JPS61125233A - High-speed dpcm circuit - Google Patents
High-speed dpcm circuitInfo
- Publication number
- JPS61125233A JPS61125233A JP59245775A JP24577584A JPS61125233A JP S61125233 A JPS61125233 A JP S61125233A JP 59245775 A JP59245775 A JP 59245775A JP 24577584 A JP24577584 A JP 24577584A JP S61125233 A JPS61125233 A JP S61125233A
- Authority
- JP
- Japan
- Prior art keywords
- input
- output
- speed
- quantizer
- multiplier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、画像帯域圧縮装置に用いられるDI)CM回
路特に3入力2出力ディジタル・ディジタル変換器(以
下3入力2出力D / D変換器と称す)及びこの2出
力を加算する加算器を用いた高速DPCM回路に係り、
予測の為の演算速度を向1−させる高速DPCM回路に
関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a DI/CM circuit used in an image band compression device, particularly a 3-input 2-output digital-to-digital converter (hereinafter referred to as a 3-input 2-output D/D converter). ) and a high-speed DPCM circuit using an adder that adds these two outputs,
The present invention relates to a high-speed DPCM circuit that increases the calculation speed for prediction.
上記高速DPCM回路を用い帯域圧縮を行う場合予測の
為の演算速度が高いことが望ましい。When performing band compression using the above-mentioned high-speed DPCM circuit, it is desirable that the calculation speed for prediction be high.
第2図は従来例の予測係数1/2の場合の高速DPCM
回路のブロック図である。Figure 2 shows high-speed DPCM when the prediction coefficient is 1/2 of the conventional example.
FIG. 2 is a block diagram of the circuit.
図中1は3入力2出力D/D変換器、2は加算器、3.
7は遅延素子であるFF、4は量子化器、5は加算器、
6,8.9は予測係数1/2を乗算する乗算器を示す。In the figure, 1 is a 3-input 2-output D/D converter, 2 is an adder, and 3.
7 is a delay element FF, 4 is a quantizer, 5 is an adder,
6, 8.9 indicates a multiplier that multiplies the prediction coefficient by 1/2.
予測の為に2入力の減算器を用いるD P CM 11
11路の代わりに、3入力2出力D/D変換器と加1γ
器を用い高速化を実現したものとして、本出願人が昭和
59年8月30日特願昭59−181061で特許出願
した高速DPCM符号器がある。D P CM 11 using 2-input subtractor for prediction
Instead of 11 paths, a 3-input 2-output D/D converter and an addition 1γ
There is a high-speed DPCM encoder for which the present applicant applied for a patent on August 30, 1980, in Japanese Patent Application No. 59-181061, as an example of a high-speed DPCM encoder.
この実施例を示したものが今回従来例とした第2図であ
る。This embodiment is shown in FIG. 2, which is considered as a conventional example.
第2図の場合は、量子化器4の出力のDPCM信号は乗
算器8にて予測係数1/2を乗算され、3入力2出力D
/D変換illに入力し、又FF7の出力である1標本
化周期前の値は乗算器9にて予測係数1/2を乗算され
、3入力2出力D/D変換器lに入力し、3入力2出力
D/D変換器IDPCM信号を出力するようにして、予
測の為に2入力の減算器を用いるDPCM回路換器より
高速な高速DPCM回路を実現している。In the case of FIG. 2, the DPCM signal output from the quantizer 4 is multiplied by the prediction coefficient 1/2 in the multiplier 8, and the 3-input 2-output D
The value inputted to /D conversion ill and output from FF7 one sampling period ago is multiplied by the prediction coefficient 1/2 in multiplier 9, and inputted to 3-input 2-output D/D converter l, The 3-input 2-output D/D converter outputs an IDPCM signal, realizing a high-speed DPCM circuit that is faster than a DPCM circuit converter that uses a 2-input subtracter for prediction.
しかしながら、この場合処理速度を決定するクリティカ
ルパスとしては、3入力2出力D/D変換器1.加算器
2. FF3、量子化器41乗算器8のループとなり
、乗算器8の動作速度が遅い場合予測の為の演算速度が
遅い問題点がある。However, in this case, the critical path that determines the processing speed is the 3-input 2-output D/D converter 1. Adder 2. This becomes a loop of the FF 3, the quantizer 41, and the multiplier 8, and if the operating speed of the multiplier 8 is slow, there is a problem that the calculation speed for prediction is slow.
上記問題点は、出力側に、予測係数を乗算した後量子化
1) P CM信号を発生する機能を・体化した量子化
器と、第1の加算器及び第1の乗算器及び第1の遅延素
子を含み、1−1つ該第1の乗算器で該第1の加算器の
出力に予測係数を乗算し、この出力を該第1の遅延素子
にて遅延さ−l、該第1の加算器に入力し予測値を検出
する予測値検出ループと、第1の入力にPCM信号を予
il+係数で除算した信号が、第2の入力に該量子化器
の出力を、第3の入力に該第1の遅延素子の出力が入力
し、2出力とする3入力2出力ディジタル・ディジタル
変換器の出力に、ごの2出力を加算する第2の加算器を
接続し又この出力を第2の遅延素子にて遅延させ、又こ
の出力を該量子化器に入力するようにした本発明の高速
D I) CM回路により解決される。The above problem is that the output side is multiplied by a prediction coefficient and then quantized (1). , the first multiplier multiplies the output of the first adder by a prediction coefficient, and this output is delayed by the first delay element. A predicted value detection loop that inputs the predicted value to the first adder and detects the predicted value; the first input is a signal obtained by dividing the PCM signal by the preil+coefficient; The output of the first delay element is inputted to the input of , and a second adder that adds the two outputs of each is connected to the output of a three-input two-output digital-to-digital converter that has two outputs. This problem is solved by the high-speed DI) CM circuit of the present invention, which delays DI (DI) by a second delay element and inputs this output to the quantizer.
本発明では、従来の高速DPCM回路の第2の遅延素子
(第2図のFF3)の出力に第2図の量子化器4の代わ
りに、予測係数を乗算した後景子化DPCM信号を発生
ずる機能を一体化した量子化器を設置し、その代わりに
、量子化器の出力及び1標本化周朋前の値(第2図のF
F7の出力)に予測係数を乗算せず、又入力するPCM
信号を予測係数で除算して、3入力2出力D/D変換器
に入力し、乗算器の動作速度が3入力2出力D/D変換
器の動作速度より早い場合にクリティカルパスは乗算器
の遅延分だけ予測の為の演算速度を向上している。In the present invention, instead of the quantizer 4 in FIG. 2, the output of the second delay element (FF3 in FIG. 2) of the conventional high-speed DPCM circuit is multiplied by a prediction coefficient and then a landscaped DPCM signal is generated. A quantizer with integrated functions is installed, and instead, the output of the quantizer and the value before one sampling period (F in Fig. 2) are installed.
PCM that does not multiply the prediction coefficient (output of F7) and also inputs it
The signal is divided by the prediction coefficient and input to a 3-input 2-output D/D converter, and if the operating speed of the multiplier is faster than the operating speed of the 3-input 2-output D/D converter, the critical path of the multiplier is The calculation speed for prediction is improved by the amount of delay.
第1図は本発明の実施例の予測係数1/2の場合の、高
速r)PCM回路のブロック図である。FIG. 1 is a block diagram of a high speed r) PCM circuit in the case of a prediction coefficient of 1/2 according to an embodiment of the present invention.
図中、10は予測係数1/2で除算する乗算器、11は
予測係数1/2で乗算した後量子化DPCM信号を発す
る機能を一体化した量子化器を示しており、尚全図を通
じ同一符号は同一機能のものを示す。In the figure, 10 indicates a multiplier that divides by 1/2 of the prediction coefficient, and 11 indicates a quantizer that has an integrated function of emitting a quantized DPCM signal after multiplying by 1/2 of the prediction coefficient. The same code indicates the same function.
第1図で第2図と異なる点は、FF3の出力に量子化器
11を設置−1、ここで172が乗算されるので、その
代わりに、量子化器4の出力及びFF7の出力にはl/
2を乗算−υず、又入力のPCM信号は乗算器IOにて
1/2で除算され、3入力2出力D/D変換器1に入力
するようにした点である。The difference between Fig. 1 and Fig. 2 is that a quantizer 11 is installed on the output of FF3 and is multiplied by 172, so instead, the output of quantizer 4 and the output of FF7 are l/
2 is not multiplied by -υ, and the input PCM signal is divided by 1/2 by the multiplier IO and inputted to the 3-input 2-output D/D converter 1.
このようにすれば、乗算器6の動作速度が3入力2出力
D/D変換器1の動作速度より早い場合にクリティカル
パスは3入力2出力D/D変換器1、加算器2.FF3
.量子化器IIよりなるループとなるため従来例に比し
第2図の乗算H8の遅延分だけ予測の為の演算速度を向
−F出来る。By doing this, when the operating speed of the multiplier 6 is faster than the operating speed of the 3-input 2-output D/D converter 1, the critical path is the 3-input 2-output D/D converter 1, the adder 2. FF3
.. Since the loop consists of the quantizer II, the calculation speed for prediction can be increased by the delay of the multiplication H8 in FIG. 2 compared to the conventional example.
上記は予測係数1/2の場合で説明したが、他の場合も
同様に予測の為の演算速度を向」−出来るのは勿論であ
る。Although the above description has been made for the case where the prediction coefficient is 1/2, it is of course possible to increase the calculation speed for prediction in other cases as well.
又FF3と量子化器11の位置を逆にすると乗算器6の
遅延が3入力2出力D/D変換器1と量子化器11の遅
延を加え合わせたものより小の時従来例に比し第2図の
乗算器8の遅延分だけ予測の為の演算速度を向上出来る
。Also, when the positions of FF 3 and quantizer 11 are reversed, when the delay of multiplier 6 is smaller than the sum of the delays of 3-input 2-output D/D converter 1 and quantizer 11, compared to the conventional example. The calculation speed for prediction can be improved by the delay of the multiplier 8 shown in FIG.
あるいは、l=’ F 7と乗算器6の位置を逆にする
と乗算器6の遅延が量子化器11の遅延より小の時従来
例に比し第2図の乗算器8の遅延分だけ予測の為の演算
速度を向上出来る。Alternatively, if l=' F 7 and the position of multiplier 6 are reversed, when the delay of multiplier 6 is smaller than the delay of quantizer 11, the prediction is made by the delay of multiplier 8 in FIG. 2 compared to the conventional example. The calculation speed for can be improved.
以上詳細に説明せる如く本発明によれば、予測の為の演
算速度を向上出来る効果がある。As explained in detail above, according to the present invention, there is an effect that the calculation speed for prediction can be improved.
第1図は本発明の実施例の高速r’)PCM回路のブロ
ック図、
第2図は従来例の高速DPCM回路のプロ、り図である
。
図において、
lは、3入力2出力ディジタル・ディジタル変換器、
2.5は加算器、
3.7はFF。
4.11は量子化器、
6.8.9.10は乗算器を示す。FIG. 1 is a block diagram of a high-speed r') PCM circuit according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional high-speed DPCM circuit. In the figure, l is a 3-input 2-output digital-to-digital converter, 2.5 is an adder, and 3.7 is an FF. 4.11 is a quantizer, and 6.8.9.10 is a multiplier.
Claims (1)
発生する機能を一体化した量子化器と、第1の加算器及
び第1の乗算器及び第1の遅延素子を含み、且つ該第1
の乗算器で該第1の加算器の出力に予測係数を乗算し、
この出力を該第1の遅延素子にて遅延させ、該量子化器
の出力とともに該第1の加算器に入力し予測値を検出す
る予測値検出ループと、第1の入力にPCM信号を予測
係数で除算した信号が、第2の入力に該量子化器の出力
を、第3の入力に該第1の遅延素子の出力が入力し、2
出力とする3入力2出力ディジタル・ディジタル変換器
の出力に、この2出力を加算する第2の加算器を接続し
又この出力を第2の遅延素子にて遅延させ、又この出力
を該量子化器に入力するようにしたことを特徴とする高
速DPCM回路。The output side includes a quantizer integrating a function of generating a quantized DPCM signal after multiplication by a prediction coefficient, a first adder, a first multiplier, and a first delay element, and 1
multiplying the output of the first adder by a prediction coefficient with a multiplier;
A predicted value detection loop that delays this output with the first delay element and inputs it to the first adder together with the output of the quantizer to detect a predicted value, and a predicted PCM signal is input to the first input. The output of the quantizer is input to the second input, the output of the first delay element is input to the third input, and the signal divided by the coefficient is input to the second input, and the output of the first delay element is input to the third input.
A second adder that adds these two outputs is connected to the output of the three-input, two-output digital-to-digital converter, and this output is delayed by a second delay element, and this output is A high-speed DPCM circuit characterized in that the input is input to a converter.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59245775A JPS61125233A (en) | 1984-11-20 | 1984-11-20 | High-speed dpcm circuit |
KR1019850006333A KR890004441B1 (en) | 1984-08-30 | 1985-08-30 | Automatic cording circuit |
CA000489802A CA1338767C (en) | 1984-08-30 | 1985-08-30 | Differential coding circuit |
EP85110978A EP0173983B1 (en) | 1984-08-30 | 1985-08-30 | Differential coding circuit |
DE8585110978T DE3586932T2 (en) | 1984-08-30 | 1985-08-30 | DIFFERENTIAL CODING CIRCUIT. |
US07/049,048 US4771439A (en) | 1984-08-30 | 1987-05-12 | Differential coding circuit with reduced critical path applicable to DPCM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59245775A JPS61125233A (en) | 1984-11-20 | 1984-11-20 | High-speed dpcm circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61125233A true JPS61125233A (en) | 1986-06-12 |
JPH0243375B2 JPH0243375B2 (en) | 1990-09-28 |
Family
ID=17138628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59245775A Granted JPS61125233A (en) | 1984-08-30 | 1984-11-20 | High-speed dpcm circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61125233A (en) |
-
1984
- 1984-11-20 JP JP59245775A patent/JPS61125233A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0243375B2 (en) | 1990-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0656942B2 (en) | Delay circuit for digital signal | |
US5712874A (en) | Noise shaper capable of generating a predetermined output pattern in no-signal condition | |
JPS61125233A (en) | High-speed dpcm circuit | |
KR950004225B1 (en) | High speed carry increment adder | |
JPS6320053B2 (en) | ||
JPH0156578B2 (en) | ||
JPS63187366A (en) | Arithmetic unit for moving average | |
JPS61121619A (en) | High speed DPCM circuit | |
JPS61121621A (en) | High speed dpcm circuit | |
RU2001126017A (en) | SELF-ADJUSTING CONTROL SYSTEM FOR OBJECTS WITH DELAY ON MANAGEMENT | |
JPS6158327A (en) | High-speed dpcm encoder | |
JPS6251830A (en) | Parallel processing type plane forecasting circuit | |
JPH0239138B2 (en) | SABUNFUGOKI | |
JPH0613906A (en) | Sigma-delta modulator | |
JPH0432822Y2 (en) | ||
SU1198536A1 (en) | Digital extrapolator | |
SU1550514A1 (en) | Wave-type digital integrator | |
KR930000650Y1 (en) | Noise Canceling Circuit of Luminance Signal | |
JP2763336B2 (en) | Color information signal processing device | |
KR0163904B1 (en) | D/a converter using digital signal delta | |
JPS61292424A (en) | differential encoder | |
JP3042201B2 (en) | Noise shaper | |
JPH0265412A (en) | Digital/analog converter | |
JPS61144931A (en) | Multiplied sampling circuit | |
JPH05334048A (en) | Adder/subtractor |