JP4147383B2 - DC brushless motor parallel drive circuit - Google Patents
DC brushless motor parallel drive circuit Download PDFInfo
- Publication number
- JP4147383B2 JP4147383B2 JP2002170136A JP2002170136A JP4147383B2 JP 4147383 B2 JP4147383 B2 JP 4147383B2 JP 2002170136 A JP2002170136 A JP 2002170136A JP 2002170136 A JP2002170136 A JP 2002170136A JP 4147383 B2 JP4147383 B2 JP 4147383B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- signal
- position detection
- switching
- rotor position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 92
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、複数台のファンやポンプ等を同一速度で運転するために互いに並列接続された複数台のDCブラシレスモータを駆動するための並列駆動回路に関し、特に低騒音が要求される用途に適用して好適な並列駆動回路に関する者である。
【0002】
【従来の技術】
本出願人は、先に、この種の並列駆動回路を特願2001−222412(以下、先願という)として出願している。
まず、この先願発明を以下に説明する。
【0003】
図7は先願発明に係る駆動回路の全体構成を示しており、2台のDCブラシレスモータMA,MBを1台の駆動回路によって駆動する場合のものである。 図7において、Eは直流電源であり、この直流電源Eには、半導体スイッチング素子T1〜T6からなる三相ブリッジ回路が接続されている。この三相ブリッジ回路の各相出力端子U,V,Wには同一構成のDCブラスレスモータMA,MBが並列に接続されており、それぞれに設けられたホール素子HU,HV,HWはロータ位置検出回路21,22に接続されている。
【0004】
これらの検出回路21,22から出力される各モータMA,MBのロータ位置検出信号は信号選択回路40に入力され、どちらのモータMA,MBの位置検出信号を使用するかを切り替えて選択可能となっている。そして、この信号選択回路40からは、選択したモータの位置検出信号に応じてスイッチング素子T1〜T6をオン・オフさせるために、スイッチング信号発生回路30に対する制御信号が出力される。
なお、図7において、11はステータ、12はロータ、CU,CV,CWはステータ11の各相コイルである。
【0005】
信号選択回路40は、図8に示すようにモータMAの位置検出信号が入力されるXOR(排他的論理和)ゲートIC1,IC2と、XORゲートIC2の出力側に接続されたNANDゲートIC3〜IC7と、モータMBの位置検出信号が入力されるNANDゲートIC8〜IC10と、プルアップ抵抗等の抵抗R1〜R10と、コンデンサC1と、NANDゲートIC5〜IC10の出力側のダイオードD1〜D7と、出力側のトランジスタTR1〜TR3とから構成されている。
この信号選択回路40は、図9に示すようなモータMA,MBの各相のロータ位置検出信号が入力された際に、スイッチング信号発生回路30に対してモータMA,MBの1相または2相のスイッチング素子を駆動させるための制御信号をトランジスタTR1〜TR3から出力するように動作する。
【0006】
以下、図7の回路の動作を、図8、図9を参照しつつ説明する。
いま、モータMA,MBが同期して同一速度で運転されているとすると、それぞれのロータ位置検出信号は図9のように同期して出力されている。なお、図9では、モータMAに関する信号をA、モータMBに関する信号をBで示している。
ここで、図9に示した各モータMA,MBのロータ位置検出信号は、図7におけるホール素子HU,HV,HWの出力信号と実質的に等しい。
【0007】
両方のモータMA,MBをロータ位置検出信号に同期させて運転するためには、図9のロータ回転角(空間角)が0°、60°、120°、180°、240°、300°のタイミングで位置検出信号が変化するのに合わせて、スイッチング信号発生回路30から出力されるスイッチング信号を変化させる必要がある。
【0008】
一方、図9における回転角が0°〜60°の間、60°〜120°の間、120°〜180°の間、180°〜240°の間、240°〜300°の間、300°〜0°の間は、各モータMA,MBともに位置検出信号に変化がなく、一定の状態を保っている(例えば、0°〜60°の間はモータMA,MBの位置検出信号としてU相及びW相の信号が検出される状態が続き、60°〜120°の間はモータMA,MBの位置検出信号としてU相のみの信号が検出される状態が続く)。
【0009】
従って、上述したようにロータ位置検出信号に変化がなく一定の状態を保っている間に、モータMAの位置検出信号とモータMBの位置検出信号とを切り替えても何ら悪影響はない。
例えば、モータMAの位置検出信号を用いてモータMAを駆動するためのスイッチング信号(モータMA,MBは並列に接続されているので、モータMBを駆動するためのスイッチング信号でもあり得る)を出力している時に、他方のモータMBの位置検出信号に切り替えてモータMBを駆動するためのスイッチング信号(同じくモータMAを駆動するためのスイッチング信号でもあり得る)を出力するようにしても、この切替が位置検出信号に変化がない期間に行われるのであれば、切り替えた瞬間にモータの印加電圧が急変する心配はない。また、ロータ位置検出信号の周期よりも短い周期で駆動を切り替えるようにすれば、動作が不安定になるおそれも少ない。
【0010】
このため、この従来技術では、角度が0°〜60°の間、60°〜120°の間、120°〜180°の間、180°〜240°の間、240°〜300°の間、300°〜0°(360°)の間である30°、90°、150°、210°、270°、330°の時点で、信号選択回路40によりモータMA,MBのロータ位置検出信号をモータ間で交互に切り替えて選択するようにし、この選択したロータ位置検出信号に基づいてモータMA,MBを駆動するためのスイッチング信号を出力させている。
【0011】
つまり、図9に示す如く、例えば330°〜30°の間はモータMAのロータ位置検出信号を選択しており、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、W相コイルCWに通電する(期間はそれぞれ異なる)ようにスイッチング信号を出力する。また、30°〜90°の間はモータMBのロータ位置検出信号を選択しており、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、W相コイルCWに通電する(期間はそれぞれ異なる)ようにスイッチング信号を作成する。
以後同様に、90°〜150°の間はモータMAのロータ位置検出信号を選択し、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、V相コイルCVに通電するようにスイッチング信号を作成し、150°〜210°の間はモータMBのロータ位置検出信号を選択し、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、V相コイルCVに通電するようにスイッチング信号を作成する。
【0012】
図9では、説明の便宜上、角度が30°、90°、150°、210°、270°、330°でモータMA,MBの位置検出信号を切り替えているが、切り替え角度はこれらの値に限られるものではなく、前述のように0°〜60°の間、60°〜120°の間、120°〜180°の間、180°〜240°の間、240°〜300°の間、300°〜0°(360°)の間であって、モータMA,MBの位置検出信号に変化がない角度で切り替えれば同様の効果を得ることができる。
【0013】
なお、図8に示した信号選択回路40の動作を確認すると、例えば図9の30°〜60°の間のモータMA,MBのロータ位置検出信号(U相,V相,W相)を何れも論理(1,0,1)で表し、これらが図8のモータMA,MBの位置検出信号として入力されているとすると、図8の論理回路によって出力側トランジスタTR1,TR2,TR3(U相,V相,W相)の出力信号の論理は(1,0,1)であり、次の60°〜90°の間のモータMA,MBの位置検出信号(U相,V相,W相)を何れも論理(1,0,0)とすると、出力側トランジスタTR1,TR2,TR3(U相,V相,W相)の出力信号の論理は(1,0,0)となり、図9の30°〜90°の期間における信号選択回路の出力(制御信号)の変化と一致していることが判る。
【0014】
以上のような動作により、2台のモータMA,MBをロータ位置検出信号に同期させて単一の駆動回路により安定的に並列駆動することが可能になっている。
【0015】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、モータが停止しているとき、2台のモータMA,MBが常に同期して(ロータの位置が同一の位置で)停止しているとは限らない。
両モータが同期していない状態から運転を開始して急激に速度を上げると、同期に引き込むまでは大きな循環電流が不規則に流れてモータから大きな騒音が発生する場合がある。
また、場合によっては両モータがいつまでたっても同期せず、大きな騒音を発生し続けるという問題があった。
【0016】
そこで本発明は、非同期状態での運転に起因する騒音を低減するようにしたDCブラシレスモータの並列駆動回路を提供しようとするものである。
【0017】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載した発明は、互いに並列接続された複数台のDCブラシレスモータを複数の半導体スイッチング素子を有する駆動回路により同一速度で駆動するために、スイッチング信号発生手段が、各モータのロータ位置検出信号を用いて前記スイッチング素子のスイッチング信号を作成するDCブラシレスモータの並列駆動回路であって、
各モータのロータ位置検出信号が変化しない期間内に、スイッチング信号の作成に用いるロータ位置検出信号を各モータ間で切り替えると共に、切り替え後のモータのロータ位置検出信号を用いてスイッチング信号を作成するように、前記スイッチング信号発生手段に対して制御信号を出力する信号選択手段を備えた並列駆動回路において、
始動後の一定期間は各モータのステータコイルに直流電流を流す手段と、
前記一定期間経過後に各モータを所定速度まで加速する速度制御手段と、を備えたものである。
【0018】
請求項2に記載した発明は、互いに並列接続された複数台のDCブラシレスモータを複数の半導体スイッチング素子を有する駆動回路により同一速度で駆動するために、スイッチング信号発生手段が、各モータのロータ位置検出信号を用いて前記スイッチング素子のスイッチング信号を作成するDCブラシレスモータの並列駆動回路であって、
各モータのロータ位置検出信号が変化しない期間内に、スイッチング信号の作成に用いるロータ位置検出信号を各モータ間で切り替えると共に、切り替え後のモータのロータ位置検出信号を用いてスイッチング信号を作成するように、前記スイッチング信号発生手段に対して制御信号を出力する信号選択手段を備えた並列駆動回路において、
始動後の一定期間は各モータのステータコイルに直流電流を流す手段と、
前記一定期間経過後に各モータを低速運転し、その後に所定速度まで加速する速度制御手段と、を備えたものである。
【0019】
請求項3に記載した発明は、互いに並列接続された複数台のDCブラシレスモータを複数の半導体スイッチング素子を有する駆動回路により同一速度で駆動するために、スイッチング信号発生手段が、各モータのロータ位置検出信号を用いて前記スイッチング素子のスイッチング信号を作成するDCブラシレスモータの並列駆動回路であって、
各モータのロータ位置検出信号が変化しない期間内に、スイッチング信号の作成に用いるロータ位置検出信号を各モータ間で切り替えると共に、切り替え後のモータのロータ位置検出信号を用いてスイッチング信号を作成するように、前記スイッチング信号発生手段に対して制御信号を出力する信号選択手段を備えた並列駆動回路において、
始動後の一定期間は各モータのステータコイルに直流電流を流す手段と、
各モータのロータ位置検出信号の誤差を検出する位置信号誤差検出手段と、
前記一定期間経過後に各モータを低速運転し、この低速運転中に前記位置信号誤差検出手段により検出される誤差が規定値以下になった後に各モータを所定速度まで加速する速度制御手段と、を備えたものである。
【0020】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の第1実施形態に係る駆動回路の全体構成を示しており、2台のDCブラシレスモータMA,MBを1台の駆動回路によって駆動する場合のものである。なお、図7と同一の構成要素には同一の参照符号を付してある。この図1の駆動回路は、請求項1及び請求項2に記載した発明に相当するものである。
【0021】
図1において、直流電源E、半導体スイッチング素子T1〜T6からなる三相ブリッジ回路、DCブラスレスモータMA,MB、ホール素子HU,HV,HW、ロータ位置検出回路21,22、信号選択回路40及びスイッチング信号発生回路30の接続構成は図7と同一である。
50は、運転指令に従ってモータMA,MBの回転速度を設定する速度設定回路であり、この回路50による設定速度が速度制御回路60に送られ、速度制御回路60が前記設定速度に従ってモータMA,MBを回転させるようにスイッチング信号発生回路30を介してスイッチング素子T1〜T6のオン、オフを制御している。
【0022】
70は、前記運転指令に従ってモータMA,MBのステータコイルCU,CV,CWに流す直流電流を設定する直流電流設定回路70であり、その出力は速度制御回路60に加えられている。
すなわち、速度制御回路60には速度設定回路50から出力される設定速度と直流電流設定回路70から出力される直流電流設定値とが入力されており、速度制御回路60は、上記入力に従ってスイッチング信号発生回路30に制御信号を送り、モータMA,MBの回転速度や電流を制御するように構成されている。
なお、直流電流設定回路70の動作時には、この設定回路70から出力される制御信号によって速度設定回路50の出力がゼロに保持されるようになっている。
【0023】
ここで、モータMA,MBの同期がずれたまま停止している場合、モータMA,MBのステータコイルに直流電流を流せば、ロータ12の永久磁石がステータコイルに対して所定の位置に引き寄せられる。従って、各モータMA,MBのステータ11とロータ12との位置関係が同じになり、同期状態を実現することができる。
請求項1記載の発明は上記の点に着目したものであり、始動後の一定時間はモータMA,MBのステータコイルに直流電流を流して両モータMA,MBを同期させ、その後、所定の速度まで加速するようにした。
【0024】
図2は上記請求項1の発明の実施形態を示すもので、図1における速度設定回路50及び直流電流設定回路70の出力を示している。
図2において、時刻t1(始動時)において運転指令が入力されると、直流電流設定回路70はこの時刻t1から時刻t2までの一定時間は、直流電流設定値を速度制御回路60に出力し、スイッチング信号発生回路30を介してモータMA,MBの各ステータコイルに直流電流を流す。これにより、前述した如く各ロータ12の永久磁石が各ステータコイルに対して所定の位置に引き寄せられ、各モータMA,MBのステータ11とロータ12との位置関係が等しくなって同期した状態となる。この間、速度設定回路50の出力はゼロに保持されている。
【0025】
次いで、時刻t2で直流電流設定回路70の出力をゼロにすると同時に、それ以後、速度設定回路50の出力を徐々に上昇させ、設定速度V2まで加速する。
これにより、両モータMA,MBを同期させた状態で加速することができるので、騒音の発生を未然に防止することができる。
【0026】
しかしながら、モータのベアリングの潤滑油の温度が低い状態で停止している場合には潤滑油の粘度が高いので、停止状態から直ちに加速すると、うまく同期を保った状態で加速することができない場合がある。このような場合には、モータをしばらくの間低速で運転すれば潤滑油の粘度が下がるため、低速運転時に同期を確立させてその後に加速することが可能である。
そこで請求項2に記載した発明では、始動後に一定時間、各モータMA,MBのステータコイルに直流電流を流した後、更に前記と同一または異なる一定時間だけ低速で運転し、その後、所定速度まで加速するようにした。
【0027】
図3は上記請求項2の発明の実施形態を示すもので、図1における速度設定回路50及び直流電流設定回路70の出力を示している。
図3において、始動時である時刻t4で運転指令が入力されると、直流電流設定回路70はこの時刻t4から時刻t5までの一定時間は、直流電流設定値を速度制御回路60に出力し、スイッチング信号発生回路30を介してモータMA,MBの各ステータコイルに直流電流を流す。これにより、前述したように各ロータ12の永久磁石が各ステータコイルに対して所定の位置に引き寄せられ、各モータMA,MBのステータ11とロータ12との位置関係が等しくなって同期した状態となる。この間、速度設定回路50の出力はゼロに保持されている。
【0028】
次いで、時刻t5で直流電流設定回路70の出力をゼロにすると同時に、速度設定回路50の出力をV1(速度設定回路50の出力は電圧値であるが、設定速度V1に相当する電圧値も便宜的にV1とする。V2についても同様)にして時刻t6まで維持する。この期間t5〜t6ではモータMA,MBが速度V1で低速運転されるので、仮にベアリングの潤滑油の高粘度によって同期運転が難しかったとしてもその困難が解消され、十分に同期が確立された状態となる。
そして、時刻t6以後に、速度設定回路50により設定速度を徐々に上昇させてV2まで加速する。
【0029】
これにより、両モータMA,MBを確実に同期させた状態で加速することができ、騒音の発生を未然に防止することができる。
なお、前述したように、時刻t4〜t5の一定時間と時刻t5〜t6の一定時間とは、同一でも異なっていても良い。
【0030】
次に、請求項3に記載した発明は、2台のモータMA,MBの同期確認を一層厳密に行うようにしたものである。
すなわち、モータMA,MBが同期して回転している状態では、各モータMA,MBのロータ位置検出信号の誤差もほとんどなくなる。従って、請求項3の発明では、始動後にステータコイルに一定時間、直流電流を流し、その後、低速運転時に各モータMA,MBのロータ位置検出信号の誤差を検出し、その誤差が規定値以下になったら確実に同時状態に達したと判断して加速を開始するようにした。
【0031】
図4は本発明の第2実施形態を示す回路図であり、請求項3に記載した発明に相当するものである。図1と同一の構成要素には同一の参照符号を付してあり、以下では異なる部分を中心に説明する。
【0032】
この第2実施形態では、各モータMA,MBのロータ位置検出信号が位置信号誤差検出回路80に入力されており、位置検出信号の誤差が規定値以上か規定値以下かを判別した結果が出力として速度設定回路50に加えられている。
なお、他の構成は図1と同様である。
【0033】
図5は、位置信号誤差検出回路80、速度設定回路50及び直流電流設定回路70の出力の関係を示している。
図5において、始動時である時刻t7で運転指令が入力されると、直流電流設定回路70はこの時刻t7から時刻t8までの一定時間は、直流電流設定値を速度制御回路60に出力し、スイッチング信号発生回路30を介してモータMA,MBの各ステータコイルに直流電流を流す。これにより、前述した如く各モータMA,MBのステータ11とロータ12との位置関係が等しくなって同期した状態となる。この間、速度設定回路50の出力はゼロに保持されている。
【0034】
次に、時刻t8で直流電流設定回路70の出力をゼロにすると同時に、速度設定回路50の出力をしばらくの間、V1に維持する。この時刻t8以後はモータMA,MBが速度V1で低速運転されるので、始動前のベアリングの潤滑油の高粘度などに起因する同期の困難さが解消され、十分に同期した状態となる。その後、時刻t9においてロータ位置検出信号の誤差が規定値以下になると位置信号誤差検出回路80の出力が変化し、速度設定回路50ではモータMA,MBが同期したと判断して設定速度を徐々に上昇させ、最終的に設定速度V2まで加速する。
これにより、両モータMA,MBが確実に同期状態に達してから加速を開始することができるので、非同期状態での急激な加速による騒音が発生するおそれはない。
【0035】
図6は、この実施形態において、モータMA,MBの同期が若干ずれている状態の動作を示すタイミングチャートである。
両モータMA,MBのロータ位置検出信号の誤差は、U相、V相、W相の各相について発生する。位置信号誤差検出回路80では、これら三相の誤差をすべて使用することも可能であるが、回路構成の複雑化によるコストの上昇を避けるためには、一相または二相の誤差を使用すれば良い。
なお、ロータ位置検出信号の誤差は、各モータMA,MBのロータ位置検出信号の排他的論理和から容易に検出することができる。
【0036】
図6に示すように、モータMA,MBの同期が若干ずれている状態でも、ロータ位置検出信号に変化がなく一定の状態を保っている期間、例えば、角度が15°〜60°の間、75°〜120°の間、135°〜180°の間、195°〜240°の間、255°〜300°の間、315°〜0°(360°)の間である30°、90°、150°、210°、270°、330°の時点で、信号選択回路40によりモータMA,MBの位置検出信号をモータ間で交互に切り替えて選択し、この選択した位置検出信号に基づいてモータMA,MBを駆動するためのスイッチング信号を出力させる。
【0037】
つまり、330°〜30°の間はモータMAの位置検出信号を選択し、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、W相コイルCWに通電する(期間はそれぞれ異なる)ようにスイッチング信号を出力する。また、30°〜90°の間はモータMBの位置検出信号を選択し、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、W相コイルCWに通電する(期間はそれぞれ異なる)ようにスイッチング信号を作成する。
以後同様に、90°〜150°の間はモータMAの位置検出信号を選択し、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、V相コイルCVに通電するようにスイッチング信号を作成し、150°〜210°の間はモータMBの位置検出信号を選択し、この信号に基づいてスイッチング信号発生回路30はU相コイルCU、V相コイルCVに通電するようにスイッチング信号を作成する。
【0038】
両モータMA,MBが同期すると、ロータ位置検出信号は前述の図9のようになり、ロータ位置検出信号の誤差もなくなる。この実施形態では、両モータMA,MBが同期した後も、例えば30°、90°、150°、……の時点で信号選択回路40によりモータMA,MBの位置検出信号をモータ間で交互に切り替えて選択し、この選択した位置検出信号に基づいてスイッチング信号発生回路30がスイッチング信号を出力させればよい。
【0039】
なお、モータMA,MBへの印加電圧が等価的に正弦波となるようにスイッチング素子をPWM(パルス幅変調)制御する正弦波PWM制御方式が良く知られている。この方式をスイッチング信号発生回路30に適用してPWMパルスによりスイッチング素子を駆動すれば、モータMA,MBを一層安定して動作させることが可能である。
上記実施形態では2台のDCブラシレスモータを並列運転する場合について説明したが、本発明は3台以上のモータを並列運転する場合にも適用可能である。
【0040】
【発明の効果】
以上のように本発明によれば、複数台のDCブラシレスモータを、単一の駆動回路により低騒音で安定的に並列駆動することができ、低騒音が要求される複数台のファンやポンプ等の並列駆動装置を低コストで提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す回路図である。
【図2】図1における速度設定回路及び直流電流設定回路の動作説明図である。
【図3】図1における速度設定回路及び直流電流設定回路の動作説明図である。
【図4】本発明の第2実施形態を示す回路図である。
【図5】図4における速度設定回路、位置信号誤差検出回路及び直流電流設定回路の動作説明図である。
【図6】各モータのロータ位置検出信号に誤差がある場合の動作を示すタイミングチャートである。
【図7】従来技術を示す回路図である。
【図8】図7における信号選択回路の構成を示す回路図である。
【図9】図7の動作を示すタイミングチャートである。
【符号の説明】
E 直流電源
T1〜T6 スイッチング素子
U,V,W 出力端子
MA,MB DCブラシレスモータ
CU,CV,CW コイル
HU,HV,HW ホール素子
11 ステータ
12 ロータ
21,22 ロータ位置検出回路
30 スイッチング信号発生回路
40 信号選択回路
50 速度設定回路
60 速度制御回路
70 直流電流設定回路
80 位置信号誤差検出回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a parallel drive circuit for driving a plurality of DC brushless motors connected in parallel with each other in order to operate a plurality of fans, pumps, and the like at the same speed, and is particularly applicable to applications requiring low noise. Thus, it is related to a suitable parallel drive circuit.
[0002]
[Prior art]
The present applicant has previously filed this kind of parallel drive circuit as Japanese Patent Application No. 2001-22412 (hereinafter referred to as the prior application).
First, the invention of the prior application will be described below.
[0003]
FIG. 7 shows the overall configuration of the drive circuit according to the invention of the prior application, in which two DC brushless motors MA and MB are driven by one drive circuit. In FIG. 7, E is a DC power source, and a three-phase bridge circuit composed of semiconductor switching elements T1 to T6 is connected to the DC power source E. The DC brassless motors MA, MB having the same configuration are connected in parallel to the phase output terminals U, V, W of the three-phase bridge circuit, and the hall elements HU, HV, HW provided in the respective phases are rotor positions. The
[0004]
The rotor position detection signals of the motors MA and MB output from the
In FIG. 7, 11 is a stator, 12 is a rotor, and CU, CV, and CW are phase coils of the
[0005]
As shown in FIG. 8, the
The
[0006]
The operation of the circuit of FIG. 7 will be described below with reference to FIGS.
Assuming that the motors MA and MB are operating at the same speed in synchronization, the respective rotor position detection signals are output in synchronization as shown in FIG. In FIG. 9, a signal related to the motor MA is indicated by A, and a signal related to the motor MB is indicated by B.
Here, the rotor position detection signals of the motors MA and MB shown in FIG. 9 are substantially equal to the output signals of the Hall elements HU, HV and HW in FIG.
[0007]
In order to operate both motors MA and MB in synchronization with the rotor position detection signal, the rotor rotation angles (space angles) in FIG. 9 are 0 °, 60 °, 120 °, 180 °, 240 °, and 300 °. It is necessary to change the switching signal output from the switching
[0008]
On the other hand, the rotation angle in FIG. 9 is between 0 ° and 60 °, between 60 ° and 120 °, between 120 ° and 180 °, between 180 ° and 240 °, between 240 ° and 300 °, and 300 °. Between 0 ° and 0 °, the position detection signals of the motors MA and MB remain unchanged and remain constant (for example, between 0 ° and 60 °, the U phase is used as the position detection signal of the motors MA and MB). In addition, a state in which a W-phase signal is detected continues, and a state in which only a U-phase signal is detected as a position detection signal for the motors MA and MB continues between 60 ° and 120 °.
[0009]
Therefore, there is no adverse effect even if the position detection signal of the motor MA and the position detection signal of the motor MB are switched while the rotor position detection signal remains unchanged and remains constant as described above.
For example, a switching signal for driving the motor MA using the position detection signal of the motor MA (the motors MA and MB are connected in parallel and may be a switching signal for driving the motor MB) is output. In this case, even if the switching signal for driving the motor MB by switching to the position detection signal of the other motor MB (which may also be a switching signal for driving the motor MA) is output. If it is performed during a period when there is no change in the position detection signal, there is no fear that the applied voltage of the motor changes suddenly at the moment of switching. Further, if the drive is switched at a cycle shorter than the cycle of the rotor position detection signal, the operation is less likely to become unstable.
[0010]
For this reason, in this prior art, the angle is between 0 ° and 60 °, between 60 ° and 120 °, between 120 ° and 180 °, between 180 ° and 240 °, between 240 ° and 300 °, At the time of 30 °, 90 °, 150 °, 210 °, 270 °, 330 ° between 300 ° and 0 ° (360 °), the
[0011]
That is, as shown in FIG. 9, for example, the rotor position detection signal of the motor MA is selected between 330 ° and 30 °, and the switching
Thereafter, similarly, the rotor position detection signal of the motor MA is selected between 90 ° and 150 °, and based on this signal, the switching
[0012]
In FIG. 9, for convenience of explanation, the position detection signals of the motors MA and MB are switched at angles of 30 °, 90 °, 150 °, 210 °, 270 °, and 330 °, but the switching angle is limited to these values. Not between 0 ° and 60 °, between 60 ° and 120 °, between 120 ° and 180 °, between 180 ° and 240 °, between 240 ° and 300 °, as described above. A similar effect can be obtained if the position detection signals of the motors MA and MB are switched at an angle between 0 ° and 0 ° (360 °) with no change.
[0013]
When the operation of the
[0014]
Through the operation as described above, the two motors MA and MB can be stably driven in parallel by a single drive circuit in synchronization with the rotor position detection signal.
[0015]
[Problems to be solved by the invention]
However, in the above prior art, when the motor is stopped, the two motors MA and MB are not always stopped synchronously (at the same rotor position).
If the operation is started from a state in which the two motors are not synchronized and the speed is rapidly increased, a large circulating current may flow irregularly and a large noise may be generated from the motors until the motors are synchronized.
Further, in some cases, there has been a problem in that both motors are not synchronized indefinitely and continue to generate large noises.
[0016]
Accordingly, the present invention is intended to provide a parallel drive circuit for a DC brushless motor in which noise caused by operation in an asynchronous state is reduced.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in
While the rotor position detection signal of each motor does not change, the rotor position detection signal used for generating the switching signal is switched between the motors, and the switching signal is generated using the rotor position detection signal of the motor after switching. In addition, in a parallel drive circuit including signal selection means for outputting a control signal to the switching signal generation means,
Means for passing a direct current through the stator coil of each motor for a certain period after startup;
Speed control means for accelerating each motor to a predetermined speed after the predetermined period has elapsed.
[0018]
According to the second aspect of the present invention, in order to drive a plurality of DC brushless motors connected in parallel to each other at the same speed by a drive circuit having a plurality of semiconductor switching elements, the switching signal generating means includes a rotor position of each motor. A DC brushless motor parallel drive circuit that creates a switching signal of the switching element using a detection signal,
While the rotor position detection signal of each motor does not change, the rotor position detection signal used for generating the switching signal is switched between the motors, and the switching signal is generated using the rotor position detection signal of the motor after switching. In addition, in a parallel drive circuit including signal selection means for outputting a control signal to the switching signal generation means,
Means for passing a direct current through the stator coil of each motor for a certain period after startup;
Speed control means for operating each motor at a low speed after the predetermined period of time has elapsed and then accelerating to a predetermined speed.
[0019]
According to a third aspect of the present invention, in order to drive a plurality of DC brushless motors connected in parallel to each other at the same speed by a drive circuit having a plurality of semiconductor switching elements, the switching signal generating means includes a rotor position of each motor. A DC brushless motor parallel drive circuit that creates a switching signal of the switching element using a detection signal,
While the rotor position detection signal of each motor does not change, the rotor position detection signal used for generating the switching signal is switched between the motors, and the switching signal is generated using the rotor position detection signal of the motor after switching. In addition, in a parallel drive circuit including signal selection means for outputting a control signal to the switching signal generation means,
Means for passing a direct current through the stator coil of each motor for a certain period after startup;
Position signal error detection means for detecting an error in the rotor position detection signal of each motor;
Speed control means for operating each motor at a low speed after the predetermined period has elapsed, and accelerating each motor to a predetermined speed after an error detected by the position signal error detection means during the low speed operation falls below a specified value, It is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 shows the overall configuration of the drive circuit according to the first embodiment of the present invention, in which two DC brushless motors MA and MB are driven by one drive circuit. The same components as those in FIG. 7 are denoted by the same reference numerals. The drive circuit of FIG. 1 corresponds to the invention described in
[0021]
In FIG. 1, a DC power source E, a three-phase bridge circuit comprising semiconductor switching elements T1 to T6, DC brassless motors MA and MB, Hall elements HU, HV and HW, rotor
[0022]
That is, the set speed output from the
During the operation of the DC
[0023]
Here, when the motors MA and MB are stopped while being out of synchronization, if a direct current is passed through the stator coils of the motors MA and MB, the permanent magnet of the
The invention according to
[0024]
FIG. 2 shows an embodiment of the invention of
In FIG. 2, when an operation command is input at time t1 (at the time of starting), the direct
[0025]
Next, at time t2, the output of the DC
Thereby, since it can accelerate in the state which synchronized both motor MA and MB, generation | occurrence | production of a noise can be prevented beforehand.
[0026]
However, when the motor's bearing lubricant is stopped at a low temperature, the viscosity of the lubricant is high, so if you immediately accelerate from the stopped state, you may not be able to accelerate well while maintaining synchronization. is there. In such a case, if the motor is operated at a low speed for a while, the viscosity of the lubricating oil decreases, so that it is possible to establish synchronization at the time of the low speed operation and to accelerate thereafter.
Therefore, in the invention described in
[0027]
FIG. 3 shows an embodiment of the invention of
In FIG. 3, when an operation command is input at time t4, which is the start time, the direct
[0028]
Next, at time t5, the output of the DC
Then, after time t6, the
[0029]
As a result, the motors MA and MB can be accelerated while being reliably synchronized, and noise can be prevented from occurring.
As described above, the fixed time from time t4 to t5 and the fixed time from time t5 to t6 may be the same or different.
[0030]
Next, the invention described in claim 3 is configured such that the synchronization confirmation of the two motors MA and MB is performed more strictly.
That is, in the state where the motors MA and MB are rotating synchronously, the error of the rotor position detection signal of each motor MA and MB is almost eliminated. Accordingly, in the invention of claim 3, after starting, a direct current is passed through the stator coil for a certain period of time, and thereafter an error in the rotor position detection signal of each motor MA, MB is detected during low speed operation, and the error is below a specified value. When it came to it, it was judged that it reached the same state without fail, and acceleration was started.
[0031]
FIG. 4 is a circuit diagram showing a second embodiment of the present invention, and corresponds to the invention described in claim 3. The same components as those in FIG. 1 are denoted by the same reference numerals, and different portions will be mainly described below.
[0032]
In the second embodiment, the rotor position detection signals of the motors MA and MB are input to the position signal
Other configurations are the same as those in FIG.
[0033]
FIG. 5 shows the relationship among the outputs of the position signal
In FIG. 5, when an operation command is input at time t7, which is a start time, the DC
[0034]
Next, at time t8, the output of the DC
As a result, the acceleration can be started after the motors MA and MB have surely reached the synchronous state, so that there is no possibility of noise due to the rapid acceleration in the asynchronous state.
[0035]
FIG. 6 is a timing chart showing the operation in a state in which the motors MA and MB are slightly out of synchronization in this embodiment.
Errors in the rotor position detection signals of both motors MA and MB occur for each of the U phase, V phase, and W phase. The position signal
The error of the rotor position detection signal can be easily detected from the exclusive OR of the rotor position detection signals of the motors MA and MB.
[0036]
As shown in FIG. 6, even when the motors MA and MB are slightly out of synchronization, the rotor position detection signal remains unchanged and remains constant, for example, the angle is between 15 ° and 60 °. 75 ° to 120 °, 135 ° to 180 °, 195 ° to 240 °, 255 ° to 300 °, 315 ° to 0 ° (360 °) 30 °, 90 ° , 150 °, 210 °, 270 °, and 330 °, the
[0037]
That is, the position detection signal of the motor MA is selected between 330 ° and 30 °, and the switching
Thereafter, similarly, a position detection signal of the motor MA is selected between 90 ° and 150 °, and based on this signal, the switching
[0038]
When both the motors MA and MB are synchronized, the rotor position detection signal is as shown in FIG. 9, and the error of the rotor position detection signal is eliminated. In this embodiment, after the motors MA and MB are synchronized, the position detection signals of the motors MA and MB are alternately displayed between the motors by the
[0039]
A sine wave PWM control method is well known in which the switching element is PWM (pulse width modulation) controlled so that the applied voltages to the motors MA and MB are equivalently sine waves. If this method is applied to the switching
In the above embodiment, the case where two DC brushless motors are operated in parallel has been described. However, the present invention can also be applied to a case where three or more motors are operated in parallel.
[0040]
【The invention's effect】
As described above, according to the present invention, a plurality of DC brushless motors can be stably driven in parallel with low noise by a single drive circuit, and a plurality of fans, pumps, etc. that require low noise. Can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
FIG. 2 is an operation explanatory diagram of a speed setting circuit and a direct current setting circuit in FIG. 1;
FIG. 3 is an operation explanatory diagram of a speed setting circuit and a direct current setting circuit in FIG. 1;
FIG. 4 is a circuit diagram showing a second embodiment of the present invention.
5 is an operation explanatory diagram of a speed setting circuit, a position signal error detection circuit, and a direct current setting circuit in FIG. 4;
FIG. 6 is a timing chart showing an operation when there is an error in the rotor position detection signal of each motor.
FIG. 7 is a circuit diagram showing a conventional technique.
8 is a circuit diagram showing a configuration of a signal selection circuit in FIG. 7;
9 is a timing chart showing the operation of FIG.
[Explanation of symbols]
E DC power sources T1 to T6 Switching elements U, V, W Output terminals MA, MB DC brushless motors CU, CV, CW Coils HU, HV,
Claims (3)
各モータのロータ位置検出信号が変化しない期間内に、スイッチング信号の作成に用いるロータ位置検出信号を各モータ間で切り替えると共に、切り替え後のモータのロータ位置検出信号を用いてスイッチング信号を作成するように、前記スイッチング信号発生手段に対して制御信号を出力する信号選択手段を備えた並列駆動回路において、
始動後の一定期間は各モータのステータコイルに直流電流を流す手段と、
前記一定期間経過後に各モータを所定速度まで加速する速度制御手段と、を備えたことを特徴とするDCブラシレスモータの並列駆動回路。In order to drive a plurality of DC brushless motors connected in parallel to each other at the same speed by a drive circuit having a plurality of semiconductor switching elements, a switching signal generating means uses the rotor position detection signal of each motor to A parallel drive circuit of a DC brushless motor that creates a switching signal,
While the rotor position detection signal of each motor does not change, the rotor position detection signal used for generating the switching signal is switched between the motors, and the switching signal is generated using the rotor position detection signal of the motor after switching. In addition, in a parallel drive circuit including signal selection means for outputting a control signal to the switching signal generation means,
Means for passing a direct current through the stator coil of each motor for a certain period after startup;
A parallel drive circuit for a DC brushless motor, comprising: speed control means for accelerating each motor to a predetermined speed after the predetermined period has elapsed.
各モータのロータ位置検出信号が変化しない期間内に、スイッチング信号の作成に用いるロータ位置検出信号を各モータ間で切り替えると共に、切り替え後のモータのロータ位置検出信号を用いてスイッチング信号を作成するように、前記スイッチング信号発生手段に対して制御信号を出力する信号選択手段を備えた並列駆動回路において、
始動後の一定期間は各モータのステータコイルに直流電流を流す手段と、
前記一定期間経過後に各モータを低速運転し、その後に所定速度まで加速する速度制御手段と、を備えたことを特徴とするDCブラシレスモータの並列駆動回路。In order to drive a plurality of DC brushless motors connected in parallel to each other at the same speed by a drive circuit having a plurality of semiconductor switching elements, a switching signal generating means uses the rotor position detection signal of each motor to A parallel drive circuit of a DC brushless motor that creates a switching signal,
While the rotor position detection signal of each motor does not change, the rotor position detection signal used for generating the switching signal is switched between the motors, and the switching signal is generated using the rotor position detection signal of the motor after switching. In addition, in a parallel drive circuit including signal selection means for outputting a control signal to the switching signal generation means,
Means for passing a direct current through the stator coil of each motor for a certain period after startup;
A parallel drive circuit for a DC brushless motor, comprising: a speed control unit that operates each motor at a low speed after a predetermined period of time, and thereafter accelerates to a predetermined speed.
各モータのロータ位置検出信号が変化しない期間内に、スイッチング信号の作成に用いるロータ位置検出信号を各モータ間で切り替えると共に、切り替え後のモータのロータ位置検出信号を用いてスイッチング信号を作成するように、前記スイッチング信号発生手段に対して制御信号を出力する信号選択手段を備えた並列駆動回路において、
始動後の一定期間は各モータのステータコイルに直流電流を流す手段と、
各モータのロータ位置検出信号の誤差を検出する位置信号誤差検出手段と、
前記一定期間経過後に各モータを低速運転し、この低速運転中に前記位置信号誤差検出手段により検出される誤差が規定値以下になった後に各モータを所定速度まで加速する速度制御手段と、を備えたことを特徴とするDCブラシレスモータの並列駆動回路。In order to drive a plurality of DC brushless motors connected in parallel to each other at the same speed by a drive circuit having a plurality of semiconductor switching elements, a switching signal generating means uses the rotor position detection signal of each motor to A parallel drive circuit of a DC brushless motor that creates a switching signal,
While the rotor position detection signal of each motor does not change, the rotor position detection signal used for generating the switching signal is switched between the motors, and the switching signal is generated using the rotor position detection signal of the motor after switching. In addition, in a parallel drive circuit including signal selection means for outputting a control signal to the switching signal generation means,
Means for passing a direct current through the stator coil of each motor for a certain period after startup;
Position signal error detection means for detecting an error in the rotor position detection signal of each motor;
Speed control means for operating each motor at a low speed after the predetermined period has elapsed, and accelerating each motor to a predetermined speed after an error detected by the position signal error detection means during the low speed operation falls below a specified value, A parallel drive circuit for a DC brushless motor, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170136A JP4147383B2 (en) | 2002-06-11 | 2002-06-11 | DC brushless motor parallel drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170136A JP4147383B2 (en) | 2002-06-11 | 2002-06-11 | DC brushless motor parallel drive circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004015980A JP2004015980A (en) | 2004-01-15 |
JP4147383B2 true JP4147383B2 (en) | 2008-09-10 |
Family
ID=30436491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002170136A Expired - Fee Related JP4147383B2 (en) | 2002-06-11 | 2002-06-11 | DC brushless motor parallel drive circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4147383B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7268502B2 (en) | 2004-12-11 | 2007-09-11 | Ebm-Papst St. Georgen Gmbh & Co. Kg | Method and arrangement for controlling the synchronous running of a plurality of electronically commutated motors |
JP2006191750A (en) * | 2005-01-06 | 2006-07-20 | Fuji Electric Fa Components & Systems Co Ltd | DC brushless motor parallel drive circuit |
JP4295306B2 (en) * | 2006-11-07 | 2009-07-15 | 株式会社上村工業 | Control method for sensorless permanent magnet synchronous motor (PMSM) |
JP5173209B2 (en) * | 2007-02-20 | 2013-04-03 | 株式会社ミツバ | Drive device for a plurality of brushless motors connected in parallel, start method for a plurality of brushless motors connected in parallel, and rotor stop position detection method for a plurality of brushless motors connected in parallel |
JP5218818B2 (en) * | 2008-02-26 | 2013-06-26 | 富士電機株式会社 | DC brushless motor parallel drive circuit |
EP2557213B1 (en) | 2010-04-30 | 2014-11-19 | University of Yamanashi | A battery separator comprising a polyolefin nanofilament porous sheet |
KR101244654B1 (en) * | 2011-05-19 | 2013-03-18 | 주식회사 시스웍 | FFU controlling apparatus with several ports for a controller |
US10498275B2 (en) * | 2015-12-14 | 2019-12-03 | Rolls-Royce North American Technologies Inc. | Synchronous electrical power distribution excitation control system |
US10141874B2 (en) | 2015-12-14 | 2018-11-27 | Rolls-Royce North American Technologies Inc. | Synchronous electrical power distribution system startup and control |
EP3391530B1 (en) * | 2015-12-14 | 2022-06-01 | Rolls-Royce North American Technologies, Inc. | Synchronous electrical power distribution system startup and control |
US9979339B2 (en) * | 2015-12-14 | 2018-05-22 | Rolls-Royce North American Technologies Inc. | Synchronous electric power distribution startup system |
US10263553B2 (en) | 2015-12-14 | 2019-04-16 | Rolls-Royce North American Technologies Inc. | Synchronous electrical power distribution system |
US10205415B2 (en) | 2015-12-14 | 2019-02-12 | Rolls-Royce North American Technologies Inc. | Multiple generator synchronous electrical power distribution system |
-
2002
- 2002-06-11 JP JP2002170136A patent/JP4147383B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004015980A (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410690B2 (en) | Brushless motor control device and brushless motor | |
JP4147383B2 (en) | DC brushless motor parallel drive circuit | |
JP2004229462A (en) | Controller for motor | |
JP2005245058A (en) | DC brushless motor parallel drive method | |
JP4147399B2 (en) | DC brushless motor parallel drive method | |
JP4147382B2 (en) | DC brushless motor parallel drive circuit | |
JP2005312216A (en) | Brushless dc motor drive | |
JP3531701B2 (en) | Control method of brushless motor | |
JP4066228B2 (en) | Synchronous operation device | |
JP2014087113A (en) | Motor Drive device | |
JP4432292B2 (en) | DC brushless motor parallel drive circuit | |
JP2005278320A (en) | Starting method of brushless motor, control device of brushless motor and electric pump | |
JP5218818B2 (en) | DC brushless motor parallel drive circuit | |
JP4143958B2 (en) | DC brushless motor parallel drive circuit | |
JPH1198885A (en) | Method for controlling brushless motor | |
JP3234012B2 (en) | How to start a sensorless multi-phase DC motor | |
JP4136368B2 (en) | DC brushless motor parallel drive circuit | |
JP3567542B2 (en) | Sensorless motor drive circuit | |
JP2005269719A (en) | Sensorless control method for brushless motor, sensorless controller for brushless motor, and electric pump | |
JP3223610B2 (en) | How to start a sensorless multi-phase DC motor | |
JP3486724B2 (en) | Drive device for DC motor | |
JP3811955B2 (en) | Brushless DC motor driving apparatus and driving method, and brushless DC motor rotor speed or rotor phase detection method | |
JP3481751B2 (en) | Drive device for DC motor | |
JP2006191751A (en) | DC brushless motor parallel drive circuit | |
JPH04109891A (en) | Sensor-less spindle motor control circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080528 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080610 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |