[go: up one dir, main page]

JPS6116502B2 - - Google Patents

Info

Publication number
JPS6116502B2
JPS6116502B2 JP1489878A JP1489878A JPS6116502B2 JP S6116502 B2 JPS6116502 B2 JP S6116502B2 JP 1489878 A JP1489878 A JP 1489878A JP 1489878 A JP1489878 A JP 1489878A JP S6116502 B2 JPS6116502 B2 JP S6116502B2
Authority
JP
Japan
Prior art keywords
plasma
gas
reaction chamber
plasma generation
generation tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1489878A
Other languages
Japanese (ja)
Other versions
JPS54107876A (en
Inventor
Tsuneo Muranaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1489878A priority Critical patent/JPS54107876A/en
Publication of JPS54107876A publication Critical patent/JPS54107876A/en
Publication of JPS6116502B2 publication Critical patent/JPS6116502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は物品の還元方法及びこの方法の実施に
使用する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing an article and to an apparatus used to carry out the method.

真空放電によるプラズマを利用して得た活性化
ガスを被処理物に照射して各種の表面処理を行な
う試みはすでに知られている。これはプラズマ領
域から遠くはなれて設けられた反応室内に導いた
活性化ガスを例えば半導体基板にあててエツチン
グ等の表面処理をおこなうもので、被処理物であ
る基板にはほぼ室温程度の低温のガスが吹きつけ
られる点できわめて有用性のあるものである。
2. Description of the Related Art Attempts to perform various surface treatments by irradiating an object to be treated with an activated gas obtained using plasma generated by vacuum discharge are already known. In this method, activated gas introduced into a reaction chamber located far away from the plasma region is applied to, for example, a semiconductor substrate to perform surface treatments such as etching. It is extremely useful in that it sprays gas.

本発明は以上のような活性化ガスによる処理か
ら発想を転換し、被還元処理物を高温で還元し酸
化を防式しうる還元方法及びこの方法の実施に使
用する処理装置を提供するものである。即ちその
特徴とするところは被処理物にマイクロ波で励起
されたプラズマを直接あて、これによつて高温と
なし、しかるのち直ちに不活性ガス雰囲気のもと
で冷却する点にある。
The present invention changes the concept from the treatment using activated gas as described above, and provides a reduction method capable of reducing the object to be reduced at high temperature and preventing oxidation, and a processing apparatus used to carry out this method. be. That is, the feature is that the workpiece is directly exposed to plasma excited by microwaves, thereby raising the temperature to a high temperature, and then immediately cooled under an inert gas atmosphere.

以下第1図によりその実施例を説明する。排気
装置110が接続され被処理物106を所定位置
に収容するようにし反応室105a、石英のよう
な誘電体製のプラズマ発生管105、ガス流量調
節弁103,104、水素ガス源101、不活性
ガス源102が連通して設けられている。これに
よつて水素ガスを反応室105a、プラズマ発生
管105に所定真空度(10-2〜10Torr範囲)を
保持するようにして供給する。この場合、フタ1
07及びパツキン116で反応室105a、プラ
ズマ発生管105の気密を保持することはいうま
でもない。なお被処理物106はプラズマ発生部
105bから20cm以下に近接して配置し、これに
よつてマイクロ波で励起されたプラズマ領域に直
接被処理物106をさらすようにしていることが
特徴である。プラズマ発生管105は矩形導波管
からなるマイクロ波空胴114を貫通しておりマ
イクロ波発振器111にて発生したマイクロ波電
力が供給される。整合器112及び摺動短絡板1
14aはマイクロ波電力を効率良くプラズマ発生
管105内に導入されたガスに吸収させるための
もので、パワーモニタ113の指示計113aで
マイクロ波電力の吸収度合を見ながら最適状態に
調整される。活性化された反応ガスは排気装置1
10により吸引されその途中で被処理物106に
当り還元処理がなされる。そして水素プラズマに
よる還元終了後、流量調節弁103を閉じ、不活
性ガス例えば窒素ガス、ヘリウム、アルゴンなど
を供給源102からバルブ104を開いて反応器
105内に導入し被処理物106を直ちに冷却す
るようになつている。なお反応室105aのまわ
りにはマイクロ波シールド部材115が設けられ
ている。
The embodiment will be explained below with reference to FIG. An exhaust system 110 is connected to accommodate the object to be processed 106 at a predetermined position, and a reaction chamber 105a, a plasma generation tube 105 made of a dielectric material such as quartz, gas flow rate control valves 103 and 104, a hydrogen gas source 101, and an inert A gas source 102 is provided in communication. As a result, hydrogen gas is supplied to the reaction chamber 105a and the plasma generation tube 105 so as to maintain a predetermined degree of vacuum (in the range of 10 -2 to 10 Torr). In this case, lid 1
Needless to say, the reaction chamber 105a and the plasma generating tube 105 are kept airtight by the gasket 07 and the gasket 116. The object to be processed 106 is arranged close to the plasma generating section 105b at a distance of 20 cm or less, thereby directly exposing the object to be processed 106 to a plasma region excited by microwaves. The plasma generation tube 105 passes through a microwave cavity 114 made of a rectangular waveguide, and is supplied with microwave power generated by a microwave oscillator 111. Matching device 112 and sliding short circuit plate 1
14a is for efficiently absorbing the microwave power into the gas introduced into the plasma generating tube 105, and is adjusted to the optimum state while checking the degree of absorption of the microwave power with the indicator 113a of the power monitor 113. The activated reaction gas is discharged from the exhaust device 1.
10, and during the suction, it hits the object to be treated 106 and undergoes a reduction process. After the reduction by hydrogen plasma is completed, the flow control valve 103 is closed, and an inert gas such as nitrogen gas, helium, argon, etc. is introduced from the supply source 102 into the reactor 105 by opening the valve 104 to immediately cool the object 106. I'm starting to do that. Note that a microwave shield member 115 is provided around the reaction chamber 105a.

以上のような装置を使用して被処理物106を
処理するには、被処理物106を反応室105a
内に載置し、パツキン116、フタ105aなど
を10-2〜10-1Torrに減圧する。そして還元ガスで
ある水素ガスを水素ガス源101からプラズマ発
生管105に送り込み流量調節弁103によりプ
ラズマ発生管105内が10〜10-1Torrになるよ
うに調節する。バルブ104は閉じて不活性ガス
混入しないようにする。その後マイクロ波発振器
111を動作しマイクロ波電力を発生させマイク
ロ波空胴114内に伝送しプラズマ発生管105
に照射し水素ガスを励起する。当然ながら摺動短
絡板114、整合器112により反射電力が最少
になるようにパワーモニタ113の指示計113
aを見ながら調節する。これによつてプラズマ発
生部105bを中心にプラズマ発生管内のガスは
プラズマ化され、外見上白味がかつたピンク色に
発光する。このプラズマ領域は反応器105a内
にも延びており、またガス供給源の方向にもいく
らか延る。こうして被処理物106はプラズマ領
域に置かれて高温に熱せられるとともにプラズマ
中の活性化ガスにより還元される。
In order to process the object 106 using the above-described apparatus, the object 106 is placed in the reaction chamber 105a.
The gasket 116, lid 105a, etc. are depressurized to 10 -2 to 10 -1 Torr. Hydrogen gas, which is a reducing gas, is fed into the plasma generation tube 105 from the hydrogen gas source 101 and adjusted by the flow rate control valve 103 so that the pressure inside the plasma generation tube 105 is 10 to 10 -1 Torr. Valve 104 is closed to prevent inert gas from entering. Thereafter, the microwave oscillator 111 is operated to generate microwave power, which is transmitted into the microwave cavity 114 and the plasma generation tube 105.
to excite hydrogen gas. Naturally, the indicator 113 of the power monitor 113 is adjusted so that the reflected power is minimized by the sliding short circuit plate 114 and the matching box 112.
Adjust while watching a. As a result, the gas in the plasma generation tube centered around the plasma generation section 105b is turned into plasma, and the light is emitted in a whitish pink color in appearance. This plasma region also extends into the reactor 105a and also extends somewhat in the direction of the gas supply. In this way, the object to be processed 106 is placed in the plasma region, heated to a high temperature, and reduced by the activated gas in the plasma.

被処理物106の還元処理終了後、直ちにマイ
クロ波電力、及び水素ガスの供給を停止すると同
時にバルブ104を開けて不活性ガスを反応室1
05内に導き被処理物106に当て酸化温度以下
になるまで冷却する。処理終了後は、ガスの供給
を停止して排気装置110を止め、リークバルブ
108を開いて反応室105内を大気圧にしてフ
タ107をあけて被処理物106を取り出す。
Immediately after the reduction treatment of the object 106 is completed, the supply of microwave power and hydrogen gas is stopped, and at the same time the valve 104 is opened to supply inert gas to the reaction chamber 1.
05 and applied to the object to be processed 106 and cooled down to below the oxidation temperature. After the processing is completed, the gas supply is stopped, the exhaust device 110 is stopped, the leak valve 108 is opened, the inside of the reaction chamber 105 is brought to atmospheric pressure, the lid 107 is opened, and the object to be processed 106 is taken out.

本発明は以上のような本発明の装置を利用し、
例えば酸化した銅パイプを処理したところ、
2450MHZのマイクロ波出力1350W、プラズマ発
生管内の水素ガス圧1Torr、処理時間90secで反
応室内の銅パイプは色温度800℃位となつた。そ
の後水素プラズマを停止した後、不活性ガスであ
る窒素ガスを供給して酸化温度(80℃)以下まで
すみやかに冷却したところ、銅パイプは完全に還
元処理できた。
The present invention utilizes the device of the present invention as described above,
For example, when we treat oxidized copper pipes,
With a microwave output of 1350W at 2450MHZ, a hydrogen gas pressure of 1Torr in the plasma generation tube, and a processing time of 90 seconds, the color temperature of the copper pipe in the reaction chamber reached approximately 800℃. After the hydrogen plasma was stopped, nitrogen gas, an inert gas, was supplied to quickly cool the pipe to below the oxidation temperature (80°C), and the copper pipe was completely reduced.

このように本発明の装置を利用して還元処理す
れば、プラズマ発生管を冷却用不活性ガスの送給
管として兼用できるので装置を小形化でき、さら
に被処理物の温度を十分に上げながら活性化ガス
による還元が出来ると共に、不活性ガスで被処理
物を冷却するため還元処理後の再酸化は殆んどな
い。なお一般の還元処理に用いる高温水素炉は点
火時に爆発の危険があると共に処理温度になるま
での立ち上がり時間及び作業終了後の冷却するま
での時間が長い傾向がある。これに対して本発明
のような方法では点火時の危険はなく、処理温度
になるまでの立ち上がり時間及び冷却するまでの
時間は非常に短かく迅速な処理ができるという効
果もある。
In this way, by using the apparatus of the present invention for reduction treatment, the plasma generation tube can also be used as a cooling inert gas supply tube, so the apparatus can be made more compact. In addition to being able to perform reduction using activated gas, the object to be processed is cooled using inert gas, so there is almost no reoxidation after reduction processing. It should be noted that high-temperature hydrogen furnaces used for general reduction processing have the risk of explosion upon ignition, and tend to take a long time to rise to the processing temperature and to cool down after completion of the work. On the other hand, the method of the present invention has the advantage that there is no danger during ignition, and the time required to reach the processing temperature and the time required for cooling is very short, allowing rapid processing.

第2図に示す装置は、細いワイヤー106を連
続処理するのに適するもので、反応室の機能を兼
ねるプラズマ発生管105の両端に気密を保つて
ワイヤー106が矢印120方向に走行しうる入
出口121,122、耐熱隔壁123及び冷却室
124を一体的連続的に設けたものである。そし
てプラズマ発生管105の左方から還元用原料ガ
スが導入され、隔壁123の近くで排出され、ま
た冷却室に不活性ガスが導入されうるようになつ
ており、右方から排出されるようになつている。
これによつてワイヤーはプラズマ発生部105b
を直接通過するので効率よく高温加熱、還元処理
される。そして直ちに冷却室で不活性雰囲気にさ
らされ冷却される。従つて連続処理に最適であ
る。
The apparatus shown in FIG. 2 is suitable for continuous processing of a thin wire 106, and has an inlet and an opening at both ends of a plasma generating tube 105, which also functions as a reaction chamber, through which the wire 106 can run in the direction of arrow 120 while keeping airtight. 121, 122, a heat-resistant partition wall 123, and a cooling chamber 124 are integrally and continuously provided. Reduction raw material gas is introduced from the left side of the plasma generation tube 105 and discharged near the partition wall 123, and inert gas can be introduced into the cooling chamber and is discharged from the right side. It's summery.
As a result, the wire is connected to the plasma generating part 105b.
Because it passes through directly, it is efficiently heated to high temperatures and reduced. Then, it is immediately exposed to an inert atmosphere in a cooling chamber and cooled. Therefore, it is ideal for continuous processing.

第3図及び第4図に示す実施例の装置は、シー
ト状材料の連続処理に適するものである。この装
置は、プラズマ発生管に連続近接して有蓋円筒状
の反応室105aが設けられ、さらにこれに連接
して冷却室124が配設されてなる。そして各々
には排気装置110,110が独立して接続され
ている。そして両者の間は耐熱隔壁123で分離
されている。シート状材料106は前述と同様に
プラズマ領域中を矢印120方向に走行されて還
元処理される。この装置によれば、幅の広いシー
ト状材料でも十分処理可能であり、しかも材料が
導電体であつてもプラズマ発生部のマイクロ波電
界に何ら影響を与えず安定な処理ができる。
The apparatus of the embodiment shown in FIGS. 3 and 4 is suitable for continuous processing of sheet materials. In this device, a closed cylindrical reaction chamber 105a is provided in continuous proximity to a plasma generation tube, and a cooling chamber 124 is further provided in connection with this. Exhaust devices 110, 110 are independently connected to each. The two are separated by a heat-resistant partition wall 123. The sheet material 106 is moved through the plasma region in the direction of arrow 120 and subjected to reduction treatment in the same manner as described above. According to this apparatus, even a wide sheet-like material can be sufficiently processed, and even if the material is a conductor, stable processing can be performed without any influence on the microwave electric field of the plasma generation part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す横断面略図、
第2図は本発明の他の実施例を示す要部断面図、
第3図は同じくさらに他の実施例を示す要部上面
図、第4図はその要部拡大断面図である。 101…原料ガス源、102…不活性ガス源、
105a…反応室、105…プラズマ発生管、1
06…被処理物、110…排気装置、114…マ
イクロ波空胴、111…マイクロ波発振器、10
5b…プラズマ発生部、124…冷却室。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention;
FIG. 2 is a sectional view of main parts showing another embodiment of the present invention;
FIG. 3 is a top view of the main part showing still another embodiment, and FIG. 4 is an enlarged sectional view of the main part. 101... Raw material gas source, 102... Inert gas source,
105a...Reaction chamber, 105...Plasma generation tube, 1
06...Processed object, 110...Exhaust device, 114...Microwave cavity, 111...Microwave oscillator, 10
5b...Plasma generation section, 124...Cooling chamber.

Claims (1)

【特許請求の範囲】 1 被還元処理物をマイクロ波で励起されたプラ
ズマ領域中にさらして高温処理し、しかるのち不
活性ガスをブラズマ領域内に送給し被還元処理物
を冷却することを特徴とする還元方法。 2 プラズマは水素ガスがマイクロ波で励起され
たものである特許請求の範囲第1項記載の還元方
法。 3 マイクロ波発振器と、この発振器に接続され
たマイクロ波空胴と、この空胴内を通過するよう
に配設され原料ガスが導入されるプラズマ発生管
と、このプラズマ発生管に連通近接して設けられ
内部に被還元処理物が収容される反応室と、この
反応室に一体に設けられるかまたは連接され内部
に不活性ガスが選択的に導入されうるように設け
られた不活性ガス冷却室とを具備してなる処理装
置。
[Claims] 1. A method of exposing a material to be reduced to a plasma region excited by microwaves to perform high-temperature treatment, and then feeding an inert gas into the plasma region to cool the material to be reduced. Characteristic reduction method. 2. The reduction method according to claim 1, wherein the plasma is hydrogen gas excited by microwaves. 3. A microwave oscillator, a microwave cavity connected to the oscillator, a plasma generation tube arranged to pass through the cavity and into which source gas is introduced, and a plasma generation tube in communication and proximity to the plasma generation tube. a reaction chamber in which a substance to be reduced is accommodated; and an inert gas cooling chamber provided integrally with or connected to the reaction chamber so that an inert gas can be selectively introduced into the reaction chamber. A processing device comprising:
JP1489878A 1978-02-14 1978-02-14 Method and apparatus for reduction Granted JPS54107876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1489878A JPS54107876A (en) 1978-02-14 1978-02-14 Method and apparatus for reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1489878A JPS54107876A (en) 1978-02-14 1978-02-14 Method and apparatus for reduction

Publications (2)

Publication Number Publication Date
JPS54107876A JPS54107876A (en) 1979-08-24
JPS6116502B2 true JPS6116502B2 (en) 1986-04-30

Family

ID=11873802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1489878A Granted JPS54107876A (en) 1978-02-14 1978-02-14 Method and apparatus for reduction

Country Status (1)

Country Link
JP (1) JPS54107876A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587337B2 (en) * 1979-05-08 1983-02-09 理化学研究所 Oxide reduction method
JPS5762537A (en) * 1980-10-02 1982-04-15 Semiconductor Energy Lab Co Ltd Forming method for film
JPS57138159A (en) * 1981-02-20 1982-08-26 Fujitsu Ltd Formation of thin film

Also Published As

Publication number Publication date
JPS54107876A (en) 1979-08-24

Similar Documents

Publication Publication Date Title
US4804431A (en) Microwave plasma etching machine and method of etching
US4152625A (en) Plasma generation and confinement with continuous wave lasers
KR930001337A (en) Surface treatment device and surface treatment method
KR20050039500A (en) Processing apparatus and method
KR101477831B1 (en) Method for pretreating inner space of chamber in plasma nitridation, plasma processing method and plasma processing apparatus
KR100666018B1 (en) Processing device and processing method
KR20080011123A (en) Plasma surface treatment method, quartz member, plasma treatment apparatus and plasma treatment method
JPS6116502B2 (en)
JP2644758B2 (en) Resist removal method and apparatus
KR100544226B1 (en) Method and apparatus for radical oxidation of silicon
JP2002151476A (en) Method and apparatus for removing resist
JPS5696841A (en) Microwave plasma treating apparatus
JP2018077525A (en) Organic substance removing device and organic substance removing method
JPS6222652B2 (en)
JPH02267290A (en) Microwave plasma treating device
JPH05125546A (en) Plasma treating device
JPS63235480A (en) Microwave plasma CVD equipment
JP2001044175A (en) Plasma processing equipment
JPH0425222Y2 (en)
JPH0441172Y2 (en)
JPH0582289A (en) Microwave plasma processing method and apparatus
JPS63100186A (en) Microwave plasma treating device
JPH09191005A (en) Sample temperature control method and vacuum processing device
JP2003096570A (en) Method and apparatus for plasma treatment
JPH05269371A (en) Plasma processing device