693685A JP 1693685 A JP1693685 A JP 1693685A JP S61176122 A JPS61176122 A JP S61176122A
- Authority
- JP
- Japan
- Prior art keywords
- mixed crystal
- compound mixed
- layer
- indium
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000013078 crystal Substances 0.000 claims description 33
- 238000005530 etching Methods 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 229910001868 water Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- -1 indium-phosphorus compound Chemical class 0.000 claims description 5
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000000098 azimuthal photoelectron diffraction Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Weting (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法、特にインジウム燐化合
物(InP)単結晶の(111}A面上にエピタキシャ
ル成長したm−v族化合物混晶層の少な(とも一部を、
結晶方向に依存せず、InP単結晶に対して選択的に除
去する製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, particularly a method for manufacturing an m-v group compound mixed crystal layer epitaxially grown on the (111}A plane of an indium phosphorus compound (InP) single crystal. A small portion of
The present invention relates to a manufacturing method that selectively removes InP single crystals without depending on the crystal direction.
例えば光通信用の半導体受光装置として、インジウム燐
(InP)/インジウムガリウム砒素(InGaAs)
もしくはインジウムガリウム砒素t8(InGaAsP
)系アバランシホトダイオード(八PD)が開発されて
いる。For example, indium phosphide (InP)/indium gallium arsenide (InGaAs) is used as a semiconductor light receiving device for optical communication.
Or indium gallium arsenide t8 (InGaAsP
) type avalanche photodiode (8PD) has been developed.
このAPDを製造するに際し1nP基板面としてエピタ
キシャル成長に適する(111}A面が多く用いられる
が、この面上の■−■族化合物半導体エピタキシャル成
長層を選択的にエツチングして、整った表面で円形等に
パターニングするプロセスが未だ解決されていない。When manufacturing this APD, the (111}A plane is often used as a 1nP substrate surface suitable for epitaxial growth, but the ■-■ group compound semiconductor epitaxial growth layer on this surface is selectively etched to create a uniform surface with a circular shape etc. The process of patterning is still unsolved.
InP単結晶の(111}A面上にエピタキシャル成長
させたm−v族化合物混晶を加工する化学エツチング液
として、従来例えば下記の構成が知られている。As a chemical etching solution for processing an m-v group compound mixed crystal epitaxially grown on the (111}A plane of an InP single crystal, the following configuration, for example, is conventionally known.
+8)塩酸(HCI):酢酸(CHsCOOH) :過
酸化水素水(IhOz)=t:t:t 、1:2:1な
ど。+8) Hydrochloric acid (HCI):acetic acid (CHsCOOH):hydrogen peroxide (IhOz)=t:t:t, 1:2:1, etc.
(b)硫酸(H2SOa):過酸化水素水(H20□)
:水(HzO)=1:1:1.1:2:lなど。(b) Sulfuric acid (H2SOa): hydrogen peroxide solution (H20□)
: Water (HzO) = 1:1:1.1:2:l, etc.
(C1燐酸(t13Po、) ?塩酸(HCI) =1
:1など。(C1 phosphoric acid (t13Po,) ? hydrochloric acid (HCI) = 1
:1 etc.
(d)臭素(Brt):メタノール(CI+OH)
= 1:50など。(d) Bromine (Brt): methanol (CI+OH)
= 1:50 etc.
しかしながらこれらの従来知られているエツチング液で
は、エツチング面にエッチピットなどを生じて滑らかと
ならず、かつエツチング速度が結晶の方向により変化し
、例えば第5図に示す如くInP単結晶1の(111}
A面上に、厚さ約1−のアルミニウムインジウム砒素(
AIInAs)層2と、厚さ約2−のインジウムガリウ
ム砒素(InGaAs)層3とをエピタキシャル成長し
、窒化シリコン(Si3N*)の円形のマスク4を設け
て、前記組成(alのエツチング液を用いれば、得られ
るエピタキシャル成長層の平面形状は円形から大幅に変
化する。However, with these conventionally known etching solutions, etch pits are generated on the etched surface and the etching rate is not smooth, and the etching rate changes depending on the direction of the crystal. For example, as shown in FIG. 111}
On side A, aluminum indium arsenide (
By epitaxially growing an indium gallium arsenide (InGaAs) layer 2 and an indium gallium arsenide (InGaAs) layer 3 with a thickness of approximately 2 -, a circular mask 4 of silicon nitride (Si3N*) is provided, and an etching solution having the composition (Al) is used. , the planar shape of the resulting epitaxially grown layer changes significantly from a circular shape.
またエツチングによって形成されるメサ構造の側面が同
図の如く傾斜するために、例えばエピタキシャル成長層
の厚さの変動に伴ってヘテロ接合界面の形状、寸法が変
動し、これを制御することは困難である。Furthermore, since the side surfaces of the mesa structure formed by etching are sloped as shown in the figure, the shape and dimensions of the heterojunction interface vary as the thickness of the epitaxial growth layer changes, making it difficult to control this. be.
例えばAPD等の半導体装置において、InP単結晶の
(111}A面上にエピタキシャル成長した■−v族化
合物混晶層を、再現性良くパターニングし、かつ滑らか
なエツチング面を得ることが必要であるが、上述の如〈
従来の化学エツチング方法ではこれが実現されず、エツ
チング方法の改善が要望されている。For example, in semiconductor devices such as APDs, it is necessary to pattern a ■-v group compound mixed crystal layer epitaxially grown on the (111}A plane of an InP single crystal with good reproducibility and to obtain a smooth etched surface. , as mentioned above
This cannot be achieved using conventional chemical etching methods, and improvements in etching methods are desired.
前記問題点は、インジウム・燐化合物単結晶°の(11
1}A面上の■−■族化合物混晶エピタキシャル成長層
の少なくとも一部を、該インジウム・燐化合物単結晶に
対して選択的に除去するに際し、臭素と臭化水素と水と
を含む溶液をエツチング液とする本発明による半導体装
置の製造方法により解決される。The above problem is caused by the (11
1} When selectively removing at least a part of the ■-■ group compound mixed crystal epitaxial growth layer on the A-plane with respect to the indium/phosphorus compound single crystal, a solution containing bromine, hydrogen bromide, and water is used. This problem is solved by the method of manufacturing a semiconductor device according to the present invention using an etching solution.
本発明においては、InP単結晶の(111}A面〔(
111}A面と同価な面の一組を表す〕上のm−v族化
合物混晶エピタキシャル成長層をパターニングするエツ
チング液として、臭素(Brg)と臭化水素(HBr)
と水(HzO)とを含む溶液を用いる。In the present invention, the (111}A plane [(
Bromine (Brg) and hydrogen bromide (HBr) were used as an etching solution for patterning the m-v group compound mixed crystal epitaxial growth layer on [111} representing a set of planes equivalent to the A-plane].
A solution containing water (HzO) and water (HzO) is used.
このエツチング液を用いることにより、この■−V族化
合物混晶層はInP単結晶の(111}A面上における
方向に依存せずマスクパターンと相似形に、かつこの面
に垂直にパターニングされ、エツチング面はエッチピッ
ト等のない滑らかな面となる。By using this etching solution, this ■-V group compound mixed crystal layer is patterned in a similar shape to the mask pattern and perpendicular to this plane, independent of the direction on the (111}A plane of the InP single crystal, The etched surface will be smooth without any etch pits.
以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.
第1図(a)は本発明の第1の実施例を示す平面図、同
図(b)はその断面図である。FIG. 1(a) is a plan view showing a first embodiment of the present invention, and FIG. 1(b) is a sectional view thereof.
本実施例は、InP単結晶1の(111}A面上に液相
エピタキシャル成長方法により、厚さ約1irrnのA
to、 4sIno、 5tAs層2と、厚さ約2−の
Ino、 53ca@、 4?As層3とを順次成長し
た半導体基体について、エピタキシャル成長層2.3を
円形メサ構造にパターニングしている。In this example, an A layer with a thickness of about 1irrn was grown on the (111}A plane of an InP single crystal 1 by a liquid phase epitaxial growth method.
to, 4s Ino, 5tAs layer 2 and Ino of about 2-thickness, 53ca@, 4? The epitaxially grown layer 2.3 is patterned into a circular mesa structure on the semiconductor substrate on which the As layer 3 and the As layer 3 are successively grown.
すなわち、InGaAs層3上に例えばプラズマ化学気
相成長方法(CVO法)により厚さ0.21rm程度の
S t、3N4膜を設け、ホトリソグラフィ法により直
径140−の円形のマスク4を形成する。That is, a St, 3N4 film having a thickness of about 0.21 rm is provided on the InGaAs layer 3 by, for example, plasma chemical vapor deposition (CVO), and a circular mask 4 with a diameter of 140 mm is formed by photolithography.
この状態で臭素(Brz)と臭酸(47χHBr)と水
(H2O)の容積比1:17:34の混合液中で、液を
攪拌しながら約1,0秒間のエツチングを行った後、水
洗を行う。In this state, etching was performed for about 1.0 seconds in a mixed solution of bromine (Brz), hydrochloric acid (47χHBr), and water (H2O) in a volume ratio of 1:17:34, followed by water washing. I do.
このエツチング処理によって得られた試料において、サ
イドエツチング量は方向に関係なく一定で約10−であ
り、また襞間して得られる断面は図(b)に示す形状で
、エピタキシャル成長層2.3のエツチング面はInP
単結晶1の(111}A面に垂直となっている。従って
エピタキシャル成長層2.3は直円柱状に成形されてい
る。In the sample obtained by this etching process, the amount of side etching is constant regardless of the direction and is about 10 -, and the cross section obtained between the folds has the shape shown in Figure (b), and the side etching amount is constant regardless of the direction. Etched surface is InP
It is perpendicular to the (111}A plane of the single crystal 1. Therefore, the epitaxial growth layer 2.3 is formed into a right circular column shape.
またこのエツチング処理によって表出したInP単結晶
1の(111}A面にはエッチピット等は認められず、
鏡面が保たれている。Furthermore, no etch pits were observed on the (111}A plane of the InP single crystal 1 exposed by this etching process.
The mirror surface is maintained.
次に第2図fa)は本発明の第2の実施例を示す平面図
、同図(b)はその断面図である。Next, FIG. 2fa) is a plan view showing a second embodiment of the present invention, and FIG. 2(b) is a sectional view thereof.
本実施例は、InP単結晶1の(111}A面上にAl
GaInAs層2aとAlInAs層3aとを順次成長
した半導体基体について、エピタキシャル成長層2.3
を図示する形状のメサ構造にパターニングしている。In this example, Al is placed on the (111}A plane of InP single crystal 1.
For a semiconductor substrate in which a GaInAs layer 2a and an AlInAs layer 3a are sequentially grown, an epitaxially grown layer 2.3
is patterned into a mesa structure with the shape shown in the figure.
本実施例のマスク4aの材料及び厚さ、エツチング液の
組°成、エツチング時間等は前記第1の実施例と同様で
ある。The material and thickness of the mask 4a, the composition of the etching solution, the etching time, etc. of this embodiment are the same as those of the first embodiment.
本実施例についても1、サイドエツチング量は方向に関
係なく一定で約10Jrmであり、またエピタキシャル
成長層2a、 3aのエツチング面はInP単結晶1の
(111}A面に垂直となっている。従ってエピタキシ
ャル成長層2a、3aはマスク4aに相似形の直立柱状
に成形されている。In this example as well, 1. The amount of side etching is constant regardless of the direction and is about 10 Jrm, and the etched planes of the epitaxial growth layers 2a and 3a are perpendicular to the (111}A plane of the InP single crystal 1. Therefore, The epitaxial growth layers 2a and 3a are formed into an upright column shape similar to the mask 4a.
また第3図(al及び第4図(a)は本発明の第3の実
施例を示す平面図、各図(b)はそれぞれの断面図であ
り、第1図と同一符号により相当する部分を示す。Further, FIG. 3 (al) and FIG. 4 (a) are plan views showing the third embodiment of the present invention, and each figure (b) is a sectional view of each, and corresponding parts are denoted by the same reference numerals as in FIG. 1. shows.
本実施例の半導体基体及びマスク4は前記第1の実施例
と同様であるが、エツチング液の組成を容積比で、Br
z:47χHBr:HzO= 1:8:34とし、エツ
チング時間が約50秒間の場合を第3図、約80秒間の
場合を第4図に示す。The semiconductor substrate and mask 4 of this embodiment are similar to those of the first embodiment, but the composition of the etching solution is changed by volume to Br.
FIG. 3 shows the case where z:47χHBr:HzO=1:8:34 and the etching time is about 50 seconds, and FIG. 4 shows the case where the etching time is about 80 seconds.
エツチング液のこの組成で、エツチング時間が約50秒
間の場合にはエピタキシャル成長層のエツチング面が傾
斜しているが、約80秒間の場合にはエピタキシャル成
長層のエツチング面はInP単結晶1の(111}A面
に垂直となっている。With this composition of the etching solution, when the etching time is about 50 seconds, the etched plane of the epitaxially grown layer is inclined, but when the etching time is about 80 seconds, the etched plane of the epitaxially grown layer is tilted (111} of InP single crystal 1. It is perpendicular to plane A.
このようにエツチング液の組成及びエツチング時間を選
択することにより、エツチングされた半導体層の断面形
状を制御することも可能である。By selecting the composition of the etching solution and the etching time in this way, it is also possible to control the cross-sectional shape of the etched semiconductor layer.
なお上記の実施例はメサ構造の形成を対象としているが
、本発明の製造方法はメサ構造に限定されるものではな
く、半導体装置の製造に際して一般的に適用することが
できる。Although the above embodiments are directed to the formation of a mesa structure, the manufacturing method of the present invention is not limited to the mesa structure, and can be generally applied to the manufacturing of semiconductor devices.
以上説明した如く本発明によれば、InP単結晶の(1
11}A面上の■−■族化合物混晶エピタキシャル成長
層を、その面上における方向に依存せずマスクパターン
と相似形に、かつこの面に垂直にパターニングし、かつ
エッチビット等のない滑らかなエツチング面を得ること
ができる。As explained above, according to the present invention, (1
11} The ■-■ group compound mixed crystal epitaxial growth layer on the A-plane is patterned in a similar shape to the mask pattern and perpendicular to this plane, regardless of the direction on that plane, and is smooth without etch bits etc. An etched surface can be obtained.
なお必要ならば断面を傾斜させることも可能であり、従
来困難とされた複雑で微細な構造を実現することが容易
となり、半導体装置の進歩に大きい効果が得られる。Note that if necessary, the cross section can be tilted, making it easier to realize a complex and fine structure that has been difficult in the past, which has a great effect on the advancement of semiconductor devices.
第1図乃至第4図は本発明の実施例を示し、各図(a)
はその平面図、各図(b)はその断面図であり、第5図
(al、(blは従来例の平面図及び断面図を示す。
図において、
1は(111}A面を上面とするInP単結晶、2はA
lInAs層、 2aはAlGalnAs層、
3はInGaAs層、 3aはAllnAs層
、4及び4aはマスクを示す。
凛1 図
兇、2図
第3 図 第4図
第5図1 to 4 show embodiments of the present invention, each figure (a)
is a plan view thereof, each figure (b) is a sectional view thereof, and Fig. 5 (al, (bl) shows a plan view and a sectional view of the conventional example. InP single crystal, 2 is A
1InAs layer, 2a is AlGalnAs layer,
3 is an InGaAs layer, 3a is an AllnAs layer, and 4 and 4a are masks. Rin 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
III−V族化合物混晶エピタキシャル成長層の少なくと
も一部を、該インジウム・燐化合物単結晶に対して選択
的に除去するに際し、臭素と臭化水素と水とを含む溶液
をエッチング液とすることを特徴とする半導体装置の製
造方法。 2、前記III−V族化合物混晶層に、アルミニウム・イ
ンジウム・砒素化合物混晶が含まれてなることを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
。 3、前記III−V族化合物混晶層に、アルミニウム・ガ
リウム・インジウム・砒素化合物混晶が含まれてなるこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
の製造方法。 4、前記III−V族化合物混晶層に、インジウム・ガリ
ウム・砒素化合物混晶が含まれてなることを特徴とする
特許請求の範囲第1項記載の半導体装置の製造方法。 5、前記III−V族化合物混晶層に、インジウム・ガリ
ウム・砒素・燐化合物混晶が含まれてなることを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
。[Claims] 1. On the {111}A plane of an indium-phosphorus compound single crystal
When selectively removing at least a portion of the III-V group compound mixed crystal epitaxial growth layer with respect to the indium-phosphorus compound single crystal, a solution containing bromine, hydrogen bromide, and water may be used as an etching solution. A method for manufacturing a featured semiconductor device. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the III-V group compound mixed crystal layer contains an aluminum-indium-arsenic compound mixed crystal. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the III-V group compound mixed crystal layer contains an aluminum-gallium-indium-arsenic compound mixed crystal. 4. The method of manufacturing a semiconductor device according to claim 1, wherein the III-V group compound mixed crystal layer contains an indium-gallium-arsenic compound mixed crystal. 5. The method of manufacturing a semiconductor device according to claim 1, wherein the III-V group compound mixed crystal layer contains an indium-gallium-arsenic-phosphorus compound mixed crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1693685A JPS61176122A (en) | 1985-01-31 | 1985-01-31 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1693685A JPS61176122A (en) | 1985-01-31 | 1985-01-31 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61176122A true JPS61176122A (en) | 1986-08-07 |
Family
ID=11930005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1693685A Pending JPS61176122A (en) | 1985-01-31 | 1985-01-31 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61176122A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647526A (en) * | 1987-06-30 | 1989-01-11 | Toshiba Corp | Manufacture of semiconductor element |
US4909863A (en) * | 1988-07-13 | 1990-03-20 | University Of Delaware | Process for levelling film surfaces and products thereof |
JPH08316219A (en) * | 1995-05-19 | 1996-11-29 | Nec Corp | Manufacture of semiconductor device |
-
1985
- 1985-01-31 JP JP1693685A patent/JPS61176122A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647526A (en) * | 1987-06-30 | 1989-01-11 | Toshiba Corp | Manufacture of semiconductor element |
US4909863A (en) * | 1988-07-13 | 1990-03-20 | University Of Delaware | Process for levelling film surfaces and products thereof |
JPH08316219A (en) * | 1995-05-19 | 1996-11-29 | Nec Corp | Manufacture of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950000522B1 (en) | Photo electro integrated device and manufacturing method thereof | |
JPH0221651B2 (en) | ||
JPH0621575A (en) | Manufacture of semiconductor device of buried heterostructure | |
US4496403A (en) | Method of making a compound semiconductor laser | |
JP2958084B2 (en) | Method for manufacturing mesa-type semiconductor substrate | |
CA2026289A1 (en) | Method of manufacturing semiconductor laser | |
US4980314A (en) | Vapor processing of a substrate | |
JPS61176122A (en) | Manufacture of semiconductor device | |
JP3047049B2 (en) | Method of manufacturing buried semiconductor laser | |
JP3038424B2 (en) | Embedded semiconductor laser and method of manufacturing the same | |
US4847217A (en) | Method for making a semiconductor device | |
JP3517641B2 (en) | Method for manufacturing semiconductor device | |
JPH063541A (en) | Waveguide type grating and its production | |
JP2710248B2 (en) | Manufacturing method of semiconductor laser | |
JPH0194690A (en) | Manufacture of buried type semiconductor laser device | |
JPS63209189A (en) | Production of semiconductor laser | |
JP2663870B2 (en) | Method of manufacturing semiconductor laser device | |
JPH0362582A (en) | Manufacturing method of semiconductor device | |
JPS5875878A (en) | Manufacture of photointegrated circuit | |
JPH0213926B2 (en) | ||
KR970007118B1 (en) | Method for forming mesa type of laser diode | |
JPH01248526A (en) | Method of forming semiconductor elements | |
JPS6343325A (en) | Manufacture of semiconductor device | |
JPS5848424A (en) | Etching method of inp semiconductor crystal | |
CA1181669A (en) | Method of preferentially etching optically flat mirror facets in ingaasp/inp heterostructures |