JPH04236062A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH04236062A JPH04236062A JP3004756A JP475691A JPH04236062A JP H04236062 A JPH04236062 A JP H04236062A JP 3004756 A JP3004756 A JP 3004756A JP 475691 A JP475691 A JP 475691A JP H04236062 A JPH04236062 A JP H04236062A
- Authority
- JP
- Japan
- Prior art keywords
- radiant panel
- expansion valve
- temperature
- refrigerant
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は,強制対流に加えて輻射
による熱移動を利用した空気調和機に係り,特に冷房運
転時に輻射パネルの結露を防止するための構成が簡素な
空気調和機に関する。[Field of Industrial Application] The present invention relates to an air conditioner that utilizes heat transfer by radiation in addition to forced convection, and particularly relates to an air conditioner with a simple configuration for preventing dew condensation on a radiant panel during cooling operation. .
【0002】0002
【従来の技術】近年,上記したような空気調和機に対し
,以前にも増して,低騒音化,室温の均一化,送風によ
り生じる不快感の除去,衛生化等の快適性が要求されて
いる。そこで,これらの快適性を高める一つの手段とし
て冷暖房に赤外線を放射する機能を備えた輻射パネルの
採用が注目されている。上記輻射パネルによれば,室内
蒸発器のように強制対流を生じさせるための空気の流れ
を必要としないので,騒音が発生せず,身体に風があた
ったときの不快感がない。また,上記輻射パネルからの
赤外線は空気を透過して直接物体に作用するため,室内
温度が未だ設定値に達していない場合でも伝熱効果があ
り,室内空気の温度が同じ場合,上記輻射パネルからの
伝熱が行なわれる分上記強制対流により保持される室内
空気の温度を,例えば暖房では低く,冷房では高く設定
することができる。なお,冷房時においても,上記輻射
パネルから低エネルギーの赤外線が放射されるが,その
ときには物体からの赤外線のエネルギーのほうが高いた
め,上記輻射パネルにそれぞれの赤外線の相殺分が吸収
される。[Prior Art] In recent years, the above-mentioned air conditioners have been required to provide more comfort than ever before, such as low noise, uniform room temperature, elimination of discomfort caused by air blowing, and sanitization. There is. Therefore, the use of radiant panels with the ability to emit infrared rays for heating and cooling systems is attracting attention as a means of increasing comfort. According to the above-mentioned radiant panel, unlike an indoor evaporator, there is no need for air flow to generate forced convection, so no noise is generated and there is no discomfort when the wind hits the body. In addition, since the infrared rays from the radiant panel pass through the air and act directly on objects, there is a heat transfer effect even if the indoor temperature has not yet reached the set value.If the indoor air temperature is the same, the radiant panel The temperature of the indoor air maintained by the forced convection can be set low for heating and high for cooling, for example. Note that even during cooling, low-energy infrared rays are emitted from the radiant panel, but at that time, the energy of the infrared rays from the object is higher, so the canceling amount of each infrared ray is absorbed by the radiant panel.
【0003】上記したような強制対流と輻射による伝熱
を利用した空気調和機の一例を図4に示す。同図におい
て,空気調和機1b は,冷媒管7よりなる循環路内を
熱媒体としての冷媒が流通する室外側の冷凍サイクル4
0と,ブライン管27よりなる循環路内を熱媒体として
のブラインが流通する室内側のブラインサイクル41と
よりなっている。上記室外側の冷凍サイクル40におい
て,圧縮機2から吐出された高温高圧の冷媒は,室外熱
交換器3を通過する際に室外ファン18からの外気と熱
交換を行なって放熱することにより凝縮液化し,更に膨
張弁28で減圧されて低圧の気液2相状態になった後,
上記ブラインサイクル41との間で熱交換を行なう冷媒
・ブライン熱交換器29を通過しこのときブラインから
の熱を吸熱する。そこで,上記冷媒は蒸発気化して低温
低圧の蒸気になった後,上記圧縮機2に戻るといったサ
イクルが繰り返される。一方,上記ブラインサイクル4
1においては,循環ポンプ31から吐出されたブライン
が,上記冷媒・ブライン熱交換器29を通過する際に冷
凍サイクル40側の冷媒に放熱して冷却される。ここで
,冷却されたブラインは,その一部が室内熱交換器6に
案内され(矢印D方向),残りが輻射パネル8の温度を
制御するための三方混合弁30に案内される(矢印C方
向)。上記三方混合弁30は,冷媒・ブライン熱交換器
29からのブラインと,輻射パネル8のブライン管27
を流通して昇温され輻射パネル循環用の循環ポンプ32
により送り込まれたブライン(矢印F)とを混合して,
輻射パネル8に流入するブライン(矢印E)の温度を輻
射パネル8の表面が結露しない温度に制御する。上記輻
射パネル8は外部からの輻射熱を吸収することによって
室内の冷房を行なう。そして,上記吸収された輻射熱に
より昇温したブラインの一部は,上記循環ポンプ31に
戻り,上記したサイクルが繰り返される。なお,上記空
気調和機1b では,室内空気の露点と輻射パネル8の
表面温度とを測定し輻射パネル8の温度が室内空気の露
点以下にならないように上記三方混合弁30が制御され
るが,このように,上記輻射パネル8の熱媒体として相
変化のないブラインを用いると容易に上記輻射パネル8
の表面温度を制御することができる。このように,上記
空気調和機1b は,室内熱交換器6による強制対流と
輻射パネル8による輻射とを利用しており快適な室内冷
房を実現できるものであった。FIG. 4 shows an example of an air conditioner that utilizes heat transfer by forced convection and radiation as described above. In the figure, the air conditioner 1b has an outdoor refrigeration cycle 4 in which a refrigerant as a heat medium flows through a circulation path made up of refrigerant pipes 7.
0, and an indoor brine cycle 41 in which brine as a heat medium flows through a circulation path formed by a brine pipe 27. In the outdoor refrigeration cycle 40, the high-temperature, high-pressure refrigerant discharged from the compressor 2 exchanges heat with the outside air from the outdoor fan 18 when passing through the outdoor heat exchanger 3 and radiates heat, thereby condensing and liquefying the refrigerant. Then, after being further reduced in pressure by the expansion valve 28 and becoming a low-pressure gas-liquid two-phase state,
It passes through a refrigerant/brine heat exchanger 29 that exchanges heat with the brine cycle 41, and at this time absorbs heat from the brine. Therefore, the refrigerant is evaporated and turned into low-temperature, low-pressure vapor, and then returned to the compressor 2, and the cycle is repeated. On the other hand, the above brine cycle 4
1, when the brine discharged from the circulation pump 31 passes through the refrigerant/brine heat exchanger 29, it radiates heat to the refrigerant on the refrigeration cycle 40 side and is cooled. Here, a part of the cooled brine is guided to the indoor heat exchanger 6 (in the direction of arrow D), and the rest is guided to the three-way mixing valve 30 for controlling the temperature of the radiant panel 8 (arrow C). direction). The three-way mixing valve 30 supplies brine from the refrigerant/brine heat exchanger 29 and the brine pipe 27 of the radiant panel 8.
circulation pump 32 for circulating the radiant panel.
Mix with the brine (arrow F) sent by
The temperature of the brine (arrow E) flowing into the radiant panel 8 is controlled to a temperature that does not cause dew condensation on the surface of the radiant panel 8. The radiant panel 8 cools the room by absorbing radiant heat from the outside. Then, a portion of the brine heated by the absorbed radiant heat returns to the circulation pump 31, and the above-described cycle is repeated. In the air conditioner 1b, the dew point of the indoor air and the surface temperature of the radiant panel 8 are measured, and the three-way mixing valve 30 is controlled so that the temperature of the radiant panel 8 does not fall below the dew point of the indoor air. In this way, if brine with no phase change is used as a heat medium for the radiant panel 8, the radiant panel 8 can be easily heated.
surface temperature can be controlled. In this way, the air conditioner 1b utilizes forced convection by the indoor heat exchanger 6 and radiation by the radiant panel 8, and can achieve comfortable indoor cooling.
【0004】0004
【発明が解決しようとする課題】ところで,上記従来の
空気調和機1b は,上記冷凍サイクル40とブライン
サイクル41の2系統のサイクルを必要とするため,そ
の構成が複雑であった。また,輻射を利用した空気調和
においては,上記したように,省エネルギー化を実現で
きることが一つの特徴である。しかしながら,上記空気
調和機1b の省エネルギー性を評価する成績係数(以
下COP(=冷房能力/所要動力)という)は,冷凍サ
イクルのみを用い強制対流による冷房を行なう一般的な
空気調和機より劣る場合が多い。これは,上記冷凍サイ
クルのみを用いた強制対流式の空気調和機が冷媒を室内
熱交換器で直接蒸発させるいわゆる直膨式であるのに対
し,上記空気調和機1b では,冷媒とブラインとが冷
媒・ブライン熱交換器29を介して熱交換されるため,
熱交換後の室内空気と冷媒の温度差が大きくなる。それ
により,上記冷媒の蒸発圧力が低下して上記COPが小
さなものになっていた。更に,上記空気調和機1b は
ブラインサイクル41に少なくとも一台の循環ポンプを
使用しなければならず,上記冷媒サイクルのみの空気調
和機と比べて,上記循環ポンプの消費電力分上記COP
が小さくなっていた。However, the conventional air conditioner 1b required two cycles, the refrigeration cycle 40 and the brine cycle 41, and therefore had a complicated configuration. Furthermore, as mentioned above, one of the features of air conditioning using radiation is that it can save energy. However, the coefficient of performance (hereinafter referred to as COP (=cooling capacity/required power)) that evaluates the energy saving performance of the air conditioner 1b is inferior to that of a general air conditioner that uses only a refrigeration cycle and performs cooling by forced convection. There are many. This is because the above-mentioned forced convection air conditioner using only the refrigeration cycle is a so-called direct expansion type in which the refrigerant is directly evaporated in the indoor heat exchanger, whereas in the above air conditioner 1b, the refrigerant and brine are directly evaporated. Since heat is exchanged via the refrigerant/brine heat exchanger 29,
The temperature difference between the indoor air and the refrigerant after heat exchange becomes large. As a result, the evaporation pressure of the refrigerant decreases, resulting in a small COP. Furthermore, the air conditioner 1b must use at least one circulation pump for the brine cycle 41, and compared to an air conditioner using only the refrigerant cycle, the COP is reduced by the power consumption of the circulation pump.
was getting smaller.
【0005】そこで,上記冷凍サイクルのみを用い上記
直膨式の室内熱交換器を採用し上記輻射パネル8の結露
を防止するようなシステムを実現しようとすると,例え
ば圧縮機を2台用意しそのうちの1台を室内熱交換器に
供給される冷媒圧縮用に用い,残りの1台を輻射パネル
8に送られる冷媒圧縮用としこの圧縮機の容量を変化さ
せて上記輻射パネル8の表面温度を制御する方法が考え
られる。しかしながら,このような方法では,各圧縮機
の制御が難しく,加えて製造コストがかさむので現実的
ではなく実用化されていない。[0005] Therefore, in order to realize a system that uses only the above-mentioned refrigeration cycle and employs the above-mentioned direct expansion type indoor heat exchanger to prevent dew condensation on the above-mentioned radiant panel 8, for example, two compressors are prepared, and one of them is One of the compressors is used to compress the refrigerant supplied to the indoor heat exchanger, and the remaining one is used to compress the refrigerant sent to the radiant panel 8. By changing the capacity of this compressor, the surface temperature of the radiant panel 8 can be adjusted. There are ways to control this. However, with such a method, it is difficult to control each compressor and, in addition, the manufacturing cost increases, so it is not practical and has not been put to practical use.
【0006】従って,本発明の目的とするところは,冷
房運転時の輻射パネルの結露を防止するにあたって,構
成が簡素で省エネルギー化を図ることのできる空気調和
機を提供することにある。[0006] Accordingly, an object of the present invention is to provide an air conditioner that has a simple configuration and can save energy in preventing dew condensation on a radiant panel during cooling operation.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,圧縮機,凝縮器,第1の膨張弁,蒸発器をこれ
らの順序で熱を伝達するための熱媒体が流通する管路を
介して連結して冷凍サイクルを構成するとともに外部か
らの輻射熱を吸収する輻射パネルを上記蒸発器と並列に
上記冷凍サイクルに連結してなる空気調和機において,
上記輻射パネルの熱媒体出側に開閉自在に設けられた第
2の膨張弁と,上記輻射パネルの近傍の空気の露点を検
出する露点検出手段と,該露点検出手段により検出され
た露点と上記輻射パネルの温度の差に応じて上記第2の
膨張弁の開度を制御する膨張弁制御手段とを具備してな
る点に係る空気調和機として構成されている。[Means for Solving the Problems] In order to achieve the above object, the main means adopted by the present invention is to install a compressor, a condenser, a first expansion valve, and an evaporator in this order. A radiant panel that absorbs radiant heat from the outside is connected to the refrigeration cycle in parallel with the evaporator to form a refrigeration cycle. In air conditioners,
a second expansion valve that is openable and closable on the heat medium outlet side of the radiant panel; a dew point detection means for detecting the dew point of the air in the vicinity of the radiant panel; and a dew point detected by the dew point detection means and the The air conditioner is configured to include an expansion valve control means for controlling the opening degree of the second expansion valve according to the difference in temperature of the radiant panel.
【0008】[0008]
【作用】本発明に係る空気調和機においては,圧縮機に
より送り出され凝縮器を通過した熱媒体は,第1の膨張
弁により減圧されて蒸発器及び輻射パネルの冷却に供さ
れる。そして,上記輻射パネルは外部からの輻射熱を吸
収する。上記輻射パネルの熱媒体出側には第2の膨張弁
が開閉自在に設けられている。そこで,露点検出手段が
上記輻射パネルの近傍の空気の露点を検出する。続いて
,膨張弁制御手段が上記露点検出手段により検出された
露点と上記輻射パネルの温度の差に応じて上記第2の膨
張弁の開度を制御する。即ち,上記膨張弁制御手段は,
輻射パネルの温度が上記露点に近いか或いは低いとき上
記第2の膨張弁の開度を小さくする。それにより,上記
輻射パネルを流通する熱媒体が流れにくくなり輻射パネ
ルの温度が上昇し上記露点以上になる。[Operation] In the air conditioner according to the present invention, the heat medium sent out by the compressor and passed through the condenser is reduced in pressure by the first expansion valve and used for cooling the evaporator and the radiant panel. The radiant panel absorbs radiant heat from the outside. A second expansion valve is provided on the heat medium outlet side of the radiation panel so as to be openable and closable. Therefore, the dew point detection means detects the dew point of the air near the radiant panel. Subsequently, the expansion valve control means controls the opening degree of the second expansion valve according to the difference between the dew point detected by the dew point detection means and the temperature of the radiant panel. That is, the expansion valve control means is
When the temperature of the radiant panel is close to or below the dew point, the degree of opening of the second expansion valve is reduced. As a result, the heat medium flowing through the radiant panel becomes difficult to flow, and the temperature of the radiant panel increases to exceed the dew point.
【0009】[0009]
【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここに
,図1は本発明の一実施例に係る空気調和機の制御系統
を示すブロック構成図,図2は上記空気調和機による冷
房運転の処理手順を示すフローチャート,図3は本発明
の別の実施例に係る冷暖房用の空気調和機を示すブロッ
ク構成図である。但し,図4に示した上記従来の空気調
和機1b と共通する要素には,同一の符号を使用する
。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following examples are examples of embodying the present invention, and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a block configuration diagram showing a control system of an air conditioner according to an embodiment of the present invention, FIG. 2 is a flowchart showing a processing procedure for cooling operation by the air conditioner, and FIG. 3 is a block diagram showing a control system of an air conditioner according to an embodiment of the present invention. FIG. 2 is a block configuration diagram showing an air conditioner for heating and cooling according to an embodiment of the present invention. However, the same reference numerals are used for elements common to those of the conventional air conditioner 1b shown in FIG. 4.
【0010】本実施例に係る空気調和機1は,図1に示
すように,圧縮機2,室外熱交換器3,室内熱交換器用
の膨張弁4(第1の膨張弁),室内熱交換器6が冷媒を
流通させる冷媒管7により連結されて循環路をなす冷凍
サイクルを備えている。また,上記室外熱交換器3に室
外空気を送風するファン18がこの熱交換器に配備され
,上記室内熱交換器19に室内空気を送風するファン1
9がこの熱交換器に配備されている。また,室内からの
輻射熱を吸収する輻射パネル8が上記室内熱交換器6と
並列に上記冷凍サイクルの冷媒管7に設けられている。
そして,上記輻射パネル8の冷媒入口側には,上記輻射
パネル8の冷房負荷調節用の膨張弁5(第1の膨張弁)
が設けられ,冷媒出側には,輻射パネル8において蒸発
する冷媒の蒸発温度調節用の膨張弁9(第2の膨張弁)
が設けられている。上記各膨張弁4,5,9は冷媒管路
に対して開閉自在に弁の開度を調整できるようになって
おり,それぞれの弁の駆動源として制御性に優れたステ
ッピングモータが採用されている。As shown in FIG. 1, the air conditioner 1 according to this embodiment includes a compressor 2, an outdoor heat exchanger 3, an expansion valve 4 for the indoor heat exchanger (first expansion valve), and an indoor heat exchanger. A refrigeration cycle is provided in which the vessels 6 are connected by a refrigerant pipe 7 through which refrigerant flows to form a circulation path. Further, a fan 18 for blowing outdoor air to the outdoor heat exchanger 3 is installed in this heat exchanger, and a fan 18 for blowing indoor air to the indoor heat exchanger 19 is installed in the heat exchanger.
9 is installed in this heat exchanger. Further, a radiant panel 8 that absorbs radiant heat from the room is provided in the refrigerant pipe 7 of the refrigeration cycle in parallel with the indoor heat exchanger 6. An expansion valve 5 (first expansion valve) for adjusting the cooling load of the radiation panel 8 is provided on the refrigerant inlet side of the radiation panel 8.
An expansion valve 9 (second expansion valve) for adjusting the evaporation temperature of the refrigerant evaporated in the radiation panel 8 is provided on the refrigerant outlet side.
is provided. Each of the expansion valves 4, 5, and 9 described above can be opened and closed with respect to the refrigerant pipe line, and the opening degree of the valve can be adjusted, and a stepping motor with excellent controllability is used as the drive source for each valve. There is.
【0011】そして,上記室内熱交換器6の冷媒入側及
び出側には,冷媒入口温度Thexi,冷媒出口温度T
hexoを検出する温度センサ14,15がそれぞれ設
けられている。また,上記輻射パネル8の冷媒入側及び
出側には,冷媒入口温度Tpi,冷媒出口温度Tpoを
検出する温度センサ16,17がそれぞれ備えられ,パ
ネル自体にはその表面温度Tpsを検出する温度センサ
11が設けられている。また,上記輻射パネル8の近傍
には,この輻射パネル8の近傍の空気温度Ta及び湿度
Rhを検出する湿度センサ10が設けられている。更に
,この空気調和機1は,室内熱交換器6の冷媒入口温度
Thexiと冷媒出口温度Thexoとの温度差に応じ
て上記膨張弁4の開度を制御し,輻射パネル8の冷媒入
口温度Tpiと冷媒出口温度Tpoの温度差に応じて膨
張弁5の開度を制御するとともに,湿度センサ10から
の室内温度Ta及び湿度Rhとに基づいて輻射パネル8
の近傍の空気の露点Tadを演算しこの露点Tadと上
記輻射パネル8の表面温度Tpsとの差に応じて上記膨
張弁9の開度を制御する膨張弁制御装置12(膨張弁制
御手段)を備えている。即ち,上記湿度センサ10と上
記膨張弁制御装置12とにより,輻射パネル8の近傍の
空気の露点を検出する露点検出手段が構成される。[0011]The indoor heat exchanger 6 has a refrigerant inlet temperature Thexi and a refrigerant outlet temperature T on the refrigerant inlet and outlet sides.
Temperature sensors 14 and 15 for detecting hexo are provided, respectively. Furthermore, temperature sensors 16 and 17 are provided on the refrigerant inlet and outlet sides of the radiation panel 8, respectively, to detect the refrigerant inlet temperature Tpi and the refrigerant outlet temperature Tpo, and the panel itself has a temperature sensor 16 and 17 for detecting the refrigerant inlet temperature Tpi and refrigerant outlet temperature Tpo. A sensor 11 is provided. Further, a humidity sensor 10 is provided near the radiant panel 8 to detect the air temperature Ta and humidity Rh in the vicinity of the radiant panel 8. Furthermore, this air conditioner 1 controls the opening degree of the expansion valve 4 according to the temperature difference between the refrigerant inlet temperature Thexi and the refrigerant outlet temperature Thexo of the indoor heat exchanger 6, and adjusts the refrigerant inlet temperature Tpi of the radiation panel 8. The opening degree of the expansion valve 5 is controlled according to the temperature difference between the temperature and the refrigerant outlet temperature Tpo, and the radiant panel 8 is
an expansion valve control device 12 (expansion valve control means) that calculates the dew point Tad of the air in the vicinity of and controls the opening degree of the expansion valve 9 according to the difference between this dew point Tad and the surface temperature Tps of the radiant panel 8; We are prepared. That is, the humidity sensor 10 and the expansion valve control device 12 constitute a dew point detection means for detecting the dew point of the air near the radiant panel 8.
【0012】本実施例の空気調和機1は,上記したよう
に,冷媒のみを用いた一系統の冷凍サイクルを備えてな
るが,その動作につき以下説明する。圧縮機2から吐出
された高温高圧の冷媒は,室外熱交換器3において外気
と熱交換を行なって凝縮液化する。そして,上記室外熱
交換器3を流出した冷媒は,室内熱交換器6及び輻射パ
ネル8に向けてそれぞれ分流され膨張弁4(矢印A),
膨張弁5(矢印B)に至る。そこで,上記膨張弁4に導
かれた冷媒は,この膨張弁4によって減圧され低温低圧
の気液2相状態になった後,室内熱交換器6において室
内空気と熱交換して蒸発気化し低温低圧の蒸気になる。
このとき,室内空気は冷却・除湿されて室内に戻され室
内の冷房に供される。一方,上記膨張弁5に導かれた冷
媒は,この膨張弁5によって減圧され低温低圧の気液2
相状態となった後,輻射パネル8と熱交換を行なって蒸
発し低温低圧の蒸気になる。このとき,上記輻射パネル
8の冷媒蒸発温度は膨張弁制御装置12による膨張弁9
の開度の制御によってパネルの表面に結露が生じないよ
うに調整される。そして,上記冷媒により冷却された輻
射パネル8は室内からの輻射熱を吸収し輻射冷房を行な
う。そして,上記膨張弁9からの冷媒蒸気は,先に述べ
た室内熱交換器6からの冷媒蒸気と合流し再び圧縮機2
に戻るといったサイクルが繰り返される。As described above, the air conditioner 1 of this embodiment is equipped with one system of refrigeration cycle using only refrigerant, and its operation will be explained below. The high-temperature, high-pressure refrigerant discharged from the compressor 2 exchanges heat with outside air in the outdoor heat exchanger 3 and is condensed and liquefied. Then, the refrigerant that has flowed out of the outdoor heat exchanger 3 is branched toward the indoor heat exchanger 6 and the radiant panel 8, respectively, and the expansion valve 4 (arrow A).
It reaches the expansion valve 5 (arrow B). Therefore, the refrigerant guided to the expansion valve 4 is depressurized by the expansion valve 4 and becomes a low temperature, low pressure gas-liquid two-phase state, and then exchanges heat with the indoor air in the indoor heat exchanger 6 to evaporate and vaporize at a low temperature. It becomes low pressure steam. At this time, the indoor air is cooled and dehumidified and returned to the room to cool the room. On the other hand, the refrigerant guided to the expansion valve 5 is depressurized by the expansion valve 5 and becomes a low-temperature, low-pressure gas-liquid.
After reaching a phase state, it exchanges heat with the radiant panel 8 and evaporates, turning into low-temperature, low-pressure steam. At this time, the refrigerant evaporation temperature of the radiation panel 8 is determined by the expansion valve control device 12.
The opening degree of the panel is adjusted to prevent condensation from forming on the surface of the panel. The radiant panel 8 cooled by the refrigerant absorbs radiant heat from the room and performs radiant cooling. Then, the refrigerant vapor from the expansion valve 9 joins with the refrigerant vapor from the indoor heat exchanger 6 mentioned above and returns to the compressor 2.
The cycle repeats.
【0013】引き続き,上記空気調和機1の各膨張弁4
,5,9の制御に係る処理手順につき図2に示すフロー
チャートを併用して以下説明する。なお,図2中S1,
S2,・・・は上記処理手順の動作ステップを示す。ま
た,上記処理手順はプログラムとして膨張弁制御装置1
2の図示せぬメモリに予め記憶されている。先ず,上記
膨張弁制御装置12は,すべての膨張弁4,5,9の開
度に係る初期化を行なう。例えば,上記膨張弁4,5,
9を一旦全閉にし(S1),その後膨張弁ごとに適した
,例えば中間の開度に設定する(S2)。そして,各温
度センサ10,11,14〜17によりそれぞれ検出さ
れた各膨張弁の制御に必要な温度データThexi,T
hexo,Tpi,Tpo,Tps,Ta及びRh(→
Tad)が膨張弁制御装置12に入力される(S3)。
続いて,上記膨張弁制御装置12は,輻射パネル8によ
る冷房運転の可否を判断する(S4)。なお,輻射パネ
ル8の表面の結露を防ぐためには,その表面の表面温度
Tpsが室内空気の露点Tadよりも高くなければなら
ないが,本実施例の場合室内空気の温湿度分布や各温度
センサの測定精度が考慮されている。即ち,上記表面温
度Tpsが室内空気の露点Tadと比べて2℃以上高い
場合に(S4,YES)輻射パネル8を用いた冷房運転
を行ない,上記露点Tad+2℃より低い場合は(S4
,NO)膨張弁5,膨張弁9を全閉とし(S5),室内
熱交換器6の運転によって室内空気の除湿を促進させ(
後述するステップS16〜S18)ステップS4の条件
が満たされるまで上記輻射パネル8の運転を中止する。Subsequently, each expansion valve 4 of the air conditioner 1
, 5, and 9 will be explained below using the flowchart shown in FIG. In addition, S1 in FIG.
S2, . . . indicate operation steps of the above processing procedure. In addition, the above processing procedure is implemented as a program in the expansion valve control device 1.
2 is stored in advance in a memory (not shown). First, the expansion valve control device 12 initializes the opening degrees of all the expansion valves 4, 5, and 9. For example, the expansion valves 4, 5,
9 is once fully closed (S1), and then set to an appropriate, for example, intermediate opening degree for each expansion valve (S2). Temperature data Thexi, T necessary for controlling each expansion valve detected by each temperature sensor 10, 11, 14 to 17, respectively.
hexo, Tpi, Tpo, Tps, Ta and Rh (→
Tad) is input to the expansion valve control device 12 (S3). Subsequently, the expansion valve control device 12 determines whether cooling operation using the radiation panel 8 is possible (S4). Note that in order to prevent dew condensation on the surface of the radiant panel 8, the surface temperature Tps of the surface must be higher than the dew point Tad of the indoor air. Measurement accuracy is taken into account. That is, when the surface temperature Tps is higher than the dew point Tad of indoor air by 2°C or more (S4, YES), cooling operation using the radiant panel 8 is performed, and when it is lower than the dew point Tad+2°C (S4, YES).
, NO) The expansion valves 5 and 9 are fully closed (S5), and the indoor heat exchanger 6 is operated to promote dehumidification of the indoor air (
Steps S16 to S18 (to be described later): The operation of the radiant panel 8 is stopped until the conditions of step S4 are satisfied.
【0014】一方,上記輻射パネル8の冷房運転を行な
う場合,膨張弁5,9がそれぞれ適した開度にあるか否
かが判断され(S6),各膨張弁5,9がそれぞれ適し
た開度になければ(NO)ステップS7においてそれぞ
れの適した開度に設定した後再び上記温度データを検出
するルーチン(S3)に戻る。通常のルームエアコンデ
ィショナーでは蒸発器の過熱度(蒸発器冷媒出口温度−
蒸発器冷媒入口温度)に応じて蒸発器入側の膨張弁が制
御されるが,この空気調和機1の室内の熱交換器6及び
輻射パネル8も同様に制御される。但し,冷房運転にあ
たっては,先ず輻射パネル8の過熱度を調整する膨張弁
5の制御が実行される。上記膨張弁制御装置12はS3
において検出された輻射パネル8の冷媒入口温度Tpi
,冷媒出口温度Tpoに基づいて現在の輻射パネル8の
過熱度(Tpo−Tpi)を演算し,この過熱度が予め
設定された許容過熱度(5〜2℃)より大きいとき(S
8,YES)上記膨張弁5の開度を大きくし(S9),
上記演算された過熱度が上記許容過熱度よりも小さいと
き(S10,YES)膨張弁5の開度を小さくする(S
11)とともに,上記演算された過熱度が上記許容過熱
度の範囲内のとき(S8のNO,S10のNO)上記膨
張弁5をそのときの開度に保持する。On the other hand, when cooling the radiant panel 8, it is determined whether or not the expansion valves 5 and 9 are at appropriate opening degrees (S6). If not (NO), the appropriate opening degrees are set for each in step S7, and then the routine returns to detecting the temperature data again (S3). In normal room air conditioners, the degree of superheating of the evaporator (evaporator refrigerant outlet temperature -
The expansion valve on the inlet side of the evaporator is controlled according to the evaporator refrigerant inlet temperature), and the indoor heat exchanger 6 and radiant panel 8 of this air conditioner 1 are also controlled in the same way. However, in the cooling operation, first, the expansion valve 5, which adjusts the degree of superheating of the radiation panel 8, is controlled. The expansion valve control device 12 is S3
The refrigerant inlet temperature Tpi of the radiant panel 8 detected at
, the current degree of superheating (Tpo - Tpi) of the radiant panel 8 is calculated based on the refrigerant outlet temperature Tpo, and when this degree of superheating is larger than the preset allowable degree of superheating (5 to 2 degrees Celsius) (S
8, YES) Increase the opening degree of the expansion valve 5 (S9),
When the calculated degree of superheat is smaller than the allowable degree of superheat (S10, YES), the opening degree of the expansion valve 5 is decreased (S10, YES).
11), and when the calculated degree of superheat is within the range of the allowable degree of superheat (NO in S8, NO in S10), the expansion valve 5 is held at the opening degree at that time.
【0015】次に輻射パネル8の冷媒蒸発温度を調整す
るための膨張弁9の制御が実行される。この場合も,上
記室内温度の温湿度分布或いは各温度センサの測定精度
が考慮され,輻射パネル8の表面温度Tpsが室内空気
の露点Tadよりも5℃以上のとき(S12,YES)
,輻射パネル8の表面に結露を生じることがないため,
膨張弁9の開度が大きくされて(S13)冷媒蒸発温度
が下げられる。逆に上記表面温度Tpsが上記露点Ta
d+3℃より低いとき(S14,YES),パネルの表
面に結露が生じることを防ぐため膨張弁9の開度が小さ
くされる(S15)。これによって,上記輻射パネル8
の出側において冷媒が流通しにくくなり輻射パネル8に
おける冷媒蒸発温度が上昇する。この場合も,上記表面
温度Tpsと露点Tadの温度差が所定の温度幅(5〜
3℃)内にあるときは,そのときの膨張弁9の開度のま
まで運転が続行される。引き続き,膨張弁制御装置12
は膨張弁4の制御を行なう。この膨張弁4も上記膨張弁
5と同様に室内熱交換器6の過熱度(Thexo−Th
exi)に応じて制御される。この室内熱交換器6の過
熱度についても上記輻射パネル8の場合と同様に過熱度
に係る所定の温度幅(5〜3℃)が予め設定されており
,上記過熱度が5℃を超えた場合には(S16,YES
),膨張弁4の開度が大きくされ(S17),これによ
って室内熱交換器6の冷房負荷が大きくされる。
他方,上記過熱度が上記温度幅以下のとき(S18,Y
ES)膨張弁4の開度は小さくされる。Next, control of the expansion valve 9 for adjusting the refrigerant evaporation temperature of the radiant panel 8 is executed. In this case as well, the temperature/humidity distribution of the indoor temperature or the measurement accuracy of each temperature sensor is considered, and when the surface temperature Tps of the radiant panel 8 is 5°C or more higher than the dew point Tad of the indoor air (S12, YES).
, since no dew condensation occurs on the surface of the radiation panel 8,
The opening degree of the expansion valve 9 is increased (S13), and the refrigerant evaporation temperature is lowered. Conversely, the surface temperature Tps is the dew point Ta.
When the temperature is lower than d+3°C (S14, YES), the opening degree of the expansion valve 9 is reduced to prevent dew condensation from forming on the surface of the panel (S15). As a result, the above-mentioned radiant panel 8
It becomes difficult for the refrigerant to flow on the exit side of the radiant panel 8, and the evaporation temperature of the refrigerant in the radiation panel 8 increases. In this case as well, the temperature difference between the surface temperature Tps and the dew point Tad is within a predetermined temperature range (5 to 5
3° C.), operation continues with the opening degree of the expansion valve 9 at that time. Subsequently, the expansion valve control device 12
controls the expansion valve 4. Like the expansion valve 5, this expansion valve 4 also has a superheat degree (Thexo-Th) of the indoor heat exchanger 6.
exi). As for the degree of superheating of this indoor heat exchanger 6, a predetermined temperature range (5 to 3°C) related to the degree of superheating is set in advance as in the case of the above-mentioned radiant panel 8, and when the degree of superheating exceeds 5°C, (S16, YES
), the opening degree of the expansion valve 4 is increased (S17), thereby increasing the cooling load of the indoor heat exchanger 6. On the other hand, when the degree of superheat is below the temperature range (S18, Y
ES) The opening degree of the expansion valve 4 is reduced.
【0016】上記したように,本実施例の空気調和機1
によれば,輻射パネル8の冷媒入側の膨張弁5により輻
射パネル8の冷媒の過熱度を調節し,冷媒出側の膨張弁
9により輻射パネル8内の冷媒蒸発温度(圧力)を調節
することができる。そのため,従来のようにブラインサ
イクルを用いる必要がなく,冷凍サイクルのみによって
強制対流と輻射とを利用した冷房を上記輻射パネル8の
結露を生じることなく行なうことができる。従って,従
来と比べて空気調和機の構成が簡素で済み製造コストの
低減化を図ることができる。また,この空気調和機1は
,従来のように,ブラインサイクル41と冷凍サイクル
40(いずれも図4)との間に冷媒・ブライン熱交換器
29を介在させる必要がないことから熱効率が良く,加
えてブライン用の循環ポンプ31,32を駆動するため
の所要動力も必要でないことから,冷凍サイクルのCO
Pが向上し省エネルギー化を図ることができる。As mentioned above, the air conditioner 1 of this embodiment
According to the invention, the degree of superheating of the refrigerant in the radiant panel 8 is adjusted by the expansion valve 5 on the refrigerant inlet side of the radiant panel 8, and the refrigerant evaporation temperature (pressure) in the radiant panel 8 is adjusted by the expansion valve 9 on the refrigerant outlet side. be able to. Therefore, there is no need to use a brine cycle as in the conventional case, and cooling using forced convection and radiation can be performed only by the refrigeration cycle without causing dew condensation on the radiation panel 8. Therefore, the configuration of the air conditioner is simpler than in the past, and manufacturing costs can be reduced. In addition, this air conditioner 1 has good thermal efficiency because there is no need to interpose the refrigerant/brine heat exchanger 29 between the brine cycle 41 and the refrigeration cycle 40 (both shown in FIG. 4) as in the conventional case. In addition, since the power required to drive the circulation pumps 31 and 32 for brine is not required, the CO of the refrigeration cycle is reduced.
P is improved and energy saving can be achieved.
【0017】なお,本発明は,上記実施例のように冷房
運転のみを行なう空気調和機1に適用されるのみならず
,例えば図3に示す如くの冷暖房運転を切り替えて行な
う空気調和機1a に適用することも可能である。上記
空気調和機1a は,先の実施例の空気調和機1の構成
に加えて,冷暖房運転の切り替えを行なうために圧縮機
2の吐出側と吸込側の冷媒経路を相互に切り替える四方
弁24と,暖房運転時に高温の冷媒を通過させて室内の
輻射暖房を行なう輻射パネル20と,該輻射パネル20
から流出した冷媒を減圧し一部気化させて室外熱交換器
3に送り出す膨張弁25とが主として付設されている。
上記暖房用の輻射パネル20は,室内熱交換器6の冷媒
入側の膨張弁4と並列にこの膨張弁4を迂回する経路で
設けられている。また,各運転時の冷媒の流れを所定方
向に規制するための三つの逆止弁21,22,23が,
上記輻射パネル20と膨張弁4との間,膨張弁9と四方
弁24との間,上記膨張弁25と室外熱交換器3との間
の冷媒管路にそれぞれ配設されている。上記空気調和機
1a において,冷房運転時には,上記四方弁24が駆
動されてそのポートa〜ポートb,ポートc〜ポートd
がそれぞれ冷媒を流通可能に設定される。これによって
,上記空気調和機1a は先の実施例の空気調和機1と
同様に,冷媒を実線の矢印の方向にそれぞれ流通させ,
冷房用の輻射パネル8に結露を生じることなく効率良く
室内の冷房を行なう。一方,暖房運転に際しては,上記
四方弁24が切り替えられ,ポートa〜ポートd,ポー
トb〜ポートcがそれぞれ流通可能に設定される。そこ
で,圧縮機2により送り出された冷媒は,破線で示す矢
印のように流通し,例えば高温の冷媒が室内熱交換器6
を通過し更に輻射パネル20を通過して室内を暖房し膨
張弁25によって減圧されて,更に室外熱交換器3によ
り外気からの熱を受けて気化し上記圧縮機2に戻る。The present invention is applicable not only to an air conditioner 1 that performs only cooling operation as in the above embodiment, but also to an air conditioner 1a that performs switching between cooling and heating operations as shown in FIG. 3, for example. It is also possible to apply In addition to the configuration of the air conditioner 1 of the previous embodiment, the air conditioner 1a has a four-way valve 24 that mutually switches the refrigerant path on the discharge side and the suction side of the compressor 2 in order to switch between cooling and heating operations. , a radiant panel 20 that performs indoor radiant heating by passing a high-temperature refrigerant during heating operation, and the radiant panel 20
An expansion valve 25 is mainly provided to reduce the pressure of the refrigerant flowing out of the refrigerant, partially vaporize it, and send it to the outdoor heat exchanger 3. The heating radiant panel 20 is provided in parallel with the expansion valve 4 on the refrigerant inlet side of the indoor heat exchanger 6 in a route that bypasses the expansion valve 4. In addition, three check valves 21, 22, 23 are provided to regulate the flow of refrigerant in a predetermined direction during each operation.
The refrigerant pipes are arranged between the radiant panel 20 and the expansion valve 4, between the expansion valve 9 and the four-way valve 24, and between the expansion valve 25 and the outdoor heat exchanger 3, respectively. In the air conditioner 1a, during the cooling operation, the four-way valve 24 is driven, and the ports A to B and ports C to D are driven.
are each set to allow refrigerant to flow through them. As a result, the air conditioner 1a allows the refrigerant to flow in the directions of the solid arrows, as in the air conditioner 1 of the previous embodiment.
To efficiently cool a room without forming dew condensation on a cooling radiation panel 8. On the other hand, during heating operation, the four-way valve 24 is switched, and ports a to d and ports b to c are set to be able to flow, respectively. Therefore, the refrigerant sent out by the compressor 2 flows as shown by the arrow shown by the broken line, and for example, the high temperature refrigerant passes through the indoor heat exchanger 6.
The air then passes through a radiant panel 20 to heat the room, is depressurized by an expansion valve 25, is further vaporized by receiving heat from the outside air in an outdoor heat exchanger 3, and returns to the compressor 2.
【0018】[0018]
【発明の効果】本発明によれば,圧縮機,凝縮器,第1
の膨張弁,蒸発器をこれらの順序で熱を伝達するための
熱媒体が流通する管路を介して連結して冷凍サイクルを
構成するとともに外部からの輻射熱を吸収する輻射パネ
ルを上記蒸発器と並列に上記冷凍サイクルに連結してな
る空気調和機において,上記輻射パネルの熱媒体出側に
開閉自在に設けられた第2の膨張弁と,上記輻射パネル
の近傍の空気の露点を検出する露点検出手段と,該露点
検出手段により検出された露点と上記輻射パネルの温度
の差に応じて上記第2の膨張弁の開度を制御する膨張弁
制御手段とを具備してなることを特徴とする空気調和機
が提供される。それにより,冷房運転時の輻射パネルの
結露を防止するにあたって,1種類の熱媒体を流通させ
る簡素な構成の冷凍サイクルを採用することができる。
従って,例えば2種以上の熱媒体を用いて冷凍サイクル
を構成した場合のように,残りの熱媒体を循環させるた
めの循環手段に要する所要動力が必要でない。その結果
,上記空気調和機は省エネルギー化を図ることができる
。[Effect of the invention] According to the present invention, the compressor, the condenser, the first
The expansion valve and the evaporator are connected in this order through a pipe through which a heat medium flows for transferring heat to form a refrigeration cycle, and a radiant panel that absorbs radiant heat from the outside is connected to the evaporator. In an air conditioner connected to the refrigeration cycle in parallel, a second expansion valve is provided on the heat medium outlet side of the radiant panel so as to be openable and closable, and a dew point for detecting the dew point of the air in the vicinity of the radiant panel is provided. It is characterized by comprising: a detection means; and an expansion valve control means for controlling the opening degree of the second expansion valve according to the difference between the dew point detected by the dew point detection means and the temperature of the radiant panel. An air conditioner is provided. Thereby, in order to prevent dew condensation on the radiant panel during cooling operation, it is possible to employ a refrigeration cycle with a simple configuration in which one type of heat medium flows. Therefore, unlike in the case where a refrigeration cycle is configured using two or more types of heat carriers, the power required for the circulation means for circulating the remaining heat carrier is not required. As a result, the air conditioner described above can save energy.
【図1】 本発明の一実施例に係る空気調和機の制御
系統を示すブロック構成図。FIG. 1 is a block configuration diagram showing a control system of an air conditioner according to an embodiment of the present invention.
【図2】 上記空気調和機による冷房運転の処理手順
を示すフローチャート。FIG. 2 is a flowchart showing a processing procedure for cooling operation by the air conditioner.
【図3】 本発明の別の実施例に係る冷暖房用の空気
調和機を示すブロック構成図。FIG. 3 is a block configuration diagram showing an air conditioner for heating and cooling according to another embodiment of the present invention.
【図4】本発明の背景の一例となる従来の空気調和機を
示すブロック構成図。FIG. 4 is a block configuration diagram showing a conventional air conditioner as an example of the background of the present invention.
1,1a ,1b …空気調和機 2…圧縮機3
…室外熱交換器 4…膨張
弁(第1の膨張弁)
5…膨張弁(第1の膨張弁) 6…室内熱交換器
7…冷媒管
8…輻射パネル9…膨張弁(第2の膨張弁) 10…
湿度センサ11…温度センサ
12…膨張弁制御装置30…三方混合弁1, 1a, 1b...Air conditioner 2...Compressor 3
...Outdoor heat exchanger 4...Expansion valve (first expansion valve) 5...Expansion valve (first expansion valve) 6...Indoor heat exchanger 7...Refrigerant pipe
8... Radiation panel 9... Expansion valve (second expansion valve) 10...
Humidity sensor 11...Temperature sensor
12...Expansion valve control device 30...Three-way mixing valve
Claims (1)
器をこれらの順序で熱を伝達するための熱媒体が流通す
る管路を介して連結して冷凍サイクルを構成するととも
に外部からの輻射熱を吸収する輻射パネルを上記蒸発器
と並列に上記冷凍サイクルに連結してなる空気調和機に
おいて,上記輻射パネルの熱媒体出側に開閉自在に設け
られた第2の膨張弁と,上記輻射パネルの近傍の空気の
露点を検出する露点検出手段と,該露点検出手段により
検出された露点と上記輻射パネルの温度の差に応じて上
記第2の膨張弁の開度を制御する膨張弁制御手段とを具
備してなることを特徴とする空気調和機。[Claim 1] A refrigeration cycle is constructed by connecting a compressor, a condenser, a first expansion valve, and an evaporator in this order via a pipe through which a heat medium for transferring heat flows, and also connects the compressor, condenser, first expansion valve, and evaporator to the outside. In an air conditioner comprising a radiant panel connected to the refrigeration cycle in parallel with the evaporator, the second expansion valve is provided on the heat medium outlet side of the radiant panel so as to be openable and closable; a dew point detection means for detecting the dew point of air near the radiant panel; and an expansion control for controlling the opening degree of the second expansion valve according to the difference between the dew point detected by the dew point detection means and the temperature of the radiant panel. An air conditioner characterized by comprising a valve control means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3004756A JP2686371B2 (en) | 1991-01-19 | 1991-01-19 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3004756A JP2686371B2 (en) | 1991-01-19 | 1991-01-19 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04236062A true JPH04236062A (en) | 1992-08-25 |
JP2686371B2 JP2686371B2 (en) | 1997-12-08 |
Family
ID=11592745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3004756A Expired - Fee Related JP2686371B2 (en) | 1991-01-19 | 1991-01-19 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2686371B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005291587A (en) * | 2004-03-31 | 2005-10-20 | Daikin Ind Ltd | Air conditioning system |
WO2012060227A1 (en) * | 2010-11-05 | 2012-05-10 | ダイキン工業株式会社 | Air conditioner |
CN103154621A (en) * | 2010-10-08 | 2013-06-12 | 大金工业株式会社 | Air conditioner |
JP2015203535A (en) * | 2014-04-15 | 2015-11-16 | 富士電機株式会社 | Cooling device |
CN113533432A (en) * | 2021-06-21 | 2021-10-22 | 无锡菲兰爱尔空气质量技术有限公司 | Multipoint compensation type radiation air conditioner dew point measuring and calculating system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56166473U (en) * | 1980-05-15 | 1981-12-09 | ||
JPH01172613U (en) * | 1988-05-27 | 1989-12-07 |
-
1991
- 1991-01-19 JP JP3004756A patent/JP2686371B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56166473U (en) * | 1980-05-15 | 1981-12-09 | ||
JPH01172613U (en) * | 1988-05-27 | 1989-12-07 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005291587A (en) * | 2004-03-31 | 2005-10-20 | Daikin Ind Ltd | Air conditioning system |
JP4513382B2 (en) * | 2004-03-31 | 2010-07-28 | ダイキン工業株式会社 | Air conditioning system |
CN103154621A (en) * | 2010-10-08 | 2013-06-12 | 大金工业株式会社 | Air conditioner |
CN103154621B (en) * | 2010-10-08 | 2016-02-24 | 大金工业株式会社 | Air conditioner |
WO2012060227A1 (en) * | 2010-11-05 | 2012-05-10 | ダイキン工業株式会社 | Air conditioner |
JP2012112638A (en) * | 2010-11-05 | 2012-06-14 | Daikin Industries Ltd | Air conditioner |
JP2015203535A (en) * | 2014-04-15 | 2015-11-16 | 富士電機株式会社 | Cooling device |
CN113533432A (en) * | 2021-06-21 | 2021-10-22 | 无锡菲兰爱尔空气质量技术有限公司 | Multipoint compensation type radiation air conditioner dew point measuring and calculating system and method |
CN113533432B (en) * | 2021-06-21 | 2024-07-23 | 无锡菲兰爱尔空气质量技术有限公司 | Multi-point compensation type radiation air conditioner dew point measuring and calculating system and method |
Also Published As
Publication number | Publication date |
---|---|
JP2686371B2 (en) | 1997-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8047011B2 (en) | Refrigeration system | |
WO2018047331A1 (en) | Air conditioning device | |
JPH07234038A (en) | Multiroom type cooling-heating equipment and operating method thereof | |
JP2006283989A (en) | Cooling/heating system | |
WO2014122922A1 (en) | Heating system | |
WO2014132433A1 (en) | Air conditioning device | |
KR20060066840A (en) | Indoor unit control structure of multi type air conditioner and indoor control method | |
KR20120083139A (en) | Heat pump type speed heating apparatus | |
JP2008025901A (en) | Air conditioner | |
JP4187008B2 (en) | Air conditioner | |
JP2008175430A (en) | Air conditioner | |
JP3633997B2 (en) | Refrigerated refrigerator and control method thereof | |
JPH04236062A (en) | Air conditioner | |
JP2005291553A (en) | Multiple air conditioner | |
JP4074422B2 (en) | Air conditioner and its control method | |
JP4743223B2 (en) | Air conditioner | |
JPH02223757A (en) | Air conditioner | |
CA2530567C (en) | Multi-range cross defrosting heat pump system | |
WO2021014520A1 (en) | Air-conditioning device | |
KR20220083495A (en) | Heat recovery type complex chiller system and operation method thereof | |
JP2005147582A (en) | Air conditioner | |
JP2716559B2 (en) | Cooling / heating mixed type multi-room air conditioner | |
CN215002008U (en) | Air conditioning system and air conditioner | |
JPH05302765A (en) | Multi-chamber type air conditioner | |
KR0176929B1 (en) | Refrigerating cycle apparatus of multi type airconditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |