JPS6115956B2 - - Google Patents
Info
- Publication number
- JPS6115956B2 JPS6115956B2 JP3005279A JP3005279A JPS6115956B2 JP S6115956 B2 JPS6115956 B2 JP S6115956B2 JP 3005279 A JP3005279 A JP 3005279A JP 3005279 A JP3005279 A JP 3005279A JP S6115956 B2 JPS6115956 B2 JP S6115956B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- output
- current
- detection
- iron core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
本発明は金属電解精製における異常電流の検出
装置に関する。
銅、亜鉛、鉛等の金属を電解精製するに際して
は電極板にツリーが成長し陽極(アノード)と陰
極(カソード)との間を短絡させることがある。
このとき流れる短絡電流は目的金属の析出には何
ら貢献せず電流能率を低下させる最大の原因とな
る。そればかりか、前記短絡電流は電流値が大で
ある結果、陽極の電極板を崩壊せしめ電解液中の
不純物濃度を高くして析出金属の品質を低下せし
めるとともに、大きいジユール熱の発生を伴なう
結果、電解液の液温維持のためクーラの負荷を増
大せしめる。したがつて、非鉄金属の電解精製工
程でかかる短絡を未然に防止することは当該電解
精製の成績向上のための必須要件である。これに
対処するため従来から人力によるか若しくは自動
的に電極板に流れる電流の大きさを検出する種々
の検出手段が提案されている。これら検出手段は
基本的に(1)極間電圧測定方式(2)温度検出方式(3)磁
束測定方式の三方式に分類できる。このうち極間
電圧測定方式によれば陽極及び陰極の両電極板間
の極間電圧が電解の経過時間によつて変化すると
ともに、短絡電極板と正常電極板との間で多少の
電圧変化を生起するもののこの電圧変化には測定
時の接触抵抗等他の要因も大きく影響してくるの
で短絡状態の確実な検出が難かしい。また、温度
検出方式においては、短絡が発生しこの短絡状態
が熱的に電極板表面に現われる迄に若干の時間を
要するのみならず電極板温度と短絡電流値との関
係が稀薄であつて弱い短絡についての判別は極め
て難しい。一方、磁束測定方式には電流分布計を
用いる方式と磁束計を用いる方式とがある。この
うち電流分布計とは電極板に流れる電流により生
起する磁界によりトルクを生ぜしめこれを電流目
盛で直読する計器である。この電流計を用いる方
式の場合、人力により電極板(通常はカソード
板、以下同じ)1枚1枚電流値を測定し所定の電
流値以上の値を示す電極板を短絡板、所定の電流
値未満の値を示す電極板を接触不良板として夫々
の原因を除去している。ところが電極板1枚1枚
に関して電流値を測定する作業が繁雑であるばか
りでなく、特に全ての作業を人力によつているた
め、作業自体非能率的である。また、磁束計には
半導体を応用したものがあり、これを用いた場合
には短絡電極板によつて発生する異常電流に起因
する異常磁界の強さの絶対値を検出している。と
ころが、電極板上の磁界の強さを単に測定しても
充分な測定精度が得られない。電解槽内には多数
の電極板が配置してあり、またこの種の金属電解
精製工場には多数の電解槽が設けてあるため、他
の電極板からの磁界の影響を受けるからである。
また半導体を用いた前記磁束計はその特性のバラ
ツキが大きく、更に室内温度及び磁束計の電極板
に対する角度や位置によつてもその測定値が大き
く変動する等の理由により多数の電極板群を有す
る一槽について絶対値のみで短絡電極板を判別す
ることは信頼性に乏しいといわざるを得ない。
本発明は、上記従来技術に鑑み、短かい測定時
間で高精度に電極板の異常を検知し得るとともに
この検知を行なう際のセンサである磁電変換素子
の異常も検知し得る金属電解精製における異常電
流の検出装置を提供することを目的とする。
上記目的を達成する本発明の構成は、
上端部に夫々接続された電極板導体を介して電
流が供給される陽極及び陰極である多数の電極板
が配設してある電解槽を跨ぐフレームと、
このフレームに垂下され上下動可能に形成され
た多数のロツドと、
前記電極板導体に当接して下降位置を規制する
ストツパ、このストツパに位置規制され電極板導
体を跨ぐ開口部を有する環状の鉄心、この鉄心に
巻回されている励磁コイル及びこの励磁コイルに
隣接して前記鉄心に装着された磁電変換素子を有
し、前記ロツドの下端に夫々固着されている多数
の検出部と、
前記検出部を引き上げることにより検出部を
夫々磁気シールドするシールド部材と、
各電極板電流による検出部の出力をVH、各励
磁コイルによる基準磁束に基づく各検出部の出力
をVF及び各検出部の無励磁出力をV0とするとき
(VH―V0)/(VF―V0)を各検出部毎に演算しこ
の各演算値をこの演算値の全検出部に関する平均
値と比較して電極板の異常を判定する演算処理
部、または各電極板電流による磁電変換素子の出
力をVH、各励磁コイルによる基準磁束に基づく
各磁電変換素子の出力をVF、各励磁コイルによ
る逆極性の基準磁束に基づく各磁電変換素子の出
力を―VF及び各磁電変換素子の無励磁出力をV0
とするとき、(VH―V0)/(VF―V0)を各検出部
毎に演算しこの各演算値をこの演算値の全検出部
に関する平均値と比較して電極板の異常を判定す
るとともに、VFと―VFとの和が零を中心とした
零近傍の所定範囲内にない場合、またはVF若し
くは―VFが零であるか若しくは零近傍の所定値
より小さい場合にはその磁電変換素子が不良であ
ると判定する演算処理部とを有することを特徴と
する。
以下本発明の実施例を図面に基づき詳細に説明
する。
第1図a及び第1図bに示すように、陽極であ
る電極板1と陰極である電極板2は、1列が数10
槽(図では35槽)からなる複数列(図では2列)
の電解槽3の1槽毎に数10枚(図では44枚)交互
に配設してある。このとき前記電極板1及び電極
板2は、これら電極板1,2に夫々接続されてい
る電極板導電体4,5及びこれら電極板導電体
4,5が集合して一括接続されている共通導電体
6,7を介して電源8のプラス側及びマイナス側
に夫々接続してある。検槽作業に際しては前記電
極板導電体4,5にて所定の測定を行なう。即
ち、本実施例に係る異常電流検出装置本体9がレ
ール10上を走行するとこにより1槽毎に電極板
1,2に流れる電流が作る磁界の強さを前記電極
板導電体4,5部分で測定するようになつてい
る。第2図a〜第2図cには前記異常電流検出装
置本体9を抽出・拡大して示す。同図に示すよう
に、電解槽3を跨ぐフレーム11には隣接する電
極板1の間隔に対応せしめてこの電極板1と同数
のロツド12が上下動可能に垂下されている。こ
のロツド12の先端には検出部13が固着されて
いる。このときの検出部13の下方向移動を規制
するのがストツパ15である。また前記ホレーム
11と検出部13の間にはシールド部材16を設
けてありフレーム11を引き上げることにより前
記検出部13を収納しこの検出部13を周囲の磁
界から磁気シールドし得るようになつている。ま
た前記検出部13は、第3図a〜第3図cにこの
部分を抽出・拡大して示すように、鉄心13a、
励磁コイル13b及びホール素子13c有してい
る。このうち、耐酸処理がなされている鉄心13
aは電極板導電体4に流れる電流により形成され
る磁束を集束させるものである。このため電極板
導電体4の上面に当接して検出部13の下降を規
制するストツパ13dを有するとともに電極板導
電体4を跨ぎ得るよう下方に向かつて開口する開
口部13eを有する。即ち、鉄心13aは準閉磁
路を形成している。また、励磁コイル13bは基
準磁束を発生させるためのもので鉄心13aに装
着されており直流励磁し得るようになつている。
ホール素子13cは磁電変換素子で前記励磁コイ
ル13bに隣接し鉄心13aに設けたギヤツプに
挿入されており、その出力はケーブル17を介し
て外部に取り出し得るようになつている。このケ
ーブル17は同時に前記励磁コイル13bに直流
電圧を供給する機能も有する。
このときの検出部13の数は勿論電極板1の枚
数に合わせて適宜選定するが必ずしも同数にする
必要はない。
第4図には3個の異なるホール素子13cに関
し磁束密度―出力特性図を示す。このとき横軸に
磁束密度B(gause)、縦軸にホール素子出力V
(mV)を夫々採つている。同図を参照すれば、
ホール素子入力電流を定格直流として一定に保つ
とある磁束密度範囲内では極めて高精度で誤差の
小さい直線特性を示す。この範囲は短絡している
電極板1,2による磁束密度よりも更に大きい範
囲である。また、周囲温度についてはホール素子
13cの品種によりかなり大きな差はあるが前述
の直線特性にある一定係数を乗じた形で表わされ
る。つまりホール素子13cのもつ特性のバラツ
キとは、無励磁(B=0の時)におけるホール素
子出力Vである不平衡電圧V0の違い、磁束密度
Bに対する勾配の違い及び温度係数の違いであ
る。ところでホール素子出力Vは次式で表わされ
る。
V=(1+α・T)(KH・B+V0)
但し:V0=不平衡電圧、B=磁束密度、
α=温度係数、T=上昇温度、
KH=発電定数
そこで第5図に示すように、測定した電極電流に
よるホール素子13cの出力VH、シールド部材
16に検出部13を収納し励磁コイル13bに直
流電圧を印加して得たホール素子13cの出力V
Fを基にして(VH―V0)/(VF―V0)を演算す
る。このとき測定値の読み取り時間が数分のオー
ダであれば温度変化は無視し得る。したがつて前
記演算による演算値はBH/BFとなる。の値はホ
ール素子13cの特性、即ち不平衡電圧V0、発
電定数KH及び温度係数αに何ら関与しない励磁
コイル13bによる磁束密度BFに対して測定し
た電極電流による磁束密度BHが何倍であるかを
示す数値となる。このとき測定した電極電流によ
るホール素子13cの出力VHを読み取り、次に
励磁コイル13bに直流電圧を印加して得たホー
ル素子13cの出力VFを読み取り、最後に無励
磁時におけるホール素子13cの出力V0を読み
取れば出力V0は残留磁気の分も含んでおり同時
にその補正ともなる。つまり励磁コイル13bに
よる磁束密度BFの磁界を各検出部13のホール
素子13cに一様に印加すれば、各電極板1に対
応する演算値を合計、平均しその値に設定値倍し
た値より大か小の時その夫々を短絡電極板若しく
は接触不良電極板として検知することができる。
ホール素子13cに一様の磁界を作用させるには
各励磁コイル13bを直列に同一の直流電源に接
続するか若しくは要求される検出精度によつては
各励磁コイル13bを並列に同一の直流電源にす
れば良い。このとき各励磁コイル13bの内部抵
抗のバラツキは無視し得る。
以上のことを整理して書けば、
The present invention relates to an abnormal current detection device in metal electrolytic refining. When electrolytically refining metals such as copper, zinc, and lead, a tree may grow on the electrode plate and cause a short circuit between the anode and the cathode.
The short-circuit current that flows at this time does not contribute to the precipitation of the target metal and is the biggest cause of lowering current efficiency. Moreover, the short circuit current has a large current value, which causes the electrode plate of the anode to collapse, increases the concentration of impurities in the electrolyte, and deteriorates the quality of the deposited metal, and also generates a large amount of Joule heat. As a result, the load on the cooler increases in order to maintain the temperature of the electrolyte. Therefore, preventing such short circuits in the electrolytic refining process of nonferrous metals is an essential requirement for improving the performance of the electrolytic refining process. In order to cope with this problem, various detection means have been proposed for manually or automatically detecting the magnitude of the current flowing through the electrode plate. These detection means can basically be classified into three methods: (1) inter-pole voltage measurement method, (2) temperature detection method, and (3) magnetic flux measurement method. Among these, according to the interelectrode voltage measurement method, the interelectrode voltage between the anode and cathode electrode plates changes depending on the elapsed time of electrolysis, and there is also a slight voltage change between the shorted electrode plate and the normal electrode plate. Although this voltage change occurs, other factors such as contact resistance during measurement have a large influence, so it is difficult to reliably detect a short circuit state. In addition, in the temperature detection method, not only does it take some time for a short circuit to occur and this short circuit state thermally appears on the electrode plate surface, but also the relationship between the electrode plate temperature and the short circuit current value is weak. Discrimination regarding short circuits is extremely difficult. On the other hand, magnetic flux measurement methods include a method using a current distribution meter and a method using a magnetometer. Among these, a current distribution meter is an instrument that generates torque using a magnetic field generated by a current flowing through an electrode plate, and directly reads this torque on a current scale. In the case of this method using an ammeter, the current value of each electrode plate (usually a cathode plate, the same applies hereinafter) is measured manually, and the electrode plate that shows a value greater than a predetermined current value is connected to a short circuit plate, and the current value is set to a predetermined current value. Electrode plates exhibiting values less than 1 are treated as poor contact plates and the respective causes are eliminated. However, the work of measuring the current value for each electrode plate is not only complicated, but also the work itself is inefficient, especially since all the work is done manually. Furthermore, there are magnetometers that use semiconductors, and when this is used, the absolute value of the strength of an abnormal magnetic field caused by an abnormal current generated by a short-circuited electrode plate is detected. However, sufficient measurement accuracy cannot be obtained simply by measuring the strength of the magnetic field on the electrode plate. This is because a large number of electrode plates are arranged in an electrolytic cell, and since a large number of electrolytic cells are provided in this type of metal electrolytic refining factory, the electrolytic cell is affected by the magnetic field from other electrode plates.
In addition, the magnetometers using semiconductors have large variations in their characteristics, and the measured values also vary greatly depending on the room temperature and the angle and position of the magnetometer with respect to the electrode plates. It must be said that it is unreliable to identify a shorted electrode plate based only on the absolute value of a single tank. In view of the above-mentioned conventional technology, the present invention is capable of detecting an abnormality in an electrode plate with high precision in a short measurement time, and also detects an abnormality in a magnetoelectric transducer which is a sensor for this detection. An object of the present invention is to provide a current detection device. The structure of the present invention that achieves the above object includes a frame that straddles an electrolytic cell in which a large number of electrode plates, which are anodes and cathodes, to which current is supplied via electrode plate conductors connected to the upper ends thereof, are arranged. , a large number of rods suspended from this frame and formed to be able to move up and down; a stopper that comes into contact with the electrode plate conductor to restrict its lowering position; A large number of detection parts each having an iron core, an excitation coil wound around the iron core, and a magnetoelectric transducer mounted on the iron core adjacent to the excitation coil, and each of which is fixed to the lower end of the rod; A shield member magnetically shields each detection section by pulling up the detection section, V H is the output of the detection section due to the current of each electrode plate, V F is the output of each detection section based on the reference magnetic flux from each exciting coil, and each detection section When the non-excited output of is V 0 , calculate (V H - V 0 )/(V F - V 0 ) for each detection section, and compare each calculated value with the average value of this calculated value for all detection sections. V H is the output of the magneto-electric transducer based on the current of each electrode plate, V F is the output of each magneto-electric transducer based on the reference magnetic flux produced by each exciting coil, and V F is the output of each magneto-electric transducer based on the reference magnetic flux produced by each exciting coil. The output of each magnetoelectric conversion element based on the reference magnetic flux of opposite polarity is -V F , and the non-excitation output of each magnetoelectric conversion element is V 0
When (V H - V 0 )/(V F - V 0 ) is calculated for each detection part, each calculated value is compared with the average value for all the detection parts to determine if there is an abnormality in the electrode plate. , and if the sum of V F and -V F is not within a predetermined range near zero centered on zero, or V F or -V F is zero or smaller than a predetermined value near zero. and an arithmetic processing unit that determines that the magnetoelectric transducer is defective if the magnetoelectric transducer is defective. Embodiments of the present invention will be described in detail below based on the drawings. As shown in Figures 1a and 1b, each row of the electrode plate 1 as an anode and the electrode plate 2 as a cathode has a number of 10
Multiple rows (2 rows in the diagram) of tanks (35 tanks in the diagram)
Several ten sheets (44 sheets in the figure) are alternately arranged in each electrolytic cell 3. At this time, the electrode plate 1 and the electrode plate 2 are connected to the electrode plate conductors 4 and 5 connected to the electrode plates 1 and 2, respectively, and a common electrode plate in which the electrode plate conductors 4 and 5 are collectively connected. It is connected to the plus side and minus side of a power source 8 via conductors 6 and 7, respectively. During tank inspection work, predetermined measurements are performed using the electrode plate conductors 4 and 5. That is, when the abnormal current detection device main body 9 according to this embodiment runs on the rail 10, the strength of the magnetic field created by the current flowing through the electrode plates 1 and 2 for each tank is determined by the portions of the electrode plate conductors 4 and 5. It is now being measured by 2a to 2c show the abnormal current detection device body 9 extracted and enlarged. As shown in the figure, the same number of rods 12 as the electrode plates 1 are vertically movably suspended from a frame 11 that straddles the electrolytic cell 3, corresponding to the spacing between adjacent electrode plates 1. A detection section 13 is fixed to the tip of this rod 12. The stopper 15 restricts the downward movement of the detection section 13 at this time. Further, a shield member 16 is provided between the frame 11 and the detection section 13, and by pulling up the frame 11, the detection section 13 can be housed and the detection section 13 can be magnetically shielded from the surrounding magnetic field. . Further, the detection unit 13 detects the iron core 13a, as shown by extracting and enlarging this part in FIGS.
It has an excitation coil 13b and a Hall element 13c. Of these, 13 cores have undergone acid-proofing treatment.
a focuses the magnetic flux formed by the current flowing through the electrode plate conductor 4. For this purpose, it has a stopper 13d that comes into contact with the upper surface of the electrode plate conductor 4 to restrict the lowering of the detection part 13, and also has an opening 13e that opens downward so as to be able to straddle the electrode plate conductor 4. That is, the iron core 13a forms a quasi-closed magnetic path. Further, the excitation coil 13b is for generating a reference magnetic flux, and is attached to the iron core 13a so as to be capable of DC excitation.
The Hall element 13c is a magnetoelectric transducer and is inserted into a gap provided in the iron core 13a adjacent to the excitation coil 13b, and its output can be taken out to the outside via a cable 17. This cable 17 also has the function of supplying DC voltage to the excitation coil 13b. The number of detection units 13 at this time is of course appropriately selected according to the number of electrode plates 1, but does not necessarily have to be the same number. FIG. 4 shows magnetic flux density-output characteristic diagrams for three different Hall elements 13c. At this time, the horizontal axis is the magnetic flux density B (gause), and the vertical axis is the Hall element output V.
(mV) respectively. Referring to the same figure,
When the Hall element input current is kept constant as the rated DC, it exhibits linear characteristics with extremely high accuracy and small errors within a certain magnetic flux density range. This range is even larger than the magnetic flux density due to the short-circuited electrode plates 1 and 2. Furthermore, although there is a considerable difference in ambient temperature depending on the type of Hall element 13c, it is expressed by multiplying the above-mentioned linear characteristic by a certain constant coefficient. In other words, the variations in the characteristics of the Hall element 13c are the difference in the unbalanced voltage V 0 which is the Hall element output V in non-excitation (when B = 0), the difference in the slope with respect to the magnetic flux density B, and the difference in the temperature coefficient. . By the way, the Hall element output V is expressed by the following equation. V=(1+α・T)(K H・B+V 0 ) where: V 0 = unbalanced voltage, B = magnetic flux density, α = temperature coefficient, T = rising temperature, K H = power generation constant. Therefore, as shown in Figure 5. , the output V H of the Hall element 13c due to the measured electrode current, and the output V of the Hall element 13c obtained by housing the detection unit 13 in the shield member 16 and applying a DC voltage to the excitation coil 13b.
(V H −V 0 )/(V F −V 0 ) is calculated based on F. At this time, if the time to read the measured value is on the order of several minutes, the temperature change can be ignored. Therefore, the calculated value from the above calculation is B H /B F . The value of is calculated by determining the magnetic flux density B H due to the measured electrode current with respect to the magnetic flux density B F due to the exciting coil 13b, which has no influence on the characteristics of the Hall element 13c, that is, the unbalanced voltage V 0 , the power generation constant K H and the temperature coefficient α. This is a numerical value that indicates whether it is double. At this time, read the output V H of the Hall element 13c due to the electrode current measured, then read the output V F of the Hall element 13c obtained by applying a DC voltage to the excitation coil 13b, and finally read the output V F of the Hall element 13c when not excited. If you read the output V 0 of , the output V 0 includes the residual magnetism and also serves as a correction for it. In other words, if a magnetic field with a magnetic flux density B F by the excitation coil 13b is uniformly applied to the Hall element 13c of each detection section 13, the calculated values corresponding to each electrode plate 1 are summed, averaged, and the value is multiplied by the set value. When it is larger or smaller, it can be detected as a short circuit electrode plate or a poor contact electrode plate, respectively.
To apply a uniform magnetic field to the Hall element 13c, each excitation coil 13b is connected in series to the same DC power supply, or depending on the required detection accuracy, each excitation coil 13b is connected in parallel to the same DC power supply. Just do it. At this time, variations in the internal resistance of each exciting coil 13b can be ignored. If you organize and write the above,
【式】
なる関係が成立するNo.iの電極板1が短絡電極板
である。[Formula] The electrode plate 1 of No.i for which the following relationship holds is a short-circuit electrode plate.
【式】
なる関係が成立するNo.iの電極板1が接触不良電
極板である。
但し:VHiはi番目の電極板1による検出部1
3の出力、
VFiはi番目の励磁コイル13bによる
検出部13の出力、
V0iはi番目のホール素子13cによる
検出部13の無励磁出力、
K1及びK2は手動設定値、
Aiは極No.iの2次関数補正係数、
iはi番目の電極板1であつてi=2〜
43,i≒1,44である。
i=1,44の時、即ち1番目及び44番目の電極
板1、一般的には1つの電解槽3内の横方向(第
1図a参照)に配設された電極板1のうち左端及
び右端の電極板1については対応する電極板2が
1枚のため、通常その電流は正常時の他の電極板
1に流れる電流の約半分である。このため判断基
準値も前述の式の半分となり、またこの意味から
前述の式では44極分の平均として43で割つてい
る。i=1,44について整理して書けば、
なる関係が成立する場合短絡電極板である。
なる関係が成立する場合接触不良板である。
かかる演算処理を行なえばホール素子13cの
特性を何ら修正若しくは調整することなくそのま
ま支障なく前記ホール素子13cを使用し得る。
前記演算処理を行なう演算処理部18を含めた
本実施例のシステムのブロツク線図を第6図に示
す。同図中、18aはカウンタ、18bは増幅
器、18cはA/D変換器、18dは入出力イン
ターフエース、18fはマイクロコンピユータ、
18gは周辺機器コントローラ、18hはプリン
タ、18iはプログラムメモリ18jは操作・表
示部である。したがつて、No.1〜No.44までのホー
ル素子13cの出力Vを操作スイツチ19を順次
切換えることにより読み取つていきマイクロコン
ピユータ18fで所定の演算をした後その結果を
プリンタ18hに打ち出す。このとき各ホール素
子13cには電源20から定格の直流電流が供給
される。しかも、この直流電流の供給は逆転スイ
ツチ21を介して行なわれる。したがつて逆転ス
イツチ21を操作することにより前記ホール素子
13cに供給するホール素子入力電流の極性を容
易に反転し得るようになつている。また各励磁コ
イル13bには電源22から電流を供給し基準磁
束を発生せしめるようになつている。
かかる本実施例において電極板1,2に流れる
異常電流を検出するには、フレーム11を被測定
対象となつてい電解槽3の上にもつていきこのフ
レーム11を下降せしめることにより検出部13
の鉄心13aで電極板導電体4を跨がせる。この
とき鉄心13aは準閉磁路を形成しているので前
記電極板導電体4を流れる電流による磁界はその
殆んどが鉄心13aに集束される。また、検出部
13の下降はストツパ13dと電極板導電体4が
当接することにより規制され、しかもロツド12
が電極板導電体4の高さに応じて若干移動し得る
ので電極板導電体4の上面の多少の凹凸には追従
でき、したがつてこの電極板導電体4の高さの不
均衡による誤差は生じない。更に、この電極電流
の測定時、検出部13はストツパ13dを介して
電極板導電体4に接触するが、このときの短絡電
極板温度110℃〜150℃に対しホール素子13cの
取付位置における温度上昇は24時間経過後におい
ても10℃程度である。このようにして電極板電
流、即ち出力VHを検出した後、フレーム11を
上昇せしめ検出部13をシールド部材16に収納
した状態で励磁コイル13bに所定の直流電流を
供給することにより基準磁束を発生せしめ各検出
部13の出力VFを測定する。その後、励磁コイ
ル13bを消勢することによりそのときの各検出
部13の出力、即ち無励磁出力V0を測定する。
このとき検出部13はシールド部材16により磁
気シールドされているので誤差原因となる周囲磁
界の影響を除去し得る。のようにして得た出力V
H、出力VF及び出力V0を基にして演算処理部1
8で(VH―V0)/(VF―V0)の値を演算し、更
にこの演算値を平均値と比較することにより電極
板1の異常を検出する。
一方、ホール素子13cの異常判別は次の様に
して行なう。磁束密度Bを横軸に採り、ホール素
子出力Vを縦軸に採つた場合のホール素子13c
の出力特性は一般に第7図に実線で示す如き特性
を示す。このホール素子13cの場合、ある磁束
密度BF1(gause)においてはVF1(mV)の
ホール素子出力を生起している。このとき切換ス
イツチ21を操作するとによりホール素子13c
の入力側極性を切換えればホール素子13cの機
能として第7図に点線で示す如き特性、即ち横軸
に対して対称の特性となり、磁束密度BF1
(gause)に対し―VF1(mV)なるホール素子
出力Vを生起するはずである。換言すれば、この
とき磁束密度BF1(gause)の磁界を励磁コイ
ル13bの付勢により生ぜしめれば、この値は急
激には変化しないので、前述の如き操作によりホ
ール素子13cの入力側極性を切換えれば切換前
のホール素子出力VF1と切換後のホール素子出
力―VF1との代数和は略0となる。したがつ
て、|VF1+(―VF1)|―α>0(但しαは
手動設定値)の演算式が成立するホール素子13
c及びホール素子出力VF1,―VF1=0ならび
に|VF―V0|―β<0なるホール素子13cは
異常であると判断する。|VF1―(VF1)|―
α>0の時はともかくVF1,―VF1=0の時は
ホール素子13cの入力側か出力側の配線が接触
不良を生起しているか若しくは断線している可能
性が大であるからである。不平衡電圧V0がある
ため、無励磁時においてもホール素子出力Vが零
になることはまず考えられない。
本実施例においてホール素子13cは1つ電解
槽3の電極板1の数と同個数を使用しているた
め、劣化・破損したホール素子13cの検出が一
つの問題であるが、ホール素子13cの特性は前
述の如く不平衡電圧、発電定数及び温度等によつ
て変化し各ホール素子13cの正規出力電圧値及
び最大出力電圧値等を断じ得ない。したがつてそ
の劣化・破損の判断が難かしいが、本実施例によ
れば前述の操作を行なうとにより容易にホール素
子13cの良否を判定し得る。
以上実施例とともに具体的に説明したように、
本発明によれば電極板に流れる電流を1つの電解
槽毎に一度に測定することができるので、測定作
業時間が飛躍的に短縮される。しかも、このとき
磁電変換素子を有する検出部には準閉磁路を形成
している鉄心を有しているので必要な磁束を集束
させることができ、また検出部が上下動可能に形
成されており、被検出部に対する相対位置を常に
一定にすることができるので電極板の上面の凹凸
の測定値に対する影響を除去することができる。
このため弱い短絡等、一寸した異常にも感応する
高精度で確実に異常状態の検出を行なうことがで
きる。更に、電極板電流による検出部の出力V
H、各検出部をシールド部材に収納し磁気シール
ドした状態で、前記磁電変換素子に隣接して鉄心
に巻回した励磁コイルに基準の直流電流を供給し
たときの検出部の出力VF及び同じく各検出部を
磁気シールドした状態での無励磁出力V0を基に
して(VH―V0)/(VF―V0)なる式を演算し、
この演算値とこの演算値の平均値を比較すること
により各電極板の異常を判定する演算処理部を有
するので、磁電変換素子の特性をバラツキの影響
を除去することができ前記判定結果は更に確実な
ものとなる。
また、磁電変換素子の前記出力VFと―VFとの
和の絶対値が所定値以上の値となるか、またはV
F若しくは―VFの絶対値が所定値以下の値となる
かを検出するようにしたので、磁電変換素子の異
常も検出し得る。[Formula] The electrode plate 1 of No.i for which the following relationship holds is the electrode plate with poor contact. However: V Hi is the detection part 1 by the i-th electrode plate 1
3, V Fi is the output of the detection unit 13 by the i-th excitation coil 13b, V 0i is the non-excitation output of the detection unit 13 by the i-th Hall element 13c, K 1 and K 2 are manual setting values, A i is the quadratic function correction coefficient of pole No.i, i is the i-th electrode plate 1, and i=2~
43, i≒1,44. When i=1,44, that is, the 1st and 44th electrode plates 1, generally the left end of the electrode plates 1 arranged laterally in one electrolytic cell 3 (see Fig. 1a) Since there is only one electrode plate 2 corresponding to the electrode plate 1 at the right end, the current is normally about half of the current flowing through the other electrode plates 1 during normal operation. Therefore, the judgment reference value is also half of that in the above formula, and for this reason, in the above formula, the average of 44 poles is divided by 43. If we organize and write about i=1,44, If the following relationship holds true, it is a short-circuited electrode plate. If the following relationship holds true, it is a board with poor contact. If such arithmetic processing is performed, the Hall element 13c can be used as it is without any problem without modifying or adjusting the characteristics of the Hall element 13c. FIG. 6 shows a block diagram of the system of this embodiment including the arithmetic processing section 18 that performs the arithmetic processing. In the figure, 18a is a counter, 18b is an amplifier, 18c is an A/D converter, 18d is an input/output interface, 18f is a microcomputer,
18g is a peripheral device controller, 18h is a printer, and 18i is a program memory 18j is an operation/display section. Therefore, the outputs V of the Hall elements 13c from No. 1 to No. 44 are read by sequentially switching the operation switch 19, and after predetermined calculations are performed by the microcomputer 18f, the results are outputted to the printer 18h. At this time, a rated DC current is supplied from the power supply 20 to each Hall element 13c. Furthermore, this direct current is supplied via the reversing switch 21. Therefore, by operating the reversing switch 21, the polarity of the Hall element input current supplied to the Hall element 13c can be easily reversed. Further, current is supplied from a power source 22 to each exciting coil 13b to generate a reference magnetic flux. In this embodiment, in order to detect the abnormal current flowing through the electrode plates 1 and 2, the frame 11 is placed above the electrolytic cell 3 to be measured, and the frame 11 is lowered to detect the detecting section 13.
The iron core 13a straddles the electrode plate conductor 4. At this time, since the iron core 13a forms a quasi-closed magnetic path, most of the magnetic field caused by the current flowing through the electrode plate conductor 4 is focused on the iron core 13a. Furthermore, the lowering of the detection unit 13 is regulated by the contact between the stopper 13d and the electrode plate conductor 4, and the
can move slightly depending on the height of the electrode plate conductor 4, so it can follow some irregularities on the upper surface of the electrode plate conductor 4, and therefore errors due to imbalance in the height of the electrode plate conductor 4 can be avoided. does not occur. Furthermore, when measuring this electrode current, the detection unit 13 comes into contact with the electrode plate conductor 4 via the stopper 13d, but the temperature at the mounting position of the Hall element 13c is lower than the short-circuited electrode plate temperature of 110°C to 150°C at this time. The increase is still around 10°C even after 24 hours. After detecting the electrode plate current, that is, the output V H in this way, the reference magnetic flux is set by raising the frame 11 and supplying a predetermined DC current to the excitation coil 13b with the detection unit 13 housed in the shield member 16. The output V F of each detection unit 13 is measured. Thereafter, by deenergizing the excitation coil 13b, the output of each detection section 13 at that time, that is, the non-excitation output V 0 is measured.
At this time, since the detection unit 13 is magnetically shielded by the shield member 16, the influence of the surrounding magnetic field that causes errors can be eliminated. The output V obtained as
Arithmetic processing unit 1 based on H , output V F and output V 0
8, the value of (V H −V 0 )/(V F −V 0 ) is calculated, and this calculated value is further compared with the average value to detect an abnormality in the electrode plate 1. On the other hand, abnormality determination of the Hall element 13c is performed as follows. Hall element 13c when magnetic flux density B is plotted on the horizontal axis and Hall element output V is plotted on the vertical axis
In general, the output characteristics of the filter are as shown by the solid line in FIG. In the case of this Hall element 13c, a Hall element output of V F1 (mV) is generated at a certain magnetic flux density B F1 (gause). At this time, when the changeover switch 21 is operated, the Hall element 13c
By switching the input polarity of the Hall element 13c, the function of the Hall element 13c becomes the characteristic shown by the dotted line in FIG. 7, that is, the characteristic is symmetrical about the horizontal axis, and the magnetic flux density B F1
(gause), a Hall element output V of −V F1 (mV) should be generated. In other words, if a magnetic field with a magnetic flux density B F1 (gause) is generated by energizing the excitation coil 13b, this value will not change rapidly, so the input side polarity of the Hall element 13c can be changed by the above-mentioned operation. If , the algebraic sum of the Hall element output V F1 before switching and the Hall element output −V F1 after switching becomes approximately 0. Therefore, the Hall element 13 satisfies the formula |V F1 +(-V F1 )|-α>0 (where α is a manually set value)
The Hall element 13c where c and Hall element output V F1 , -V F1 =0 and |V F -V 0 | -β<0 is determined to be abnormal. |V F1 - (V F1 ) | -
Regardless of when α>0, when V F1 , -V F1 = 0, there is a high possibility that the wiring on the input side or output side of the Hall element 13c is causing a contact failure or is disconnected. be. Since there is an unbalanced voltage V 0 , it is highly unlikely that the Hall element output V becomes zero even when not energized. In this embodiment, one Hall element 13c is used, the same number as the electrode plates 1 of the electrolytic cell 3, so one problem is the detection of a deteriorated or damaged Hall element 13c. As mentioned above, the characteristics change depending on the unbalanced voltage, power generation constant, temperature, etc., and it is impossible to determine the normal output voltage value, maximum output voltage value, etc. of each Hall element 13c. Therefore, it is difficult to judge whether the Hall element 13c is deteriorated or damaged, but according to the present embodiment, by performing the above-described operations, it is possible to easily judge whether the Hall element 13c is good or bad. As specifically explained above with the examples,
According to the present invention, since the current flowing through the electrode plate can be measured for each electrolytic cell at once, the measuring time can be dramatically shortened. Moreover, since the detecting section having the magnetoelectric conversion element has an iron core forming a quasi-closed magnetic path, the necessary magnetic flux can be focused, and the detecting section is formed to be movable up and down. Since the relative position with respect to the detected part can always be kept constant, the influence of irregularities on the upper surface of the electrode plate on the measured value can be eliminated.
Therefore, it is possible to reliably detect an abnormal state with high precision that is sensitive to even the slightest abnormality such as a weak short circuit. Furthermore, the output V of the detection section due to the electrode plate current
H , the output V F of the detection section when a standard DC current is supplied to the excitation coil wound around the iron core adjacent to the magnetoelectric conversion element with each detection section housed in a shield member and magnetically shielded; Calculate the formula (V H - V 0 )/(V F - V 0 ) based on the non-excitation output V 0 with each detection part magnetically shielded,
Since it has an arithmetic processing unit that determines abnormality of each electrode plate by comparing this calculated value and the average value of this calculated value, it is possible to remove the influence of variations in the characteristics of the magnetoelectric transducer, and the determination result is further improved. It becomes certain. Also, if the absolute value of the sum of the outputs V F and -V F of the magnetoelectric transducer becomes a predetermined value or more, or V
Since it is detected whether the absolute value of F or -V F is less than a predetermined value, it is also possible to detect an abnormality in the magnetoelectric conversion element.
第1図aは本発明の実施例に係る異常電流検出
装置により電流値を測定する電解槽を平面的に示
す説明図、第1図bはそれをX―X線で切つた場
合の説明図、第2図aは異常電流検出装置本体を
抽出・拡大して示す正面図、第2図bはその平面
図、第2図cはその右側面図、第3図aは検出部
の1個を抽出・拡大して示す正面図、第3図bは
そのY―Y線断面図、第3図cは第3図aのZ―
Z線断面図、第4図は横軸に磁束密度、縦軸にホ
ール素子出力を採つて示す異なる3個のホール素
子の磁束密度―出力特性図、第5図は本実施例装
置による測定時の態様を示す説明図、第6図は本
実施例装置の全体を系統的に示すブロツク線図、
第7図は横軸に磁束密度、縦軸にホール素子出力
を採つてホール素子に供給する電流の極性を切換
えた場合におけるこのホール素子の磁束密度―出
力特性図である。
図面中、1,2は電極板、3は電解槽、4は電
極板導電体、9は異常電流検出装置本体、13は
検出部、13aは鉄心、13bは励磁コイル、1
3cはホール素子、13dはストツパ、13eは
開口部、16はシールド部材、18は演算処理部
である。
Fig. 1a is an explanatory plan view showing an electrolytic cell whose current value is measured by an abnormal current detection device according to an embodiment of the present invention, and Fig. 1b is an explanatory drawing when it is cut with X-X rays. , Figure 2a is a front view of the main body of the abnormal current detection device extracted and enlarged, Figure 2b is its top view, Figure 2c is its right side view, and Figure 3a is one of the detection parts. FIG. 3b is a sectional view taken along YY line, and FIG. 3c is a front view extracted and enlarged.
A Z-line cross-sectional view, Fig. 4 is a magnetic flux density-output characteristic diagram of three different Hall elements, with the horizontal axis showing magnetic flux density and the vertical axis showing Hall element output, and Fig. 5 shows the measurement using the device of this embodiment. FIG. 6 is a block diagram systematically showing the entire device of this embodiment,
FIG. 7 is a magnetic flux density-output characteristic diagram of the Hall element when the polarity of the current supplied to the Hall element is switched, with the horizontal axis representing the magnetic flux density and the vertical axis representing the Hall element output. In the drawing, 1 and 2 are electrode plates, 3 is an electrolytic cell, 4 is an electrode plate conductor, 9 is an abnormal current detection device main body, 13 is a detection section, 13a is an iron core, 13b is an exciting coil, 1
3c is a Hall element, 13d is a stopper, 13e is an opening, 16 is a shield member, and 18 is an arithmetic processing section.
Claims (1)
電流が供給される陽極及び陰極である多数の電極
板が配設してある電解槽を跨ぐフレームと、 このフレームに垂下され上下動可能に形成され
た多数のロツドと、 前記電極板導体に当接して下降位置を規制する
ストツパ、このストツパに位置規制され電極板導
体を跨ぐ開口部を有する環状の鉄心、この鉄心に
巻回されている励磁コイル及びこの励磁コイルに
隣接して前記鉄心に装着された磁電変換素子を有
し、前記ロツドの下端に夫々固着されている多数
の検出部と、 各励磁コイルにこの励磁コイルが所定の基準磁
束を発生する電流を供給する電源と、 前記検出部を引き上げるとにより検出部を夫々
磁気シールドするシールド部材と、 各電極板電流による磁電変換素子の出力をV
H、各励磁コイルによる基準磁束に基づく各磁電
変換素子の出力をVF及び各磁電変換素子の無励
磁出力をV0とするとき(VH―V0)/(VF―V0)
を各検出部毎に演算しこの各演算値をこの演算値
の全検出部に関する平均値と比較して電極板の異
常を判定する演算処理部とを有することを特徴と
する金属電解精製における異常電流の検出装置。 2 上端部に夫々接続された電極板導体を介して
電流が供給される陽極及び陰極であ多数の電極板
が配設してある電解槽を跨ぐフレームと、 このフレームに垂下され上下動可能に形成され
た多数のロツドと、 前記電極板導体に当接して下降位置を規制する
ストツパ、このストツパに位置規制され電極板導
体を跨ぐ開口部を有する環状の鉄心、この鉄心に
巻回されている励磁コイル及びこの励磁コイルに
隣接して前記鉄心に装着された磁電変換素子を有
し、前記ロツドの下端に夫々固着されている多数
の検出部と、 各励磁コイルにこの励磁コイルが所定の基準磁
束を発生する電流を供給する電源と、 前記検出部を引き上げることにより検出部を
夫々磁気シールドするシールド部材と、 各電極板電流による磁電変換素子の出力をV
H、各励磁コイルによる基準磁束に基づく各磁電
変換素子の出力をVF、各励磁コイルによる逆極
性の基準磁束に基づく各磁電変換素子の出力を―
VF及び各磁電変換素子の無励磁出力をV0とする
とき(VH―V0)/(VF―V0)を各検出部毎に演
算しこの各演算値をこの演算値の全検出部に関す
る平均値と比較して電極板の異常を判定するとと
もに、VFと―VFとの和が零を中心とした零近傍
の所定範囲内にない場合、またはVF若しくは―
VFが零であるか若しくは零近傍の所定値より小
さい場合にはその磁電変換素子が不良であると判
定する演算処理部とを有することを特徴とする金
属電解精製における異常電流の検出装置。[Scope of Claims] 1. A frame that straddles an electrolytic cell in which a large number of electrode plates, which are anodes and cathodes, to which current is supplied via electrode plate conductors connected to the upper ends thereof, are arranged; A large number of rods are formed to hang down and be movable up and down, a stopper that comes into contact with the electrode plate conductor to restrict the lowering position, an annular iron core whose position is regulated by the stopper and has an opening that straddles the electrode plate conductor, and this iron core. It has an excitation coil wound around the rod, a magnetoelectric transducer mounted on the iron core adjacent to the excitation coil, and a large number of detecting parts each fixed to the lower end of the rod; A power source that supplies a current that causes the excitation coil to generate a predetermined reference magnetic flux, a shield member that magnetically shields the detection section by pulling up the detection section, and an output of the magnetoelectric transducer due to the current of each electrode plate.
H , when the output of each magnetoelectric conversion element based on the reference magnetic flux from each excitation coil is VF , and the non-excitation output of each magnetoelectric conversion element is V0 , ( VH - V 0 ) / (V F - V 0 )
An abnormality in metal electrolytic refining, characterized in that it has an arithmetic processing unit that calculates for each detection unit and compares each calculated value with an average value of the calculated values for all detection units to determine an abnormality of an electrode plate. Current detection device. 2. A frame that straddles an electrolytic cell in which a large number of electrode plates are arranged, an anode and a cathode to which current is supplied via electrode plate conductors connected to the upper end, respectively, and a frame that is suspended from this frame and can be moved up and down. a stopper that comes into contact with the electrode plate conductor to restrict the lowering position; an annular iron core whose position is regulated by the stopper and has an opening that straddles the electrode plate conductor; and a ring-shaped iron core that is wound around the iron core. The excitation coil has an excitation coil and a magnetoelectric transducer mounted on the iron core adjacent to the excitation coil, and a large number of detection parts each fixed to the lower end of the rod; A power supply that supplies a current that generates a magnetic flux, a shield member that magnetically shields each detection section by pulling up the detection section, and an output of the magnetoelectric conversion element due to each electrode plate current to V.
H is the output of each magnetoelectric transducer based on the reference magnetic flux from each exciting coil, V F is the output of each magnetoelectric transducer based on the reference magnetic flux of opposite polarity from each exciting coil.
When V F and the non-excited output of each magnetoelectric conversion element are V 0 , calculate (V H − V 0 )/(V F − V 0 ) for each detection part, and calculate each calculated value as the total of this calculated value. In addition to determining the abnormality of the electrode plate by comparing it with the average value related to the detection part, if the sum of V F and -V F is not within a predetermined range near zero centered on zero, or if V F or -
1. An abnormal current detection device in metal electrolytic refining, comprising: an arithmetic processing unit that determines that a magnetoelectric conversion element is defective when V F is zero or smaller than a predetermined value near zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3005279A JPS55122889A (en) | 1979-03-16 | 1979-03-16 | Detecting method of abnormal current in electrolytic refining of metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3005279A JPS55122889A (en) | 1979-03-16 | 1979-03-16 | Detecting method of abnormal current in electrolytic refining of metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55122889A JPS55122889A (en) | 1980-09-20 |
JPS6115956B2 true JPS6115956B2 (en) | 1986-04-26 |
Family
ID=12293046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3005279A Granted JPS55122889A (en) | 1979-03-16 | 1979-03-16 | Detecting method of abnormal current in electrolytic refining of metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55122889A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036838A (en) * | 1997-11-15 | 2000-03-14 | Deutsches Zentrum Fuer Luft -Und Raumfahrt E.V. | Method for determining the substance conversion during electrochemical reactions and electrochemical unit |
DE19750738C1 (en) * | 1997-11-15 | 1999-01-14 | Deutsch Zentr Luft & Raumfahrt | Material conversion determination in surface electrochemical reaction |
KR100928532B1 (en) * | 2002-08-30 | 2009-11-24 | 재단법인 포항산업과학연구원 | Pickup device for metal body detection using Hall element |
-
1979
- 1979-03-16 JP JP3005279A patent/JPS55122889A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55122889A (en) | 1980-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2014222569B2 (en) | Measurement of electric current in an individual electrode in an electrolysis system | |
AU2016204619B2 (en) | Arrangement for measuring electric current in an individual electrode in an electrolysis system | |
TWI544675B (en) | Permanent system for continuous detection of current distribution in interconnected electrolytic cells | |
JP2016522328A (en) | Apparatus for the evaluation of current distribution at electrodes in electrochemical plants. | |
CN207689414U (en) | It is a kind of to monitor H in pickle in real time+、Fe2+The device of ion concentration and acid liquor temperature | |
JP2004530796A (en) | Method for improving current efficiency in electrolysis. | |
JPS6115956B2 (en) | ||
Aqueveque et al. | Measurable variables in copper electrowinning and their relevance to predicting process performance | |
US20150218722A1 (en) | Magnetic shielding for measuring a plurality of input and/or output currents to an electrolytic cell | |
US3345273A (en) | Method of and apparatus for indicating anode positions | |
Aqueveque et al. | Short-circuit detection for electrolytic processes employing optibar intercell bars | |
US3491002A (en) | Adjusting anode blocks in an electrolytic cell | |
Wiechmann et al. | Measurement of cathodic currents in equipotential inter-cell bars for copper electrowinning and electrorefining plants | |
CN112074733B (en) | Method for non-destructive inspection of anodes of aluminium electrolysis cells | |
EP0630426B1 (en) | Process for mantaining a cathodic protection against corrosion and device for carrying out said process | |
JPH02101185A (en) | Detector for abnormal current in electrolytic metal refining and method for detecting abnormal current using the detector | |
JP2512178B2 (en) | Corrosion environment crack growth tester | |
JP3428206B2 (en) | Electrolytic purification method and measuring device used in the electrolytic purification method | |
RU2471019C1 (en) | Monitoring method of process parameters of electrolyte of aluminium electrolysis unit | |
FI125909B (en) | Arrangement for measuring the current flowing at a single electrode of an electrolysis system | |
Aqueveque et al. | Measurable variables in copper Electrowinning and their relevance to predict process performance | |
JP3371443B2 (en) | Short circuit detection method | |
CN105699783A (en) | Simple and efficient cathode carbon block voltage drop detection method | |
AU2021371450A1 (en) | Detecting thermite reactions in an electrolytic cell | |
JPH101796A (en) | Electrolytic refining method and cathode positioning device used in the same |