[go: up one dir, main page]

JPS6115589B2 - - Google Patents

Info

Publication number
JPS6115589B2
JPS6115589B2 JP15081777A JP15081777A JPS6115589B2 JP S6115589 B2 JPS6115589 B2 JP S6115589B2 JP 15081777 A JP15081777 A JP 15081777A JP 15081777 A JP15081777 A JP 15081777A JP S6115589 B2 JPS6115589 B2 JP S6115589B2
Authority
JP
Japan
Prior art keywords
film
region
diffusion source
conductivity type
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15081777A
Other languages
Japanese (ja)
Other versions
JPS5482981A (en
Inventor
Masahiko Nakamae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15081777A priority Critical patent/JPS5482981A/en
Publication of JPS5482981A publication Critical patent/JPS5482981A/en
Publication of JPS6115589B2 publication Critical patent/JPS6115589B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に電
極取り出し用の開口部をセルフアラインで設ける
事の出来る半導体集積回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor integrated circuit in which an opening for taking out an electrode can be provided in a self-aligned manner.

従来、半導体基板中に高濃度領域と低濃度領域
(以下簡単のため前者をP+領域、後者をP領域と
し、P型導電領域について述べるが、N型につい
ても全く同じ議論が適用される)を連結して形成
するには、次の様になされていた。即ち、まず最
初にP領域を基板表面の酸化膜等の保護膜を選択
的に除去した後不純物を拡散して形成した後再び
写真蝕刻法により保護膜の開口された所を通して
P+領域が形成された。(この順序は逆の場合もあ
る。)また、P+領域表面での電極取り出し用の開
口は新たな写真蝕刻工程を経て設けられていた。
このため、従来法によると (1) P+、およびP領域の形成のために拡散(ま
たはイオン注入)および酸化工程をそれぞれ2
回必要としていた。このため工程が長いという
点と、熱処理が多いために浅い接合を形成しに
くい点、および結晶欠陥の発生を誘発しやすい
という欠点を持つていた。またさらに、従来法
によると (2) P+とP領域の重なりは写真蝕刻工程での位
置合せの精度を見込む必要があり、さらにP+
領域上の電極取り出し用の開口を設ける際の位
置合せの精度も含むと、素子面積の縮小は困難
であつた。
Conventionally, a semiconductor substrate has a high concentration region and a low concentration region (for simplicity, the former will be referred to as a P + region and the latter as a P region, and we will discuss the P-type conductive region, but the exact same discussion applies to the N-type). The following steps were taken to connect and form the . That is, first, a P region is formed by selectively removing a protective film such as an oxide film on the substrate surface, and then diffusing impurities, and then forming the P region through the opening in the protective film by photolithography.
A P + region was formed. (This order may be reversed.) Also, the opening for taking out the electrode on the surface of the P + region was created through a new photolithography process.
Therefore, according to the conventional method, (1) diffusion (or ion implantation) and oxidation steps are required to form P + and P regions, respectively.
times I needed it. For this reason, it has disadvantages in that the process is long, that it is difficult to form shallow junctions because of the large number of heat treatments, and that it is easy to induce the generation of crystal defects. Furthermore, according to the conventional method, (2) the overlap between P + and P areas requires consideration of alignment accuracy in the photo - etching process;
It has been difficult to reduce the device area, including the accuracy of alignment when providing an opening for taking out the electrode on the region.

本発明の目的は上記の従来法の(1)と(2)の欠点を
除去した半導体装置の製造方法を提供することに
ある。
An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates the drawbacks (1) and (2) of the above-mentioned conventional methods.

本発明の特徴は、一導電型のベース領域の低不
純物濃度部分に逆導電型のエミツタ領域が形成さ
れ、該ベース領域の高不純物濃度部分にベース電
極が被着される半導体装置の製造方法において、
半導体基板表面の前記ベース領域が形成される全
域にわたつて一導電型の不純物を含む拡散源被膜
を被着する工程と、該拡散源被膜上に耐酸化性膜
たとえばSi3N4膜等を設ける工程と、第1の熱処
理をほどこすことにより、該拡散源被膜より一導
電型の不純物を該半導体基板に導入する工程と、
該耐酸化性膜の一部分およびその下の該拡散源被
膜の部分を残余せしめ、他の該耐酸化性膜および
拡散源被膜の部分を除去する工程と、第2の熱処
理をほどこすことにより、該残余せる拡散源被膜
の部分より再び一導電型の不純物を該半導体基板
に導入する工程と、該第1および第2の熱処理工
程を有して形成されたベース領域の低不純物濃度
部分および高不純物濃度部分のうち該低不純物濃
度部分に逆導電型のエミツタ領域を形成する工程
と、該残余せる耐酸化性膜および拡散源被膜の部
分を除去し、これにより露出せる該ベース領域の
高不純物濃度部分の表面にベース電極を被着する
工程とを有する半導体装置の製造方法にある。こ
こで本発明での半導体基板とは、半導体基板その
もの、あるいはこの基板上に設けられた半導体層
等の素子形成に用いられる半導体領域をいうもの
である。
The present invention is characterized by a method for manufacturing a semiconductor device in which an emitter region of an opposite conductivity type is formed in a low impurity concentration portion of a base region of one conductivity type, and a base electrode is attached to a high impurity concentration portion of the base region. ,
A step of depositing a diffusion source film containing impurities of one conductivity type over the entire area on the surface of the semiconductor substrate where the base region is formed, and forming an oxidation-resistant film such as a Si 3 N 4 film on the diffusion source film. a step of introducing an impurity of one conductivity type into the semiconductor substrate from the diffusion source coating by applying a first heat treatment;
A step of leaving a part of the oxidation-resistant film and a part of the diffusion source film thereunder, and removing the other part of the oxidation-resistant film and the diffusion source film, and performing a second heat treatment, A step of reintroducing an impurity of one conductivity type into the semiconductor substrate from the remaining portion of the diffusion source film, and a low impurity concentration portion and a high impurity concentration portion of the base region formed by the first and second heat treatment steps. A process of forming an emitter region of the opposite conductivity type in the low impurity concentration part of the impurity concentration part, and removing the remaining oxidation-resistant film and diffusion source film, thereby removing the high impurity of the exposed base region. A method of manufacturing a semiconductor device includes a step of depositing a base electrode on a surface of a concentrated portion. Here, the semiconductor substrate in the present invention refers to the semiconductor substrate itself or a semiconductor region used for forming elements such as a semiconductor layer provided on this substrate.

本発明によれば1回の拡散(あるいはイオン注
入)と酸化工程の組合せでP+とP領域あるいは
N+とN領域を形成する事が出来、かつ、P+領域
上の電極取り出し用開口も写真蝕刻工程を経ない
で設ける事が出来、従つて工程が短かく、熱処理
工程が少なく、P+(又はN+)とP(又はN)領
域、P+(又はN+)領域と電極取り出し用開口部相
互間の位置合せ精度が不必要である。
According to the present invention, P + and P regions or
N + and N regions can be formed, and electrode extraction openings on the P + region can also be provided without going through the photolithography process. Therefore, the process is short, the heat treatment process is small, and the P + There is no need for alignment accuracy between the (or N + ) and P (or N) regions, and between the P + (or N + ) regions and the electrode extraction openings.

以下本発明を実施例をもとに第1図を用いて詳
細に説明する。この実施例ではパイポーラ型集積
回路を例にしてある。P型Si基板101に選択的
にヒ素(As)を不純物として含む埋込層102
aを設けた後N型エピタキシヤル層103を形成
する。その後シリコン窒化膜(Si3N4膜)105
a、105bをマスクとして選択酸化を行い、厚
いSiO2膜104で相互絶縁をとる。次にコレク
タ拡散用の開口を設けるための写真蝕刻工程にて
フオトレジスト106を設ける。(第1図a) 次にSi3N4膜105bをプラズマエツチンング
法により除去し、その下の薄いSiO2膜104″を
除去した後コレクタ拡散、酸化工程を経てコレク
タ領域102bを形成する。(第1図b) 次にSi3N4膜105aと、その下の薄いSiO2
104′を除去した後、通常の気相拡散法により
900℃でB2O3膜107を約500Åの厚さで形成
し、さらにその上にSi3N4膜108を1000Å形成
する。この後1000℃、O2中で20分の熱処理を施
し、約100Ω/□の層抵抗を持つP型領域109を
形成する。
Hereinafter, the present invention will be explained in detail based on an embodiment using FIG. 1. In this embodiment, a bipolar integrated circuit is used as an example. A buried layer 102 selectively containing arsenic (As) as an impurity in a P-type Si substrate 101
After forming the layer a, an N-type epitaxial layer 103 is formed. After that, silicon nitride film (Si 3 N 4 film) 105
Selective oxidation is performed using a and 105b as a mask, and mutual insulation is achieved with a thick SiO 2 film 104. Next, a photoresist 106 is provided in a photolithography process to provide an opening for collector diffusion. (Fig. 1a) Next, the Si 3 N 4 film 105b is removed by plasma etching, and the thin SiO 2 film 104'' underneath is removed, followed by collector diffusion and oxidation steps to form the collector region 102b. (Fig. 1b) Next, after removing the Si 3 N 4 film 105a and the thin SiO 2 film 104' below it, the Si 3 N 4 film 105a is removed by a normal vapor phase diffusion method.
A B 2 O 3 film 107 with a thickness of about 500 Å is formed at 900° C., and a Si 3 N 4 film 108 with a thickness of 1000 Å is further formed thereon. Thereafter, heat treatment is performed at 1000° C. in O 2 for 20 minutes to form a P-type region 109 having a layer resistance of about 100Ω/□.

この後P+領域用の写真蝕刻工程を経てフオト
レジスト110を設ける。(第1図c) 次にプラズマエツチング法によりSi3N4膜を選
択的に除去し、さらにB2O3膜107を選択的に
除去した後1000℃でO2中1時間、H2O中1時間
の選択熱酸化を行いP+領域111とP領域11
2を同時に形成する。この結果P+領域の層抵抗
は30Ω/□で、接合深さは約0.7μ、P領域の層抵
抗は約1KΩ/□で接合深さは0.5μである。(第1
図d) 次にP領域112の中にさらにエミツタ領域を
形成するための写真蝕刻工程を経てSiO2膜を開
口した後通常の気相拡散法により900℃でP2O5
113を設けると同時にN+型エミツタ領域11
4を形成する。この緒のエミツタ接合の深さは約
0.3μである。この時通常、コレクタ領域102
bと再び同時に開口され、拡散される。(第1図
e) この後P2O5膜113を除去した後低温で200Å
程度のSiO2膜をエミツタ領域114とコレクタ
領域102bの表面に形成する。(第1図f)こ
の次にSi3N4膜108を熱リン酸で除去する。こ
の時前記の200Å程度のSiO2膜によりエミツタ領
域とコレクタ領域の表面は保護される。次いで
B2O3膜107を除去すると同時にエミツタ領域
表面の薄いSiO2膜も除去される。コレクタ電極
115、ベース電極116、エミツタ電極117
を金属の蒸着、蝕刻により設ける。(第1図g) 以上述べた様に、本発明によれば従来法に比
べ、工程を大幅に削減すると同時に電極取り出し
用開口も含めて位置合せが全てセルフアラインで
出来る高濃度と低濃度領域を連結した構造が得ら
れ、大幅な歩留り向上と共に高集積回路に必要な
素子寸法の大幅な縮小が可能となる。
Thereafter, a photoresist 110 is provided through a photolithography process for the P + region. (Fig. 1c) Next, the Si 3 N 4 film was selectively removed by plasma etching, and the B 2 O 3 film 107 was further selectively removed, and then the film was exposed to H 2 O at 1000° C. in O 2 for 1 hour. Selective thermal oxidation was performed for 1 hour to remove P + region 111 and P region 11.
2 is formed simultaneously. As a result, the layer resistance of the P + region is 30Ω/□ and the junction depth is about 0.7μ, and the layer resistance of the P region is about 1KΩ/□ and the junction depth is 0.5μ. (1st
Figure d) Next, after opening the SiO 2 film through a photolithography process to further form an emitter region in the P region 112, a P 2 O 5 film 113 is formed at 900°C by a normal vapor phase diffusion method. At the same time, N + type emitter region 11
form 4. The depth of the emitter junction of this cord is approximately
It is 0.3μ. At this time, normally the collector area 102
b is opened again at the same time and diffused. (Fig. 1e) After that, after removing the P 2 O 5 film 113, the film was heated to a thickness of 200 Å at a low temperature.
A SiO 2 film of about 100% is formed on the surfaces of the emitter region 114 and the collector region 102b. (FIG. 1f) Next, the Si 3 N 4 film 108 is removed with hot phosphoric acid. At this time, the surfaces of the emitter region and collector region are protected by the SiO 2 film of about 200 Å. then
At the same time as removing the B 2 O 3 film 107, the thin SiO 2 film on the surface of the emitter region is also removed. Collector electrode 115, base electrode 116, emitter electrode 117
is provided by metal vapor deposition or etching. (Fig. 1g) As described above, according to the present invention, compared to the conventional method, the number of steps can be significantly reduced, and at the same time, all alignment, including the opening for taking out the electrode, can be done by self-alignment in the high-concentration and low-concentration regions. A structure in which the two are connected can be obtained, making it possible to significantly improve yield and significantly reduce the element dimensions required for highly integrated circuits.

なお以上の説明では本発明をNPNパイポーラ
トランジスタの製造に適用した場合について説明
したが、本発明は上述の実施例に限らず、集積回
路等において同一導電型の相対的に高濃度領域と
低濃度領域を連接して形成する際に広く適用でき
る。
In the above explanation, the present invention was applied to the manufacture of NPN bipolar transistors, but the present invention is not limited to the above-mentioned embodiments. It can be widely applied when forming concentration regions in a connected manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜gはそれぞれ本発明の一実施例によ
る半導体装置の製造方法の主要工程での断面図で
ある。図中、 101……半導体基板、106,110……フ
オトレジスト、102a……As埋込層、111
……P+型拡散領域、102b……コレクタ領
域、112……P型拡散領域、103……エピタ
キシヤル層、113……P2O5膜、104……絶
縁酸化膜、114……N+型エミツタ領域、10
5,108……Si3N4膜、115,116,11
7……電極、107……B2O3膜、109……P
型拡散領域。
FIGS. 1a to 1g are cross-sectional views at main steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention. In the figure, 101... semiconductor substrate, 106, 110... photoresist, 102a... As buried layer, 111
... P + type diffusion region, 102b ... Collector region, 112 ... P type diffusion region, 103 ... Epitaxial layer, 113 ... P 2 O 5 film, 104 ... Insulating oxide film, 114 ... N + Type emitter area, 10
5,108 ... Si3N4 film, 115,116,11
7... Electrode, 107... B 2 O 3 film, 109... P
type diffusion region.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型のベース領域の低不純物濃度部分に
逆導電型のエミツタ領域が形成され、該ベース領
域の高不純物濃度部分にベース電極が被着される
半導体装置の製造方法において、半導体基板表面
の前記ベース領域が形成される全域にわたつて一
導電型の不純物を含む拡散源被膜を被着する工程
と、該拡散源被膜上に耐酸化性膜を設ける工程
と、第1の熱処理をほどこすことにより、該拡散
源被膜より一導電型の不純物を該半導体基板に導
入する工程と、該耐酸化性膜の一部分およびその
下の該拡散源被膜の部分を残余せしめ、他の該耐
酸化性膜および拡散源被膜の部分を除去する工程
と、第2の熱処理をほどこすことにより、該残余
せる拡散源被膜の部分より再び一導電型の不純物
を該半導体再板に導入する工程と、該第1および
第2の熱処理工程を有して形成されたベース領域
の低不純物濃度部分および高不純物濃度部分のう
ち該低不純物濃度部分に逆導電型のエミツタ領域
を形成する工程と、該残余せる耐酸化性膜および
拡散源被膜の部分を除去し、これにより露出せる
該ベース領域の高不純物濃度部分の表面にベース
電極を被着する工程とを有することを特徴とする
半導体装置の製造方法。
1. A method for manufacturing a semiconductor device in which an emitter region of an opposite conductivity type is formed in a low impurity concentration portion of a base region of one conductivity type, and a base electrode is deposited on a high impurity concentration portion of the base region. A step of depositing a diffusion source film containing an impurity of one conductivity type over the entire area where the base region is formed, a step of providing an oxidation-resistant film on the diffusion source film, and a first heat treatment. By introducing impurities of one conductivity type into the semiconductor substrate from the diffusion source coating, and leaving a portion of the oxidation-resistant film and the portion of the diffusion source coating thereunder, the other oxidation-resistant a step of removing the film and a portion of the diffusion source coating, and a step of reintroducing impurities of one conductivity type into the semiconductor re-boarding from the remaining portion of the diffusion source coating by applying a second heat treatment; forming an emitter region of an opposite conductivity type in the low impurity concentration portion of the low impurity concentration portion and the high impurity concentration portion of the base region formed by the first and second heat treatment steps; 1. A method of manufacturing a semiconductor device, comprising the steps of removing a portion of an oxidation-resistant film and a diffusion source film, and depositing a base electrode on the surface of the exposed high impurity concentration portion of the base region.
JP15081777A 1977-12-14 1977-12-14 Nanufacture of semiconductor device Granted JPS5482981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15081777A JPS5482981A (en) 1977-12-14 1977-12-14 Nanufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15081777A JPS5482981A (en) 1977-12-14 1977-12-14 Nanufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5482981A JPS5482981A (en) 1979-07-02
JPS6115589B2 true JPS6115589B2 (en) 1986-04-24

Family

ID=15505054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15081777A Granted JPS5482981A (en) 1977-12-14 1977-12-14 Nanufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5482981A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224448A (en) * 1985-03-29 1986-10-06 Toshiba Corp Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPS5482981A (en) 1979-07-02

Similar Documents

Publication Publication Date Title
US4125426A (en) Method of manufacturing semiconductor device
JPS5928992B2 (en) MOS transistor and its manufacturing method
JPH05347383A (en) Manufacturing method of integrated circuit
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS59119762A (en) Buried schottky clamp type transistor
JPS6252963A (en) Bipolar transistor manufacturing method
JPS588139B2 (en) Manufacturing method of semiconductor device
JPS6115589B2 (en)
JPS6220711B2 (en)
JPS6231507B2 (en)
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPH0366815B2 (en)
JPS6143858B2 (en)
JPH0579186B2 (en)
JP2822382B2 (en) Semiconductor device and manufacturing method thereof
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP2594697B2 (en) Method for manufacturing semiconductor device
JPH0155585B2 (en)
JPS6120141B2 (en)
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPS628939B2 (en)
JPS6129539B2 (en)
JPS6188543A (en) Manufacture of semiconductor device
JPH0656835B2 (en) Method of diffusing impurities into semiconductor
JPH01238058A (en) Manufacturing method for high-speed bipolar transistors