JPS61161371A - Heat pump type refrigerator - Google Patents
Heat pump type refrigeratorInfo
- Publication number
- JPS61161371A JPS61161371A JP251285A JP251285A JPS61161371A JP S61161371 A JPS61161371 A JP S61161371A JP 251285 A JP251285 A JP 251285A JP 251285 A JP251285 A JP 251285A JP S61161371 A JPS61161371 A JP S61161371A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- valve
- heat exchanger
- refrigerant
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 9
- 230000007423 decrease Effects 0.000 description 12
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
(イ)産業上の利用分野
この発明はヒートポンプ式冷凍装置、特に複数の室内を
冷暖房するのに適したヒートポンプ式冷凍装置に関する
。
(口1 従来の技術
複数台の室内ユニットを同時もしくは任意に冷暖房運転
できるヒートポンプ式冷凍装置では、特に暖房時に任意
の室内ユニットが運転停止すると、冷媒の凝縮量が減少
して高圧側管路の圧力が異常に上昇し、圧縮機に過負荷
を与えるため、保護装置が作動し、暖房が行なえなくな
る等の虞れがある。
このため、対応策として実公昭53−1076号公報に
示されるように、室内側の負荷の変動に応じて圧縮機の
容量制御を行なうとともに、高圧圧力上昇時、轡圧ガス
を低圧側へバイパスする方式が試みられている。
かかる対応策では室内側熱交換器の接続台数が3台以上
となる大型の分離形空気調和装置のように、負荷変動の
大きなもの忙おいては、圧縮機の容量調節が追随できず
、高圧制御を精度良く行なえないばかりでなく、高圧飽
和ガスのバイパスにより低圧圧力が上昇して圧縮機の温
度が上がり、巻線が焼損する等の問題点を有していた。
e] 発明が解決しようとする問題点
この発明の課題は暖房負荷の増減に拘らず適正な冷媒圧
力が得られるようKするとともK、圧縮機忙悪影響を与
えることなく、高圧圧力の上昇を抑制することである。
に)問題点を解決するための手段
上記の課題はこの発明によれば、暖房時は冷媒を圧縮機
の吐出口、ガス管、室内側熱交換器、液管、室外側熱交
換器、補助蒸発器および圧縮機の吸入口の順に流し、冷
房時は冷媒を圧縮機の吐出口、室外側熱交換器、液管、
室内側熱交換器、ガス管、補助蒸発器および圧縮機の吸
入口の順に流すヒートポンプ式冷凍装置において、液管
の冷媒の一部を第1開閉弁および減圧装置を介して補助
蒸発器に供給する第1バイパス回路と、圧縮機から吐出
された冷媒の一部を第2開閉弁を介して室外側熱交換器
に供給する@2バイパス回路と、暖房負荷が小さいとき
に第1開閉弁を開放させるとともに、高圧圧力が高いと
きに$2開閉弁を開放させる制御装置とを備えることに
より解決される。
(ホ)作用
暖房時に室内側の暖房負荷が小さくなると、室内側熱交
換器での冷媒の凝縮量が減少するため、冷媒が過剰とな
り、高圧圧力が上昇する。このとぎ、第1開閉弁を開放
させると、液管の冷媒の一部が第1バイパス回路を流れ
、減圧装置で減圧された後、補助蒸発器で蒸発気化され
る。このため、室外側熱交換器へ流れ込む液冷媒量が少
なくなり、低圧圧力が下がり、延いては高圧圧力が下が
るようKなる。このような冷媒制御にも拘らず、高圧圧
力が上昇する場合には第2開閉弁を開放させる。
すると、圧縮機から吐出された高圧飽和ガス(ホットガ
ス)の一部が第2バイパス回路を通って室外側熱交換器
に供給され、高圧圧力の上昇が抑制される。このように
、ホットガスを低圧側へ直接供給するのではな(、ホッ
トガスを室外側熱交換器に供給することKより、低圧圧
力の上昇が少なくなり、圧縮機の温度上昇が防止される
。
(へ)実施例
以下、この発明を図面に示す実施例忙ついて説明する。
(1)は下部に機械室(2)を、上部に熱交換室(3)
を備えた室外ユニット、(4a)(4b)(4c)は室
内ユニットで、これらユニットはガス管(5)と液管(
6)とで接続され(a) Industrial Application Field The present invention relates to a heat pump type refrigeration system, and particularly to a heat pump type refrigeration system suitable for heating and cooling a plurality of rooms. (Part 1) Conventional technology In a heat pump type refrigeration system that can operate multiple indoor units for heating and cooling simultaneously or arbitrarily, if any indoor unit stops operating, especially during heating, the amount of refrigerant condensed decreases and the high-pressure side pipe As the pressure rises abnormally and overloads the compressor, there is a risk that the protection device will be activated and heating will no longer be possible.Therefore, as a countermeasure, the In addition, attempts have been made to control the capacity of the compressor according to changes in the indoor load, and to bypass the pressure gas to the low pressure side when the high pressure increases. When the compressor is busy with large load fluctuations, such as a large separate air conditioner with three or more connected units, the compressor capacity cannot be adjusted to keep up with the load, and high pressure control cannot be performed accurately. , the low-pressure pressure increases due to the bypass of the high-pressure saturated gas, the temperature of the compressor increases, and the windings burn out. e] Problems to be solved by the invention The problems to be solved by the invention are The purpose is to suppress the increase in high pressure without adversely affecting the compressor, so that an appropriate refrigerant pressure can be obtained regardless of increases or decreases in the heating load.Measures to solve the problem According to the present invention, during heating, the above problem is solved by distributing the refrigerant to the discharge port of the compressor, the gas pipe, the indoor heat exchanger, the liquid pipe, the outdoor heat exchanger, the auxiliary evaporator, and the compressor suction port in this order. During cooling, the refrigerant is sent to the compressor discharge port, outdoor heat exchanger, liquid pipe,
In a heat pump type refrigeration system that flows in the order of indoor heat exchanger, gas pipe, auxiliary evaporator, and compressor inlet, a portion of the refrigerant in the liquid pipe is supplied to the auxiliary evaporator via the first on-off valve and the pressure reducing device. a first bypass circuit that supplies a portion of the refrigerant discharged from the compressor to the outdoor heat exchanger via a second on-off valve; This problem is solved by providing a control device that opens the $2 on-off valve and opens the $2 on-off valve when the high pressure is high. (E) When the heating load on the indoor side becomes smaller during heating, the amount of refrigerant condensed in the indoor heat exchanger decreases, resulting in an excess of refrigerant and an increase in high pressure. Then, when the first on-off valve is opened, a part of the refrigerant in the liquid pipe flows through the first bypass circuit, is depressurized by the pressure reducing device, and then evaporated by the auxiliary evaporator. Therefore, the amount of liquid refrigerant flowing into the outdoor heat exchanger decreases, and the low pressure decreases, which in turn causes the high pressure to decrease. Despite such refrigerant control, if the high pressure increases, the second on-off valve is opened. Then, a part of the high-pressure saturated gas (hot gas) discharged from the compressor is supplied to the outdoor heat exchanger through the second bypass circuit, and an increase in the high-pressure pressure is suppressed. In this way, rather than supplying hot gas directly to the low-pressure side (by supplying hot gas to the outdoor heat exchanger), the rise in low-pressure pressure is reduced and the temperature rise of the compressor is prevented. (To) Examples Below, the present invention will be explained in detail as shown in the drawings.(1) has a machine room (2) in the lower part and a heat exchange room (3) in the upper part.
(4a), (4b), and (4c) are indoor units, which are equipped with a gas pipe (5) and a liquid pipe (
6) is connected with
【いる。
(7)は圧縮機、(8)は冷暖流路切換用の四方切換弁
、(9a)(9b)(9c)はガス側分岐管<5a)(
5b)(5c)に設置+だ1[磁式ノカス側開閉弁、(
10a)(10b)(10C)は室内空気と室内ファン
(lla)(llb)(llc)でそれぞれ強制的に熱
交換される室内側熱交換器、(12a)(12b)(1
2c)は膨張弁からなる冷房用減圧素子、 (14a)
(14b)(14c)は暖房用逆止弁、(15a)(1
5b)(15c)は液側分岐管(6a)(6b)(6C
)に設けだ電磁式の液側開閉弁、(161は受液器、α
ηは膨張弁からなる暖房用減圧素子、0秒は冷房用逆止
弁、顛α9は室外空気と室外ファン■で強制的に熱交換
される室外側熱交換器、021)は圧縮機(7)からの
発熱で温度上昇して機械室(2)内にこもる熱を冷却す
る補助蒸発器、■はアキュームレータでアル。
@は暖房運転時に受液器aeの高圧液冷媒の一部を電磁
式の第1開閉弁@およびキャピラリーチューブからなる
補助減圧素子(ハ)を介して補助蒸発器a!Dに導く第
1バイパス回路、(イ)は圧縮機(7)から吐出された
高圧飽和ガス(ホットガス)の一部を電磁式の第2開閉
弁罰を介して室外側熱交換器(II(1!3に導く第2
バイパス回路である。
■は各室内ユニットの運転信号によってガス側開閉弁(
9a)(9b)(9c)および液側開閉弁(15a)(
15b)(15c)の開閉制御を行なうとともK、室内
ユニットの運転台数によって圧縮機(7)の回転数制御
を行ない、さらKは暖房運転時に室内ユニットの運転台
数が1台のときは第1開閉弁@を開放させるとともに、
圧縮機(7)の吐出管Ci!9に設けた圧力検出器(至
)からの検出信号に応じて第2開閉弁□□□を開閉制御
する制御装置である。
次に回路動作を説明する。室内−二ツ) (4a)(4
b)(4c)が3台同時に暖房運転する際は、四方切換
弁(8)が実線状態となり、かつガス側開閉弁(9a)
(9b)(9c)および淡側開閉弁(15a)(15b
)(15c)が開となり、圧縮機(7)が全速(例えば
1800r・p−m)で運転する。圧縮機(7)の吐出
口(7a)から吐出された高温高圧のガス冷媒は四方切
換弁(8)−ガス側開閉弁(9a)(9b)(9c)−
室内側熱交換器(10a)(10b)(10c)−暖房
用逆止弁(14a)(14b’)(14c)−淡側開閉
弁(15a)(15b)(15c)、−受液器ae−暖
房用減圧素子17)−室外側熱交換器α9αl−四方切
換弁(8)−補助蒸発器01)−アキュームレータのを
順次弁して圧縮機(7)の吸入口(7b)に帰還される
。かかる運転により、室内側熱交換器(10a)(10
b)(10c)での冷媒凝縮作用によって室内ユニッ)
(4a)(4b)(4c)のある各室内は暖房される
とともに、冷媒が蒸発される室外側熱交換器α9(19
および補助蒸発器(2])でこの暖房熱源を外気と機械
室(2)内の暖気とから汲みとっている。
そしてこの暖房運転により室内温度が上昇して室温サー
モでオフするか、もしくは手動スイッチでオフして例え
ば室内ユニッ) (4c)の室内ファン(lie)が止
まりて1台のみ暖房運転が停止すると、室内側熱交換器
(10c)で冷媒凝縮が行なわれなくなる。このとき、
制御装置(至)は運転停止中の室内ユニッ) (4c)
のガス側開閉弁(9C)および淡側開閉弁(15c)を
閉じ、さらに圧縮機(7)の回転数を1400 r*p
@mに下げる。
このように暖房運転中、室内ユニッ) (4c)が運転
停止している間はガス側開閉弁(9C)および淡側開閉
弁(15c)が閉じ、圧縮機(7)が中速運転すること
Kより、圧縮機(7)が異常温度Kまで上昇することな
く高圧圧力は15kg/ffl〜zolq/c++tの
適正な範囲内に維持されることになる。この暖房運転制
御は他の室内ユニツ) (4a)(4b)が運転停止し
た場合においても同様である。
次に例えば2台の室内ユニッ) (4b)(4c)が暖
房運転を停止した場合忙ついて説明する。かかる場合は
両ユニツ) (4b)(4c)のガス側開閉弁(9b)
(9c)および淡側開閉弁(15b)(tsc)が閉じ
、さらに制御装置(至)は圧縮機(7)を1000 r
*p*mの低速運転忙するとともに、第1開閉弁(財)
を開放させる。
このように室内ユニットの運転台数が3台から1台に減
少すると、圧縮機(7)は最低回転数(1000r@p
@m)で運転を行なう。しかし、冷媒凝縮量の減少に見
合うように、最大回転数の1/3にまで落とすことが機
構上できないことから、冷媒循環量が過剰となり、室内
側熱交換器(10a)で凝縮した液冷媒が大容量の室外
側熱交換器(11(IIで蒸発気化して過熱され、この
過熱度の上昇により圧縮機(7)の吐出圧力が上がるこ
とになる。そこで、第1開閉弁(財)を開放させると、
受液器時に溜まった液冷媒の一部が第1バイパス回路(
ハ)を流れ、補助減圧素子(ハ)で減圧された後、補助
蒸発器CI)で蒸発気化され、圧縮機(7)に吸入され
る。かかる冷媒の流れにより、室外側熱交換器(19(
19へ流れ込む液冷媒量が少なくなり、過熱冷媒量が少
なくなって低圧圧力が低下し、高圧圧力の上昇が抑制さ
れる。
また、このような冷媒制御にも拘らず、何らかの原因で
高圧圧力が23kg/d以上になると、制御装置(至)
は第2開閉弁罰を開放させ、ホットガスを第2バイパス
回路(ホ)を介して室外側熱交換器α9r11に供給す
る。このため、圧縮機(7)の吐出圧力が下がる。しか
も、ホットガスを圧縮機(7)の吸入側へ直接供給しな
いので、低圧圧力の上昇は少なく、圧縮機(7)の温度
が上昇する心配がない。この結果、高圧圧力が22に9
A以下に下がると、第2開閉弁■が閉じる。
一方、冷房運転時は四方切換弁(8)を破線状態に切換
え、圧縮機(7)を高速運転させると、圧縮機(7)−
四方切換弁(8)−室外側熱交換器αIα優−冷房用逆
止弁a8−受液器傾一液側開閉弁(15a)(15b)
(15C)−冷房用減圧素子(12a)(12b)(1
2c)−室内側熱交換器(10a)(10b)(10c
)−ガス側開閉弁(9a)(9b)(9c)−四方切換
弁(8)−補助蒸発器e】)−アキニームレータの一圧
縮機(7)と冷媒が循環し、室内側熱交換器(10m)
(10b)(10c)での冷媒蒸発作用により各室内は
冷房される。
そして、例えば、室内ユニット(4c)の1台のみが冷
房運転を停止すると、淡側開閉弁(15c)およびガス
側開閉弁(9c)が閉じ、さらに圧縮機(7)が中速運
転を行ない、2台運転に°適した冷媒循環量のもとで冷
房運転される。
さらに例えば室内ユニッ) (4b)も冷房運転を停止
すると、淡側開閉弁(15b)およびガス側開閉弁(9
b)が閉じるとともに、圧縮機(7)が低速運転を行な
う。
冷房運転中は室内ユニットが1台または2台の運転停止
時でも、室外側熱交換器(I9(1’Jが十分に冷媒の
凝縮を行なうので、高圧圧力が上昇することはない。
なお、上述した実施例では複数台の室内側熱交換器(1
0a)(10b)(10c)を並列接続し、複数の室内
を冷暖房するヒートポンプ式冷凍装置について説明した
が、この発明は室内側熱交換器が1台のものや、圧縮機
の能力を可変としないものKも適用できる。
(ト)発明の効果
この発明は以上のように構成されているので、暖房負荷
が減少し、冷媒が過剰となった際、液管の冷媒の一部を
@1バイパス回路で減圧し、補助蒸発器で蒸発気化させ
て圧縮機に吸入させることができ、室外側熱交換器への
冷媒流入量を減らして高圧圧力の上昇を防止することが
できる。しかも、万一、高圧圧力が上昇した際には圧縮
機の吐出ガスを室外側熱交換器へ供給するようにしたの
で、低圧圧力の上昇を防止し、圧縮機の温度上昇による
巻線の焼損を防止しつつ、高圧圧力を抑制することがで
きる。[There is. (7) is a compressor, (8) is a four-way switching valve for switching between cooling and heating channels, and (9a) (9b) (9c) are gas side branch pipes <5a) (
5b) Installed on (5c)
10a) (10b) (10C) are indoor heat exchangers that forcibly exchange heat with indoor air and indoor fans (lla) (llb) (llc), respectively, (12a) (12b) (1
2c) is a cooling pressure reducing element consisting of an expansion valve; (14a)
(14b) (14c) are heating check valves, (15a) (1
5b) (15c) are liquid side branch pipes (6a) (6b) (6C
) is an electromagnetic liquid side on-off valve (161 is the liquid receiver, α
η is a pressure reducing element for heating consisting of an expansion valve, 0 seconds is a check valve for cooling, 顛α9 is an outdoor heat exchanger that forcibly exchanges heat between outdoor air and an outdoor fan ■, 021) is a compressor (7 ) is an auxiliary evaporator that cools the heat that rises due to heat generation and is trapped in the machine room (2).■ is an accumulator. @During heating operation, a portion of the high-pressure liquid refrigerant in the liquid receiver ae is transferred to the auxiliary evaporator a! via the auxiliary pressure reducing element (c) consisting of the first electromagnetic on-off valve @ and the capillary tube. The first bypass circuit (a) leads to the outdoor heat exchanger (II) through a second electromagnetic on-off valve and a part of the high-pressure saturated gas (hot gas) discharged from the compressor (7). (1! 2nd lead to 3
It is a bypass circuit. ■ is the gas side on/off valve (
9a) (9b) (9c) and liquid side on-off valve (15a) (
15b) and (15c), and K controls the rotation speed of the compressor (7) depending on the number of operating indoor units. 1 Opening the on-off valve @ and
Compressor (7) discharge pipe Ci! This is a control device that controls opening and closing of the second on-off valve □□□ according to a detection signal from a pressure detector (to) provided at 9. Next, the circuit operation will be explained. Indoor - 2) (4a) (4
b) When three units (4c) are in heating operation at the same time, the four-way switching valve (8) is in the solid line state, and the gas side on-off valve (9a) is in the solid line state.
(9b) (9c) and light side on-off valves (15a) (15b
) (15c) is opened, and the compressor (7) operates at full speed (for example, 1800 rpm). The high-temperature, high-pressure gas refrigerant discharged from the discharge port (7a) of the compressor (7) passes through the four-way switching valve (8) - gas side on-off valves (9a) (9b) (9c) -
Indoor heat exchanger (10a) (10b) (10c) - Heating check valve (14a) (14b') (14c) - Light side on-off valve (15a) (15b) (15c), - Receiver ae - Heating pressure reducing element 17) - Outdoor heat exchanger α9αl - Four-way switching valve (8) - Auxiliary evaporator 01) - Accumulator are valved in sequence and returned to the suction port (7b) of the compressor (7) . With this operation, the indoor heat exchanger (10a) (10
b) The indoor unit due to the refrigerant condensation action in (10c))
Each room with (4a), (4b, and 4c) is heated, and the outdoor heat exchanger α9 (19
The auxiliary evaporator (2) draws this heating heat source from outside air and the warm air inside the machine room (2). As a result of this heating operation, the indoor temperature rises and the room temperature thermostat is turned off, or the manual switch is turned off and, for example, when the indoor fan (lie) of the indoor unit (4c) stops, heating operation of only one unit stops. Refrigerant condensation is no longer performed in the indoor heat exchanger (10c). At this time,
The control device (to) is an indoor unit whose operation is stopped) (4c)
Close the gas side on-off valve (9C) and the light side on-off valve (15c), and further increase the rotation speed of the compressor (7) to 1400 r*p.
Lower it to @m. In this way, during heating operation, while the indoor unit (4c) is stopped, the gas side on-off valve (9C) and the light side on-off valve (15c) are closed, and the compressor (7) operates at medium speed. K, the high pressure is maintained within an appropriate range of 15 kg/ffl to zolq/c++t without the compressor (7) rising to an abnormal temperature K. This heating operation control is the same even when the other indoor units (4a) and (4b) are stopped. Next, we will explain what will happen if, for example, two indoor units (4b) and (4c) stop heating operation. In such a case, both units) (4b) (4c) gas side on-off valve (9b)
(9c) and the light side on-off valve (15b) (tsc) are closed, and the control device (to) operates the compressor (7) at 1000 r
*p*m low-speed operation is busy, and the first on-off valve (Foundation)
to be opened. In this way, when the number of operating indoor units decreases from three to one, the compressor (7) rotates at the lowest rotation speed (1000r@p
Operate with @m). However, because it is mechanically impossible to reduce the rotation speed to 1/3 of the maximum rotation speed to match the reduction in the amount of refrigerant condensation, the amount of refrigerant circulating becomes excessive, and the liquid refrigerant condenses in the indoor heat exchanger (10a). is evaporated and superheated in the large-capacity outdoor heat exchanger (11 (II), and this increase in the degree of superheating causes the discharge pressure of the compressor (7) to rise. When you open the
A portion of the liquid refrigerant that accumulated at the time of the liquid receiver flows through the first bypass circuit (
After being depressurized by the auxiliary pressure reducing element (c), it is evaporated by the auxiliary evaporator CI) and sucked into the compressor (7). This flow of refrigerant causes the outdoor heat exchanger (19 (
The amount of liquid refrigerant flowing into the refrigerant 19 decreases, the amount of superheated refrigerant decreases, the low pressure decreases, and the increase in high pressure is suppressed. In addition, despite such refrigerant control, if the high pressure exceeds 23 kg/d for some reason, the control device
opens the second on-off valve and supplies hot gas to the outdoor heat exchanger α9r11 via the second bypass circuit (e). Therefore, the discharge pressure of the compressor (7) decreases. Moreover, since hot gas is not directly supplied to the suction side of the compressor (7), there is little rise in low pressure and there is no concern that the temperature of the compressor (7) will rise. As a result, the high pressure increases from 22 to 9
When the temperature drops below A, the second on-off valve (■) closes. On the other hand, during cooling operation, when the four-way switching valve (8) is switched to the broken line state and the compressor (7) is operated at high speed, the compressor (7) -
Four-way switching valve (8) - Outdoor heat exchanger αIα - Cooling check valve a8 - Receiver tilting liquid side on-off valve (15a) (15b)
(15C)-Reducing pressure element for cooling (12a) (12b) (1
2c) - Indoor heat exchanger (10a) (10b) (10c
) - Gas side on-off valve (9a) (9b) (9c) - Four-way switching valve (8) - Auxiliary evaporator Vessel (10m)
Each room is cooled by the refrigerant evaporation action in (10b) and (10c). For example, when only one of the indoor units (4c) stops cooling operation, the light side on-off valve (15c) and the gas side on-off valve (9c) close, and the compressor (7) operates at medium speed. Cooling operation is performed with a refrigerant circulation amount suitable for two-unit operation. Furthermore, for example, if the cooling operation of the indoor unit (4b) is also stopped, the light side on-off valve (15b) and the gas side on-off valve (9)
b) is closed, and the compressor (7) operates at low speed. During cooling operation, even if one or two indoor units stop operating, the outdoor heat exchanger (I9 (1'J) sufficiently condenses the refrigerant, so the high pressure will not rise. In the embodiment described above, a plurality of indoor heat exchangers (1
0a), (10b), and (10c) are connected in parallel to cool and heat multiple rooms. K is also applicable. (g) Effects of the Invention Since this invention is configured as described above, when the heating load decreases and refrigerant becomes excessive, part of the refrigerant in the liquid pipe is depressurized in the @1 bypass circuit and auxiliary The refrigerant can be evaporated in the evaporator and then sucked into the compressor, thereby reducing the amount of refrigerant flowing into the outdoor heat exchanger and preventing a rise in high pressure. Moreover, in the event that the high pressure rises, the discharge gas from the compressor is supplied to the outdoor heat exchanger, which prevents the low pressure from rising and burns out the windings due to the compressor's temperature rise. It is possible to suppress high pressure while preventing this.
図はこの発明の一実施例を示すヒートポンプ式冷凍装置
の配管系統図である。
(5)・・・ガス管、 (6)・・・液管、 (7)・
・・圧縮機、(10a)(10b)(10c) −室内
側熱交換器、 (19−・・室外側熱交換器、 (21
)・・・補助蒸発器、 @・・・第1バイパス回路、
(財)・・・第1開閉弁、 (ハ)・・・減圧装置、翰
・・・第2バイパス回路、 ■・・・第2開閉弁、(至
)・・・制御装置。The figure is a piping system diagram of a heat pump type refrigeration system showing one embodiment of the present invention. (5)...Gas pipe, (6)...Liquid pipe, (7)...
...Compressor, (10a) (10b) (10c) -Indoor heat exchanger, (19-...Outdoor heat exchanger, (21)
)...Auxiliary evaporator, @...1st bypass circuit,
(Foundation)...First on-off valve, (C)...Pressure reducing device, Kan...Second bypass circuit, ■...Second on-off valve, (To)...Control device.
Claims (3)
熱交換器、液管、室外側熱交換器、補助蒸発器および圧
縮機の吸入口の順に流し、冷房時は冷媒を圧縮機の吐出
口、室外側熱交換器、液管、室内側熱交換器、ガス管、
補助蒸発器および圧縮機の吸入口の順に流すヒートポン
プ式冷凍装置において、液管の冷媒の一部を第1開閉弁
および減圧装置を介して補助蒸発器に供給する第1バイ
パス回路と、圧縮機から吐出された冷媒の一部を第2開
閉弁を介して室外側熱交換器に供給する第2バイパス回
路と、暖房負荷が小さいときに第1開閉弁を開放させる
とともに、高圧圧力が高いときに第2開閉弁を開放させ
る制御装置とを備えたことを特徴とするヒートポンプ式
冷凍装置。(1) During heating, the refrigerant flows through the compressor discharge port, gas pipe, indoor heat exchanger, liquid pipe, outdoor heat exchanger, auxiliary evaporator, and compressor inlet in this order, and during cooling, the refrigerant flows through the Compressor discharge port, outdoor heat exchanger, liquid pipe, indoor heat exchanger, gas pipe,
In a heat pump refrigeration system in which refrigerant flows in order from an auxiliary evaporator to an inlet of a compressor, a first bypass circuit supplies part of the refrigerant in a liquid pipe to the auxiliary evaporator via a first on-off valve and a pressure reducing device, and a compressor. A second bypass circuit supplies a part of the refrigerant discharged from the refrigerant to the outdoor heat exchanger via a second on-off valve, and opens the first on-off valve when the heating load is small and when the high pressure is high. A heat pump type refrigeration device comprising: a control device for opening a second on-off valve.
のとした特許請求の範囲第1項記載のヒートポンプ式冷
凍装置。(2) The heat pump type refrigeration system according to claim 1, wherein a plurality of indoor heat exchangers are provided in parallel.
第1項または第2項記載のヒートポンプ式冷凍装置。(3) A heat pump type refrigeration system according to claim 1 or 2, wherein the compressor is of a variable capacity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP251285A JPS61161371A (en) | 1985-01-10 | 1985-01-10 | Heat pump type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP251285A JPS61161371A (en) | 1985-01-10 | 1985-01-10 | Heat pump type refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61161371A true JPS61161371A (en) | 1986-07-22 |
Family
ID=11531420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP251285A Pending JPS61161371A (en) | 1985-01-10 | 1985-01-10 | Heat pump type refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61161371A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04224279A (en) * | 1990-03-14 | 1992-08-13 | Timothy S Lucas | Refrigerant compression system |
JP2001280749A (en) * | 2000-03-31 | 2001-10-10 | Daikin Ind Ltd | Refrigeration equipment |
-
1985
- 1985-01-10 JP JP251285A patent/JPS61161371A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04224279A (en) * | 1990-03-14 | 1992-08-13 | Timothy S Lucas | Refrigerant compression system |
JP2001280749A (en) * | 2000-03-31 | 2001-10-10 | Daikin Ind Ltd | Refrigeration equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250109896A1 (en) | Air conditioning system with capacity control and controlled hot water generation | |
US4676072A (en) | Bypass system for a dual refrigeration cycle air conditioner | |
EP2657628B1 (en) | Hot-water-supplying, air-conditioning composite device | |
WO2018047331A1 (en) | Air conditioning device | |
JP4338018B2 (en) | Cooling system | |
EP4141339A1 (en) | Multi-split air conditioning system, and refrigerant flow control method therefor | |
EP4184080A1 (en) | Outdoor unit for refrigeration device and refrigeration device comprising same | |
US20210180802A1 (en) | Air-conditioning system | |
CN114341569A (en) | Heat source unit and refrigerating device | |
JPS61161371A (en) | Heat pump type refrigerator | |
JP3723824B2 (en) | Air conditioner | |
JP2004144351A (en) | Control method of multi-room type air conditioner | |
JP2523534B2 (en) | Air conditioner | |
JP3228135B2 (en) | Refrigeration equipment | |
JPH04236062A (en) | Air conditioner | |
JP7306582B2 (en) | refrigeration cycle equipment | |
JP4420393B2 (en) | Refrigeration air conditioner | |
JP3660120B2 (en) | Control method of air conditioner | |
JPS5825233Y2 (en) | air conditioner | |
JPS60133274A (en) | Multi-chamber type air conditioner | |
JPS6358070A (en) | Engine drive type air conditioner | |
JP2730934B2 (en) | Heat pump refrigeration system | |
JPS6189445A (en) | Refrigerator | |
JPH01277158A (en) | air conditioner | |
JPS5912525Y2 (en) | Multi-room air conditioner |