[go: up one dir, main page]

JPS61135378A - Brushless motor drive device - Google Patents

Brushless motor drive device

Info

Publication number
JPS61135378A
JPS61135378A JP59256002A JP25600284A JPS61135378A JP S61135378 A JPS61135378 A JP S61135378A JP 59256002 A JP59256002 A JP 59256002A JP 25600284 A JP25600284 A JP 25600284A JP S61135378 A JPS61135378 A JP S61135378A
Authority
JP
Japan
Prior art keywords
signal
phase
switching
armature winding
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256002A
Other languages
Japanese (ja)
Inventor
Takashi Kashimoto
隆 柏本
Kenichiro Miura
三浦 賢一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59256002A priority Critical patent/JPS61135378A/en
Publication of JPS61135378A publication Critical patent/JPS61135378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To stably operate a motor at switching time by starting to rotate by increasing a signal from rotating magnetic field generating means and a power source voltage within a low voltage due to a synchronizing signal of the prescribed frequency and generating a switching signal after detecting the rotation. CONSTITUTION:A brushless motor 3 having a magnet rotor 5 is rotated by controlling the energization and the interruption of an armature winding 4 by semiconductor switching group 2. After starting command means 12 generates a signal, a period signal of the prescribed frequency is input from generating means 8 to rotating magnetic field generating means 9 to form 3-phase synchronizing signals 9-U-W phases displaced at 120 deg.. This is input to switching means 11, and the group 2 is controlled through the means 12. Further, the drive power source 1 of the motor 3 is increased within low voltage to forcibly rotate a magnet rotor 5. Thus, an induced voltage is generated by the rotation of the rotor 5, after the prescribed time is elapsed, switching means 10 is switched by a switch command by the means 10, the position detection signal of the rotor 5 is output from comparator group 7 to the means 12 to normally rotate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブラシレスモータに係り、特に電機子巻線に誘
起される誘起電圧例よって磁石回転子と電機子巻線との
相対的位置を検出し、[#Jから安定な回転を行なうた
めのブラシレスモータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a brushless motor, and in particular detects the relative position of a magnet rotor and an armature winding based on an example of the induced voltage induced in the armature winding. [#J is related to a brushless motor for stable rotation.

従来の技術 従来この種のブラシレスモーフj駆動装置は、第5図に
示すような構成となっている。この構成は特公昭59−
36519号公報、特公昭59−38520号公報記載
の例であり3相構成である。
2. Description of the Related Art A conventional brushless Morph drive device of this type has a configuration as shown in FIG. This configuration was created in 1984.
This is an example described in Japanese Patent Publication No. 36519 and Japanese Patent Publication No. 59-38520, and has a three-phase configuration.

以下便宜上3相の例を用いて説明することにする。For convenience, a three-phase example will be used for explanation below.

すなわち直流電源盲の両端に6個の半導体スイッチング
素子群201〜Q6を3相ブリツジして形成した半導体
コミュテーク装置2の出力端をモータ本体3の電機子巻
線4の入力端に接続しである。そして磁石回転子5の回
転によって電機子巻線4に誘起される誘起電圧信号を用
いて制御手段12が半専体コミュテーク装置中の半導体
スイッチング素子群2を通電、遮断する信号に変換し磁
石回転子を定常回転させる。なお、第6図に示すように
電機子巻線4に誘起される誘起電圧信号4−U相、4−
V相、4−W相は、半導体スイッチング素子群2のオン
オフに伴いスパイクノイズが発生するので信号変換手段
6によって除去し、それぞれ90°位相の遅れた三角波
状の信号6−U相、6−V相、e−w相に変換し、それ
ぞれ3相を抵抗で合成した仮性中性点信号と各相との大
小をそれぞれ位置検出回路である比較器群7(なお以後
位置検出回路は比較器群として説明する)で比較する。
In other words, the output end of the semiconductor commutake device 2 formed by three-phase bridged six semiconductor switching element groups 201 to Q6 on both ends of the DC power source is connected to the input end of the armature winding 4 of the motor body 3. . Using the induced voltage signal induced in the armature winding 4 by the rotation of the magnet rotor 5, the control means 12 converts it into a signal for energizing or cutting off the semiconductor switching element group 2 in the semi-dedicated commu-taking device, thereby causing the magnet to rotate. Rotate the child steadily. In addition, as shown in FIG. 6, induced voltage signals induced in the armature winding 4 4-U phase, 4-
Since spike noise is generated in the V phase and 4-W phase when the semiconductor switching element group 2 is turned on and off, it is removed by the signal conversion means 6, and triangular wave-like signals 6-U phase and 6- with a 90° phase delay are generated, respectively. Comparator group 7, which is a position detection circuit, detects the magnitude of each phase and the virtual neutral point signal which is converted into V phase and e-w phase and synthesized with a resistor from each three phases. (explained as a group).

この従来例においては、第 図の波形図を見るとわかる
よう[6−V相の信号で比較器群7−U相の出力信号を
、S−W相の信号で7−V相を、6−U相の信号で7−
W相の出力信号を作成しており、それらはそれぞれ12
0°位相のずれた区形波であり、それらの信号を回転子
位置検出信号として切換手段11へ入力し定常回転時に
は■制御手段12に出力され3相の論理レベルに基すい
て半導体スイッチング素子群2の通電、遮断を制御する
。この方式であれば負荷変動に応じて、比較器群7へ入
力される各相の信号もそれに応じて追従するので安定な
運転が持続される0′ところで起動時は磁石回転子5が
停止状態にあるので各相に誘起電圧口す慟(発生しない
。そこで起動指令手段14の信号発生後同期信号発生手
段8の出力信号を回転磁界発生手段9に入力し120°
位相のずれた3相同期信号9−U相、9−V相、9−W
相を作成する。この3相同明信号を切換手段11に入力
し、起動時には制御手段12へこれらの信号が出力され
電機子巻線に回転磁界を発生させ磁石回転子を強制的に
回転させる。磁石回転子5が回転すれば電機子巻線4に
誘起電圧が発生するので磁石回転子の回転検知を行なう
ことができる。そして検出後切換指令手段10の信号に
よって切換手段11からの出力信号が比較器群7の出力
信号7−U相、7−V相、7−W相に切換わりモータ3
は定常回転する。また起動後の3相同期信号から比較器
群7の3相誘起電圧信号へ切換えるまでは同期モータと
して駆動され、同期信号発生手段8の出力信号の周波数
を時間とともに増加しまた、それに同期した3相同期信
号の周波数も増加し磁石回転子を加速するのか一般的で
ある。これは、磁石回転子5がある慣性モーメントを持
っており、電機子巻線4の回転磁界に追従し安定な起動
回転を行なうためである。そしてさらに特公昭59−3
6520号公報の例によれば、3相同期信号9−U相、
9−V相、9−W相と比較器群7の出力信号7−U相、
7−V相、7−W相の位相差を検出する回路13を付加
し、両者の位相差が略零になったことを検出してから切
換指令手段10の切換指令信号を出力し切換手段11の
出力信号を比較器群7の出力信号に切換えてそれらの信
号を制御手段12に入力する。これは、同期モータとし
て回転している時は3相同期信号9−U相、9−■相、
9−W相と比較器群7の出力信号7−U相、7−V相、
7−W相の同相どおしの位相関係が必ずしも一致せず位
相ずれを起こしている。したがって3相同期信号で半導
体スイッチング素子群2の01〜Q6をオンオフするタ
イミングと、比較器7の3相の出力信号で半導体スイッ
チング素子群2のQ1〜Q6をオンオフするタイミング
が異なってしまうために切換に失敗し脱調停止してしま
うのである0また脱調しない場合でも半導体スイッチン
グ素子群に過大な電流が流れてこれらを損傷する〇これ
らを防ぐために3相回J9’信9と比較器群7の3相の
出力信号の位相差を検出して両者の位相差か略零になっ
たことを検出してから切換えれば上述のような半導体ス
イッチング素子群2のQ1〜Q6のオンオフのタイミン
グのずれもなく、スムーズに切換えがすすみモータ3の
安定な運転がOf能となるというものである。
In this conventional example, as can be seen from the waveform diagram in Fig. -U phase signal 7-
W-phase output signals are created, and each of them is 12
They are square waves with a 0° phase shift, and these signals are input to the switching means 11 as rotor position detection signals. During steady rotation, they are output to the control means 12 and are controlled by semiconductor switching elements based on the logic levels of the three phases. Controls energization and cutoff of group 2. With this method, the signals of each phase input to the comparator group 7 follow the load fluctuations accordingly, so stable operation can be maintained.At the time of startup, the magnet rotor 5 is in a stopped state. Since the induced voltage is not generated in each phase, the output signal of the synchronizing signal generating means 8 is inputted to the rotating magnetic field generating means 9 after the signal from the start command means 14 is generated.
Three-phase synchronous signal with phase shift 9-U phase, 9-V phase, 9-W
Create a phase. These three-phase homogeneous signals are input to the switching means 11, and at the time of startup, these signals are output to the control means 12 to generate a rotating magnetic field in the armature winding and forcibly rotate the magnet rotor. When the magnet rotor 5 rotates, an induced voltage is generated in the armature winding 4, so that rotation of the magnet rotor can be detected. After detection, the output signal from the switching means 11 is switched to the output signals 7-U phase, 7-V phase, and 7-W phase of the comparator group 7 by the signal of the switching command means 10, and the motor 3
rotates steadily. Furthermore, until the 3-phase synchronous signal after startup is switched to the 3-phase induced voltage signal of the comparator group 7, the motor is driven as a synchronous motor, and the frequency of the output signal of the synchronous signal generating means 8 is increased with time, and the 3-phase synchronous motor is It is common that the frequency of the phase synchronization signal also increases to accelerate the magnet rotor. This is because the magnet rotor 5 has a certain moment of inertia and follows the rotating magnetic field of the armature winding 4 to perform stable starting rotation. And furthermore, special public service 59-3
According to the example of Publication No. 6520, the three-phase synchronization signal 9-U phase,
9-V phase, 9-W phase and output signal of comparator group 7 7-U phase,
A circuit 13 for detecting the phase difference between the 7-V phase and the 7-W phase is added, and after detecting that the phase difference between the two has become approximately zero, a switching command signal is output to the switching command means 10. 11 is switched to the output signal of comparator group 7, and these signals are input to control means 12. When rotating as a synchronous motor, the three-phase synchronous signals are 9-U phase, 9-■ phase,
9-W phase and output signal of comparator group 7 7-U phase, 7-V phase,
The phase relationship between the 7-W phases does not necessarily match, causing a phase shift. Therefore, the timing at which 01 to Q6 of semiconductor switching element group 2 are turned on and off by the three-phase synchronous signal is different from the timing at which Q1 to Q6 of semiconductor switching element group 2 are turned on and off by the three-phase output signal of comparator 7. The switching will fail and the step-out will stop.0Also, even if the step-out does not occur, an excessive current will flow through the semiconductor switching elements and damage them.To prevent this, the three-phase circuit J9' signal 9 and the comparator group If the phase difference between the three-phase output signals of No. 7 is detected and the phase difference between the two becomes approximately zero, then switching is performed, the on/off timing of Q1 to Q6 of the semiconductor switching element group 2 as described above can be obtained. There is no deviation, the switching proceeds smoothly, and stable operation of the motor 3 is enabled.

発明が解決しようとする問題点 」二記従来の構成においては、円彼政を増加するための
特別な回路およびその制御が必要であり、また3相同期
信号と比較器群の位相差を検出する回路か必要でありシ
ステム全体が複雑になる問題点を有していた。
Problems to be Solved by the Invention (2) In the conventional configuration, a special circuit and its control are required to increase the circular bias, and the phase difference between the three-phase synchronization signal and the comparator group is detected. However, the problem is that the entire system becomes complicated.

本発明は、かかる従来の問題点を解消するもので、上述
のような特別な回路を用いなくて°もモータを起11i
1Jから安定な運転を行なうことができ、νJ換時にも
脱調せず半導体スイッチング電源群への過大電流も抑え
たプラシレスモーク駆#装置を提供することを目的とす
る。
The present invention solves these conventional problems and allows the motor to be started without using the above-mentioned special circuit.
It is an object of the present invention to provide a positive smoke drive device that can perform stable operation from 1 J, does not step out even when changing νJ, and suppresses excessive current to a group of semiconductor switching power supplies.

問題点を解決するための手段 上記問題点を解決するために本発明のブラシレスモータ
駆動装置は、ある−室間波数の同期信号発生手段の信号
による回転磁界発生手段の信号と起動時から比較器群の
信号に切換えるまで電源電圧をある低電圧内で増加させ
ることによって磁石回転子を回転起動させ、かつ誘起電
圧信号を用いて回転検知を行ない検知後切換指令の信号
を発生する構成にし、また3相同期信号と比較器群の位
相差のずれがあっても安定な運転をすることができる位
置検出回路で構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the brushless motor drive device of the present invention uses a comparator from the time of startup to the signal of the rotating magnetic field generating means based on the signal of the synchronizing signal generating means of a certain inter-room wave number. The magnet rotor is started to rotate by increasing the power supply voltage within a certain low voltage until switching to the group signal, and the rotation is detected using the induced voltage signal, and after detection, a switching command signal is generated. It is constructed with a position detection circuit that can operate stably even if there is a phase difference between the three-phase synchronization signal and the comparator group.

作   用 本発明け、上記構成により切換時まで電源電圧をある低
電圧内の範囲で抑えてbるので過大電流は流れず、また
、3相同期信号と比較器群のaつの出力信号の位相差の
ずれが一定関係以下にあり切換時には脱調せず安定にモ
ータを運転することができる。
Effect of the Invention With the above configuration, the power supply voltage is suppressed within a certain low voltage range until switching, so no excessive current flows, and the position of the three-phase synchronizing signal and the one output signal of the comparator group is Since the phase difference shift is below a certain level, the motor can be operated stably without step-out during switching.

実施例 以下、本発明の一実施例を3相巻線の例を用いて添付図
面にもとすき説明する。
EXAMPLE Hereinafter, an example of the present invention will be explained using an example of a three-phase winding with reference to the accompanying drawings.

第1図は、本発明一実施例の概略シーケンス図、第2図
は全体構成図、第3図は、誘起電圧信号にもとついた比
較器群7の出力信号知よる半導体スイッチング素子群2
のタイミング図、第4図は、同期回転中の同期信号によ
る半導体スイッチング素子群2のタイミング図と比較器
群7の出力信号による半導体スイッチング素子群2のタ
イミング図の位相関係を示したものである。
FIG. 1 is a schematic sequence diagram of an embodiment of the present invention, FIG. 2 is an overall configuration diagram, and FIG. 3 is a semiconductor switching element group 2 based on the output signal of the comparator group 7 based on the induced voltage signal.
4 shows the phase relationship between the timing diagram of the semiconductor switching element group 2 according to the synchronizing signal during synchronous rotation and the timing diagram of the semiconductor switching element group 2 according to the output signal of the comparator group 7. .

まず第1図概略シーケンス図と第2図会体構成図により
説明する。起動指令手段14の信号発生後、ある一定の
周波数を出力する同期信号発生手段8の出力信号を回転
磁界発生手段9に入力し、それぞれ120°位相のずれ
た一定周波数の3相同期信号9−U相、9−V相、9−
W相を作成する。
First, explanation will be given with reference to the schematic sequence diagram in FIG. 1 and the system configuration diagram in FIG. 2. After the activation command means 14 generates a signal, the output signal of the synchronization signal generation means 8 which outputs a certain constant frequency is inputted to the rotating magnetic field generation means 9, and three-phase synchronization signals 9- of constant frequency with a phase shift of 120 degrees are inputted to the rotating magnetic field generation means 9. U phase, 9-V phase, 9-
Create W phase.

この3相同期は号を切換手段11(たとえばマルチブレ
フサ)に入力し、起動時には制御手段12へこれらの信
号が出力されそれぞれの論理レベルにもとすいて制御手
段12は半導体スイッチング素子群2のQ1〜Q6の通
電、遮断を制御する。そして、モータ3を駆動する電源
1(たとえばスイッチング電源)をある低電圧内で増加
し、電機子巻線4に回転磁界を発生させ磁石回転子を強
制的に回転させる。
This three-phase synchronization signal is input to the switching means 11 (for example, a multi-phase synchronizer), and at startup, these signals are outputted to the control means 12, and when the respective logic levels are adjusted, the control means 12 switches the Q1 of the semiconductor switching element group 2. ~ Controls energization and cutoff of Q6. Then, the power supply 1 (for example, a switching power supply) that drives the motor 3 is increased within a certain low voltage, and a rotating magnetic field is generated in the armature winding 4 to forcibly rotate the magnet rotor.

このようにして磁石回転子5がいったん回転すれば電機
子巻線4に誘起電圧が発生するので、ある一定時間経過
後、切換指令手段10から切換指令信号を発生し、切換
手段11を切換えること例より回転子の位置検出信号で
ある比較器群7から出力される信号7−U相、7−V相
、7−W相の信号を制御手段12へ出力し以後これらの
論理レベルにもとづいて半導体スイッチング素子群2の
Q工〜Q6を制御しモータaを定常回転する。
Once the magnet rotor 5 rotates in this way, an induced voltage is generated in the armature winding 4, so after a certain period of time has elapsed, a switching command signal is generated from the switching command means 10 to switch the switching means 11. For example, the signals 7-U phase, 7-V phase, and 7-W phase signals output from the comparator group 7, which are rotor position detection signals, are output to the control means 12, and thereafter based on these logic levels. Controls Q to Q6 of the semiconductor switching element group 2 to steadily rotate the motor a.

次に本発明一実施例における回転子の位置検出信号であ
る比較器群7の出力信号7−U相、7−V相、7−W相
の作成方法を第3図を用いて説明する。第3図におりて
各電機子巻線端子の誘起電圧信号の波形は、4−U相、
4−V相、4−W相である。U相についてみるならば、
0%)ら60°の区間と1800から240°の区間は
開放状態であり電源に接続されていない。また、606
から180゜までは、電源1のe側に2400から30
00までの間は電源10θ剣に接続される。すなわち、
このように電機子巻線端子の誘起電圧信号の波形の振幅
が最大となる60°から1800と2400から360
0の時にU相に電流を流すことによりモークt/′i効
率よく回転されるものである。他のV相、W相について
も同様である。
Next, a method of creating the output signals 7-U phase, 7-V phase, and 7-W phase of the comparator group 7, which are the rotor position detection signals in one embodiment of the present invention, will be explained with reference to FIG. In Figure 3, the waveforms of the induced voltage signals at each armature winding terminal are 4-U phase,
4-V phase and 4-W phase. If we look at the U phase,
The section from 0%) to 60° and the section from 1800 to 240° are open and not connected to the power source. Also, 606
to 180°, 2400 to 30° on the e side of power supply 1.
Until 00, it is connected to the power supply 10θ sword. That is,
In this way, the amplitude of the waveform of the induced voltage signal at the armature winding terminal is maximum from 60° to 1800° and from 2400° to 360°.
By passing a current through the U phase when the current is 0, the motor t/'i can be efficiently rotated. The same applies to the other V-phase and W-phase.

さて、各電機子巻線端子の誘起電圧信号4−U相、4−
V相、4−W相は、半導体スイッチング素子群2のオン
オフに伴うスパイクノイズが発生するので信号変換手段
6によって除去するが、従来例と異なるのは、その信号
変換手段6の回路の時定数を大きくとらず、単にモーフ
駆動電圧範囲内でスパイクノイズを除去せしめるもので
あり、位相はずらさないものである。したかつて、第3
図で示すよう[4−U相からやや波形のなめらかな6−
U相(実線)に、4−V相から6−V相(実線)に4−
W相から6−W相(実線)に変換される。そして、これ
ら変換された信号のうち、たとえば、第2図中比較器群
7に入力される6−U相と、池の6−V相と6−W相を
抵抗で分割合成した信号(第3図中の1点鎖線で示す)
との大小を比較した結果が7−U相の波形である。その
蛾、a−V相と、a−W相と6−U相の合成した信号の
大小の比較で7−V相を、a −w KAと、6−U相
と6−V相を合成した信号の大小の比較で7−W相の出
力信号を得る。したがって従来例と異なるのけ、6−U
相の信号で比較器群7−U相の出力信号を、6−■相の
信号で7−V相を、6−W相の信号で7−W相の出力信
号を作成する点であり、それらは、それぞれ1200位
相のずれた区形波であり、回転子位置検出信号として切
換手段11へ入力し、定常回転時には制御手段12へ出
力されこれら1筒期の3相の論理レベル(6ケのモード
)にもとすいて半導体スイッチング素子群20通電、遮
断分制御し磁石回転子5は回転を持続する。また比較器
群7へ入力する信号として、第3図中2点鎖線で示した
ものけ、6−U相と6−V相と6−W相の信号をすべて
抵抗で合成した仮性中性点信号であり、この信号との大
小をそれぞれ比較しても同様な比較器群7の出力信号が
得られる。そしてこれらの比較器群7の出力信号におい
て、たとえば7−U相の信号は、■相とW相の誘起電圧
信号の情報を踏まえて作成したものであり、このことに
よってU相の位相と他の相との位相関係が正確となり負
荷変動が生じ、各相の波形がそれて応じて変化しても、
比較対象の波形もそれに応じて変化追従するので安定な
位置検出信号となるわけである。他の相についても同様
である。また、信号変換手段6の時定数も小さく過渡特
性もよいので第3図をみるとわかるように各相の誘起電
圧信号の波形の振幅が最大となるところで各相電機子巻
線に接続された半導体スイッチング素子群2を通電して
おり、それ故効率よく安定な回転を行なうことができる
のである。なお定常回転中の磁石回転子の回転数をあげ
るには電源1の電圧をあげればよい。
Now, the induced voltage signals of each armature winding terminal 4-U phase, 4-
The V phase and the 4-W phase generate spike noise as the semiconductor switching element group 2 turns on and off, so they are removed by the signal conversion means 6. What differs from the conventional example is the time constant of the circuit of the signal conversion means 6. It simply removes spike noise within the morph drive voltage range without taking a large value, and does not shift the phase. Once upon a time, the third
As shown in the figure, [4-U phase to 6-U phase with a slightly smooth waveform]
From the 4-V phase to the 6-V phase (solid line), the 4-
The W phase is converted to the 6-W phase (solid line). Among these converted signals, for example, a signal (the 6-U phase input to the comparator group 7 in FIG. (Indicated by the dashed-dotted line in Figure 3)
The result of comparing the magnitude with that is the waveform of the 7-U phase. By comparing the magnitudes of the combined signals of the moth, a-V phase, a-W phase and 6-U phase, we synthesized 7-V phase, a-w KA, 6-U phase and 6-V phase. A 7-W phase output signal is obtained by comparing the magnitudes of the signals. Therefore, unlike the conventional example, 6-U
The point is that the output signal of the comparator group 7-U phase is created using the phase signal, the 7-V phase is created using the 6-■ phase signal, and the 7-W phase output signal is created using the 6-W phase signal. They are square waves each having a phase shift of 1200 degrees, and are input to the switching means 11 as rotor position detection signals, and are output to the control means 12 during steady rotation, and are output to the logic level (6 signals) of the three phases of each cylinder phase. mode), the semiconductor switching element group 20 is energized and energized and the magnet rotor 5 continues to rotate. In addition, as a signal to be input to the comparator group 7, a pseudo neutral point, which is indicated by the two-dot chain line in FIG. A similar output signal from the comparator group 7 can be obtained by comparing the magnitude with this signal. Among the output signals of these comparator group 7, for example, the 7-U phase signal is created based on the information of the induced voltage signals of the Even if the phase relationship with the phase is accurate and load fluctuations occur and the waveform of each phase changes accordingly,
The waveform to be compared also follows the change accordingly, resulting in a stable position detection signal. The same applies to other phases. In addition, since the time constant of the signal conversion means 6 is small and the transient characteristics are good, as can be seen from Fig. 3, it is connected to the armature winding of each phase at the point where the amplitude of the waveform of the induced voltage signal of each phase is maximum. Since the semiconductor switching element group 2 is energized, efficient and stable rotation can be achieved. Note that in order to increase the rotation speed of the magnet rotor during steady rotation, the voltage of the power source 1 may be increased.

次に同期信号による回転からその後、切換指令手段10
の信号が発生され、比較器群7の出力信号に切換わるわ
けであるが、本発明一実施例においては、誘起電圧信号
による比較器群7の出力信号(区形波)を回転検知信号
として用いており、それらの信号(クロック)をカクン
トし、適当なカクント故を1&えたら切換指令の信号を
発生する構成としている。したがって、確実に回転して
いかどうか見究めた上で切換えるものである。
Next, from the rotation by the synchronization signal, the switching command means 10
However, in one embodiment of the present invention, the output signal (square wave) of the comparator group 7 based on the induced voltage signal is used as the rotation detection signal. It is configured to convert these signals (clocks) and generate a switching command signal when an appropriate clock signal is exceeded by 1. Therefore, make sure that it is rotating properly before switching.

次に、制御手段12へ出力する信号を切換える段階で、
脱調せずに安定VC+fJ換わる理由を第4図を用いて
説明する。第4図においで、切換える前の同期回転中の
3相同期信号(図中斜線で示した)9−U相、9−V相
、9−W相にもとすく半導体スイッチング素子群2の通
電、(図中斜線で示した)遮断の制御を9−01相から
9−06相に示す。
Next, at the stage of switching the signal output to the control means 12,
The reason why stable VC+fJ changes without step-out will be explained using FIG. 4. In Fig. 4, the semiconductor switching element group 2 is energized by the three-phase synchronous signal (indicated by diagonal lines in the figure) 9-U phase, 9-V phase, and 9-W phase during synchronous rotation before switching. , the control of interruption (indicated by diagonal lines in the figure) is shown from phase 9-01 to phase 9-06.

その同期回転中における位置検出信号である比較器群7
の出力信号7−U相、7−V相、7−W相は、3相同期
信号9−U相、9− V 、111.9−W相よりも位
相進みの状咀にあるのが普通である。そして比較器群7
の出力信号にもとすく半導体装置ッチング素子群2の通
電(図中太線で示したン遮断の制御を7−01相から7
−06相に示す。たとえば第4図のように3相同期信号
・より比較器群7の出力信号が最大60°の位相進み(
磁石の着磁と電機子巻線との相対位置よりそのようにな
る)の時に、この−同期中どの時点において切換指令を
出しても変化する半導体スイッチング素子群2はただの
1つだけである。つまり、0°〜60°中においてばQ
3からQlへと変化かおきるが、同明信号による制御で
あれば9−01相がオフで比較器群7の出力信号にもと
ず< ”r −ot相がオン、また9−03相がオンで
7−Q3相がオフの状態である。そして同期信号の60
°から120゜スイッチングの制御としては同じである
。すなわち磁石回転子5を回転させようとする方向は同
一でありこの状態をくずさずに切換えた瞬間に磁石回転
子5を回転方向へ600シフトし回転させることに池な
らない。すなわち脱調佇止することは起こりえない。ま
た、比較器群7からの出力信号け、それぞれ120°位
相のずれた信号であり、それらは負荷変動に追従しつる
信号であるからしたがって切換えた瞬間も切換えた後も
安定に回転分続けることができるのである。
Comparator group 7 which is a position detection signal during the synchronous rotation
Normally, the output signals 7-U phase, 7-V phase, 7-W phase are in a phase lead state than the 3-phase synchronous signal 9-U phase, 9-V phase, 111.9-W phase. It is. and comparator group 7
In response to the output signal of the 7-01 phase to the 7-7
-06 phase. For example, as shown in FIG.
(Due to the relative position between the magnetization of the magnet and the armature winding), there is only one semiconductor switching element group 2 that changes no matter when a switching command is issued at any point during this synchronization. . In other words, between 0° and 60°, Q
However, if the control is based on the Domei signal, the 9-01 phase is off, and based on the output signal of the comparator group 7, the 9-03 phase is on, and the 9-03 phase is on. is on and the 7-Q3 phase is off.Then, the synchronizing signal 60
The control for switching from 120° to 120° is the same. In other words, the direction in which the magnet rotor 5 is to be rotated is the same, and it is necessary to shift the magnet rotor 5 by 600 degrees in the rotation direction and rotate the magnet rotor 5 at the moment of switching without changing this state. In other words, it is impossible for the player to become out of step. In addition, the output signals from the comparator group 7 are signals with a phase shift of 120 degrees, and these are signals that follow load fluctuations, so they can continue to rotate stably at the moment of switching and even after switching. This is possible.

発明の効果 以上のように本発明のブラシレスモーフ駆動装置によれ
ば次の効果か得られる。
Effects of the Invention As described above, the brushless morph drive device of the present invention provides the following effects.

(1)起動時における同期回転中は、電圧をある低電圧
内に抑えであるので半導体スイッチング素子群等に過電
流が流れず素子の劣化を防ぐ効果がある0 (2)起動から定常回転への切換時の同期信号と回転子
の位置検出信号の位相差を検出する回路もいらず、きわ
めて簡単な回路構成で起動から定常回転までスムーズに
行なうことができ安価に構成できる0 (3)従来同期信号を増加しながら回転子を加速する構
成は、その周期を変化させる制alか複雑であるが、本
発明によればその同期信号の同波数は一定でよいので非
常だ簡単となり構成も筒路なものとなる。
(1) During synchronous rotation at startup, the voltage is kept within a certain low voltage range, so no overcurrent flows through the semiconductor switching elements, etc., which is effective in preventing element deterioration. (2) From startup to steady rotation There is no need for a circuit to detect the phase difference between the synchronization signal and the rotor position detection signal when switching, and the circuit can be configured smoothly from startup to steady rotation with an extremely simple circuit configuration and can be configured at low cost. The configuration of accelerating the rotor while increasing the synchronization signal is complicated because it requires a control to change the period, but according to the present invention, the same wave number of the synchronization signal can be kept constant, so it is extremely simple and the configuration can be easily achieved. It becomes a street thing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明一実施例の概略シーケンス図、第2図
は同全体構成図、第3図は同誘起電圧信号にもとすく各
部の波形図、第4図は同期回転中の3相同期信号と位置
検出回路の出力商号にもとすく半導体スイッチング素子
のタイミングチャート、v;5図は従来例の全体構成図
、@6図は同誘起電圧信号にもとすく各部波形図である
。 ト・・・・・電源、2・・・・・・半導体スイッチング
素子群、3・・・・・・モータ、4・・・・・・電機子
巻線、5・・・・・・磁石回転子、6・・・・・・信号
変換手段、7・・・・・・位置検出回路(比較器群)、
8・・・・・・同明信号発生手段、9・・・・・・回転
磁界発生手段、IO・・・・・・切換指令手段、11・
・・・・・4:jJ換手段、12・・・・・・制御手段
、+4・・・・・・起動指令手段。 代理人の氏名 弁理士 中 尾 軟 男 ほか璽名窮 
1 図 第2図 第3図 第4図 第5図
Fig. 1 is a schematic sequence diagram of an embodiment of the present invention, Fig. 2 is an overall configuration diagram of the same, Fig. 3 is a waveform diagram of each part of the same induced voltage signal, and Fig. 4 is a three-dimensional diagram during synchronous rotation. Phase synchronization signal and output of position detection circuit A timing chart of a semiconductor switching element, v; Figure 5 is an overall configuration diagram of a conventional example, and Figure 6 is a waveform diagram of each part of the same induced voltage signal. . G...Power supply, 2...Semiconductor switching element group, 3...Motor, 4...Armature winding, 5...Magnet rotation child, 6... signal conversion means, 7... position detection circuit (comparator group),
8... Domei signal generating means, 9... Rotating magnetic field generating means, IO... Switching command means, 11.
4: jJ conversion means, 12: control means, +4: start command means. Name of agent: Patent attorney Souo Nakao et al.
1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)複数相を中性点非接地に結線し、それぞれn個(
nは1以上)に分割した電機子巻線と、前記電機子巻線
への電流を通電、遮断する半導体スイッチング素子群と
、2m極(mは1以上)に分割着磁した磁石回転子を有
するモータと、前記モータを駆動する電源と、起動指令
手段と、時間とともに増加する周波数を出力する同期信
号発生手段と、前記同期信号発生手段より出力される信
号を用いて前記電機子巻線に回転磁界を発生させる回転
磁界発生手段と、前記電機子巻線に誘起される電圧信号
によって前記電機子巻線と前記磁石回転子の相対的位置
を検出する位置検出回路と、前記回転磁界発生手段の出
力信号と前記位置検出回路の出力信号を選択し、切換え
て出力する切換手段と、前記切換手段に切換指令を与え
る切換指令手段と、前記切換手段の出力信号を用いて前
記スイッチング素子群を制御する制御手段とからなり、
前記起動指令手段の信号発生後の同期回転中は前記電源
の電圧をある低電圧に固定し、前記磁石回転子を回転起
動させるとともに、前記切換指令手段は、前記誘起電圧
信号を検出する構成とし、前記誘起電圧信号検出後前記
切換指令手段の信号により前記位置検出回路の出力信号
に切換えて前記磁石回転子を定常回転させる構成とした
ブラシレスモータ駆動装置。
(1) Connect multiple phases to an ungrounded neutral point, and connect n pieces (
An armature winding divided into 2 m poles (m is 1 or more), a group of semiconductor switching elements that conduct or cut off current to the armature winding, and a magnet rotor divided into 2m poles (m is 1 or more). a motor having a motor, a power supply for driving the motor, a start command means, a synchronization signal generation means for outputting a frequency that increases with time, and a signal outputted from the synchronization signal generation means for controlling the armature winding. a rotating magnetic field generating means for generating a rotating magnetic field; a position detection circuit for detecting the relative position of the armature winding and the magnet rotor based on a voltage signal induced in the armature winding; and the rotating magnetic field generating means. switching means for selecting, switching and outputting the output signal of the output signal and the output signal of the position detection circuit; switching command means for giving a switching command to the switching means; and switching means for controlling the switching element group using the output signal of the switching means. It consists of a control means for controlling,
During the synchronous rotation after the signal from the start command means is generated, the voltage of the power source is fixed at a certain low voltage, and the magnet rotor is started to rotate, and the switching command means is configured to detect the induced voltage signal. and a brushless motor drive device configured to switch to the output signal of the position detection circuit according to a signal from the switching command means after detecting the induced voltage signal to steadily rotate the magnet rotor.
(2)位置検出回路は、前記複数相の電機子巻線に誘起
される信号を適宜適当な信号に変換する信号変換手段と
、前記信号変換手段後の複数相すべての出力信号を合成
した仮性中性点信号と、前記複数相の任意の出力信号の
大小をそれぞれ比較するか、もしくは、ある任意の相の
出力信号と他の相の出力信号を合成した信号の大小をそ
れぞれ比較する比較器群で構成した特許請求の範囲第1
項記載のブラシレスモータ駆動装置。
(2) The position detection circuit includes a signal conversion means for appropriately converting the signals induced in the armature windings of the plurality of phases into appropriate signals, and a virtual circuit that combines the output signals of all the plurality of phases after the signal conversion means. A comparator that compares the magnitude of the neutral point signal and arbitrary output signals of the plurality of phases, or compares the magnitude of a signal obtained by combining the output signal of a certain arbitrary phase and the output signal of other phases. Claim 1 consisting of a group
The brushless motor drive device described in Section 1.
JP59256002A 1984-12-04 1984-12-04 Brushless motor drive device Pending JPS61135378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256002A JPS61135378A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256002A JPS61135378A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Publications (1)

Publication Number Publication Date
JPS61135378A true JPS61135378A (en) 1986-06-23

Family

ID=17286537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256002A Pending JPS61135378A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Country Status (1)

Country Link
JP (1) JPS61135378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888533A (en) * 1986-04-25 1989-12-19 Matsushita Electric Ind Co Ltd Brushless DC motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555035A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Brushless motor starting system
JPS57208853A (en) * 1981-06-17 1982-12-22 Hitachi Ltd Direct current brushless motor
JPS59149780A (en) * 1983-02-09 1984-08-27 Toshiba Corp Drive device for motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555035A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Brushless motor starting system
JPS57208853A (en) * 1981-06-17 1982-12-22 Hitachi Ltd Direct current brushless motor
JPS59149780A (en) * 1983-02-09 1984-08-27 Toshiba Corp Drive device for motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888533A (en) * 1986-04-25 1989-12-19 Matsushita Electric Ind Co Ltd Brushless DC motor

Similar Documents

Publication Publication Date Title
US5572097A (en) Method and apparatus for starting polyphase dc motor
JP2004229462A (en) Controller for motor
JP3360946B2 (en) Control circuit for brushless motor
JP4147383B2 (en) DC brushless motor parallel drive circuit
JPS61244291A (en) Brushless motor drive device
JPS61135378A (en) Brushless motor drive device
JPS61135387A (en) Brushless motor drive device
JPS61135389A (en) Brushless motor drive device
JPH10191682A (en) Drive control device for blower
JPS61135379A (en) Brushless motor drive device
JPS61135383A (en) Brushless motor drive device
JPH04312390A (en) Starter for brushless motor
JPS61135382A (en) Brushless motor drive device
JPS61135388A (en) Brushless motor drive device
JP3239054B2 (en) Drive circuit for brushless motor
JPS61135386A (en) Brushless motor drive device
JPS61135384A (en) Brushless motor drive device
JPS61135381A (en) Brushless motor drive device
JPS61135385A (en) Brushless motor drive device
JP2887320B2 (en) Starting method and starting device for brushless motor
JPS61135380A (en) Brushless motor drive device
JPH03107394A (en) Method and device for starting brushless motor
JP4079385B2 (en) Brushless DC motor drive device
JP2931164B2 (en) Drive circuit for brushless motor
JP2005192286A (en) Drive controller for dc motor