[go: up one dir, main page]

JPS61123814A - optical isolator - Google Patents

optical isolator

Info

Publication number
JPS61123814A
JPS61123814A JP24444384A JP24444384A JPS61123814A JP S61123814 A JPS61123814 A JP S61123814A JP 24444384 A JP24444384 A JP 24444384A JP 24444384 A JP24444384 A JP 24444384A JP S61123814 A JPS61123814 A JP S61123814A
Authority
JP
Japan
Prior art keywords
optical isolator
hgte
optical
cdte
mnte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24444384A
Other languages
Japanese (ja)
Other versions
JPH0576611B2 (en
Inventor
Kazumasa Takagi
高木 一正
Takanobu Takayama
孝信 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24444384A priority Critical patent/JPS61123814A/en
Publication of JPS61123814A publication Critical patent/JPS61123814A/en
Publication of JPH0576611B2 publication Critical patent/JPH0576611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光通信に用いられる光アイソレータおよび、光
アイソレータ、半導体レーザ、半導波路を複合化した薄
[i4子の構造とその構造に有用な磁性半導体材料に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an optical isolator used in optical communication, a structure of a thin quadrupole which is a composite of an optical isolator, a semiconductor laser, and a semi-waveguide, and a structure useful for the structure. Concerning magnetic semiconductor materials.

進んでおり、光部品の小型化、高信頼化に対する要求が
増している6光通信システムの中で光アイソレータはレ
ーザ光源の安定化を図る上で重要な役割を担っている。
Optical isolators play an important role in stabilizing laser light sources in six-optical communication systems, where there is an increasing demand for smaller optical components and higher reliability.

光アイソレータは、第1図の基本構成図に示したように
、ファラデー回転効果を有する光磁気材料が使用される
。偏光子2により、直線偏光になつたレーザ光3は、直
流磁界下に置かれた光アイソレータ1を通過する間に4
5°偏光面が回転する。検光子4の偏光面を45@にす
れば、レーザ5から出た光は検光子4を通過することが
できる。
As shown in the basic configuration diagram of FIG. 1, the optical isolator uses a magneto-optical material having a Faraday rotation effect. The laser beam 3, which has become linearly polarized by the polarizer 2, is polarized while passing through the optical isolator 1 placed under a DC magnetic field.
The plane of polarization rotates by 5°. If the polarization plane of the analyzer 4 is set to 45@, the light emitted from the laser 5 can pass through the analyzer 4.

しかし、光ファイバなどの端面で反射した。逆方向のレ
ーザ光6は、光アイソレータ1により。
However, it was reflected by the end face of the optical fiber. The laser beam 6 in the opposite direction is transmitted by the optical isolator 1.

90”に偏光面が回転し、偏光子2を通過することはで
きず、レーザ5には戻らない、そのため、レーザ5の安
定が保た九る。これまで、光アイソ、  レータにはバ
ルクのイツトリウム・鉄、ガーネット(Y、 F a、
ol、 : Y I G)単結晶が使われてきたが、装
置の小型化、高信頼化のために薄膜型光アイソレータの
開発[たとえば、滝、宮崎、赤尾。
The plane of polarization rotates to 90", cannot pass through the polarizer 2, and does not return to the laser 5. Therefore, the stability of the laser 5 is maintained. Until now, optical isolators and Yztrium/iron, garnet (Y, F a,
ol, : Y I G) single crystals have been used, but in order to make the device smaller and more reliable, thin film type optical isolators have been developed [e.g. Taki, Miyazaki, Akao et al.

信学技報M W2O−95(1981) ]が行われて
いる。さらに、■−■族化合物半導体との一体化も考え
られている。
IEICE Technical Report M W2O-95 (1981)]. Furthermore, integration with ■-■ group compound semiconductors is also being considered.

しかしながら、ガーネットと■−■族化合物は結晶構造
、熱膨張係数が違っており、ガーネットと■−v族化合
物の一体化は薄膜中にひずみを発生させる原因になり易
い、光アイソレータ中にひずみがあると光は楕円偏光し
、アイソレーションが困難になる場合がある。他方、■
−v族化合物と同じZnS型結晶構造をもつCdTeの
Cdの一部をMnに置換したC d L−XM n z
T eは大きなベルデ定数を持つ材料で、可視光波長〜
0.6μmに対する光アイソレータとして有望な材料で
ある(A、E、Turnar et、al、Appli
ad 0ptics 22(1983)3152) 。
However, garnet and ■-■ group compounds have different crystal structures and coefficients of thermal expansion, and the integration of garnet and ■-v group compounds tends to cause strain in the thin film, and strain in the optical isolator. If so, the light becomes elliptically polarized, making isolation difficult. On the other hand,■
- C d L-XM n z in which part of the Cd of CdTe which has the same ZnS type crystal structure as the V group compound is replaced with Mn
Te is a material with a large Verdet constant, visible light wavelength ~
It is a promising material as an optical isolator for 0.6 μm (A, E, Turnar et al, Appli
ad Optics 22 (1983) 3152).

現在、光ファイバを通しての光通信は石英系光ファイバ
の透過率が高い、波長範囲が0.8〜1.5 μmの光
によって行われている。長波長の光をCdt−xMn、
Teに適用した場合、ベルデ定数は10−” ” /l
:5−CJ以下に小さくなり、光アイソレータとして有
用でなくなる。そのため、ZnS型結晶構造を有し、波
長0.8〜1.5μmの光に対して高いベルデ定数を有
する光アイソレータ用材料が必要であった。
Currently, optical communications through optical fibers are performed using light in the wavelength range of 0.8 to 1.5 μm, which has high transmittance through silica-based optical fibers. Long wavelength light is Cdt-xMn,
When applied to Te, the Verdet constant is 10−” ”/l
:5-CJ or less, and is no longer useful as an optical isolator. Therefore, there was a need for an optical isolator material that has a ZnS type crystal structure and a high Verdet constant for light with a wavelength of 0.8 to 1.5 μm.

〔発明の目的〕[Purpose of the invention]

本発明の目的は波長0.8〜1.5μmの光に対する光
アイソレータとして用いるに特に有用なファラデー効果
を有する磁性半導体材料を提供するものである0本発明
になる磁性半導体材料を用いることによって、バルクの
単結晶を用いた光アイソレータに加えて、半導体レーザ
等の光部品との一体化を目的とする複合w11111構
造をも実視することが出来る。
An object of the present invention is to provide a magnetic semiconductor material having a Faraday effect that is particularly useful for use as an optical isolator for light with a wavelength of 0.8 to 1.5 μm.By using the magnetic semiconductor material of the present invention, In addition to optical isolators using bulk single crystals, you can also see composite w11111 structures intended for integration with optical components such as semiconductor lasers.

〔発明の概要〕[Summary of the invention]

ベルデ定数は光の吸収端近傍で大きくなるため、波長0
.8〜1.5μmの光に適合する光アイソレータ材料を
提供するには、材料のバンドギャップエネルギは0.9
〜0.6eVであることが望ましい1本発明ではCd 
x−XM n x T eにHg T eを合金化させ
ることにより、バンドギャップエネルギのl[11を図
るとともに、ベルデ定数が大きくなる組成を見い出した
実験結果に基づいている。
The Verdet constant becomes large near the absorption edge of light, so at wavelength 0
.. To provide an optical isolator material compatible with light between 8 and 1.5 μm, the bandgap energy of the material should be 0.9
In the present invention, Cd
This is based on the experimental results of finding a composition in which the bandgap energy is increased to 11 by alloying x-XM n x Te with Hg Te, and the Verdet constant is increased.

また、他の光部品との一体化のために、■−■族化合物
半導体単結晶基板上へのエピタキシャル成長を行い、薄
膜型光アイソレータを作製した。
In addition, for integration with other optical components, epitaxial growth was performed on a single crystal substrate of a compound semiconductor of the ■-■ group, and a thin-film optical isolator was fabricated.

■−v族化合物半導体結晶としては、InP。(2) InP is an example of the V-group compound semiconductor crystal.

GaAs等が代表的なものである。A typical example is GaAs.

マス、組成の選択について述べる。The selection of mass and composition will be described.

第2図の3元系の相図中の丸印で示した組成の結晶をブ
リッジマン法で作製した。cdTa*MnTe、HgT
eをそれぞれの組成比で石英アンプル中に配合し、真空
封入した。加熱時に蒸気圧が高くなるため、石英アンプ
ルは3重にした。
Crystals having the compositions indicated by circles in the ternary phase diagram of FIG. 2 were produced by the Bridgman method. cdTa*MnTe, HgT
e were blended into quartz ampoules at their respective composition ratios and vacuum sealed. Since the vapor pressure increases during heating, the quartz ampoule was made in three layers.

この石英アンプルをたて型電気炉中に入れ、加熱溶融後
、約3時間保持したのち、石英アンプルを徐々に降下さ
せ′、石英アンプルの低温部の一端から結晶化させた0
作製した結晶(直径10■、長さ30■)は多くの場合
、多結晶であったが、結晶粒径は数Iで光学測定に使用
することができた。
This quartz ampoule was placed in a vertical electric furnace, heated and melted, and held for approximately 3 hours.
The produced crystals (diameter 10 cm, length 30 cm) were often polycrystalline, but the crystal grain size was several I and could be used for optical measurements.

結晶の長さ方向の中央部から厚さ1mの試料を切り出し
、光の透過率を測定した。
A sample with a thickness of 1 m was cut out from the center in the longitudinal direction of the crystal, and the light transmittance was measured.

第2図の記号7の組成はM n T eが析出し、2相
になったが、他の組成の結晶はHgCdMnxTeと同
じZnS型結晶構造の単−相であった。記号7の組成を
除く組成の試料について測定したバンドギャップエネル
ギの値を第3図に示す。次に各試料のベルデ定数を波長
0.8.1.3,1.5  μmの光で測定した。波長
0.8  μm、1.3  μmの光に対する室温での
ベルデ定数の値をそれぞれ、第4図および第5図に示す
、単位は@/all−Gである。ベルデ定数の値はMn
の量にはあまり依存せず、バンドギャップエネルギの大
きさに強く依存した。ベルデ定数が0.1″/al−G
より小さい場合、光アイソレータを作るために必要な厚
さは1kGの磁界の下で4.5 mになる。これは光吸
収損失を大きくする原因となり実用的ではない。
In the composition indicated by symbol 7 in FIG. 2, MnTe precipitated and became a two-phase crystal, but the crystals with other compositions were single-phase with the same ZnS type crystal structure as HgCdMnxTe. FIG. 3 shows the band gap energy values measured for samples with compositions other than the composition of symbol 7. Next, the Verdet constant of each sample was measured using light with wavelengths of 0.8, 1.3, and 1.5 μm. The values of the Verdet constant at room temperature for light with wavelengths of 0.8 μm and 1.3 μm are shown in FIGS. 4 and 5, respectively, and the unit is @/all-G. The value of Verdet constant is Mn
It did not depend much on the amount of , but strongly depended on the size of the band gap energy. Verdet constant is 0.1″/al-G
In the smaller case, the thickness required to make an optical isolator would be 4.5 m under a 1 kG magnetic field. This causes increased light absorption loss and is not practical.

そのため、実用に供する波長1.3 μmの光アイソレ
ータ材料は第4および5図の白丸で示したものである。
Therefore, optical isolator materials with a wavelength of 1.3 .mu.m for practical use are those shown by white circles in FIGS. 4 and 5.

一方、光が透過しない試料は黒丸で示しである。On the other hand, samples through which no light passes are indicated by black circles.

次に波長1.5 μmの光に対するベルデ定数の値を第
6図に示す。0.1°/al−0以上の値を有する組成
を白丸で示した。
Next, FIG. 6 shows the value of the Verdet constant for light with a wavelength of 1.5 μm. Compositions having values of 0.1°/al-0 or more are indicated by white circles.

第4図〜第6図に示した結果から、0.8〜もつ単結晶
が適していることが分る。
From the results shown in FIGS. 4 to 6, it can be seen that single crystals with a diameter of 0.8 or more are suitable.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を示す。 An example of the present invention will be shown below.

実施例 I Hga、4c dn、4M no、、T e  の組成
をもつ単結晶をブリッジマン法によって育成した。育成
法は発明の概要に述べた通りである。育成した単結晶(
直径/ Om、長さ30厘)より(110)iliが端
面になるように直径5m、厚さ2.4  mの円板状の
試料を作製した。第1図に示した構造の光アイソレータ
を作製し、磁場を700G印加したところ、波長1.3
μmのレーザ光に対して、456のファラデー回転が得
られ、アイソレーション20dBが達成された。光の吸
収による挿入損失は1dBで光アイソレータとして十分
に使えることが明らかになった。
Example I A single crystal having a composition of Hga, 4c dn, 4M no, T e was grown by the Bridgman method. The breeding method is as described in the summary of the invention. The grown single crystal (
A disk-shaped sample with a diameter of 5 m and a thickness of 2.4 m was prepared so that (110) ili was the end face. When an optical isolator with the structure shown in Figure 1 was fabricated and a magnetic field of 700 G was applied, the wavelength was 1.3.
A Faraday rotation of 456 was obtained for a μm laser beam, and an isolation of 20 dB was achieved. It has been revealed that the insertion loss due to light absorption is 1 dB, which is sufficient for use as an optical isolator.

実施例 2 Hg、、、c d、、sM n、、、、T e  の組
成をもつ単結晶を実施例1と同様にブリッジマを法によ
って育成した。これより、(110)面を端面とする直
径5m、厚さ1.25 mの円板を作製した6波長1.
3 μmのレーザ光を45@回転させるためには1.5
  kGの磁場を必要としたが、光の透過率は高く、挿
入損失は1.2  dBで抑えられた。その結果、光ア
イソレータとして十分に使えることが確認できた。
Example 2 A single crystal having a composition of Hg, c d, sM n, . From this, a disk with a diameter of 5 m and a thickness of 1.25 m with (110) plane as the end face was fabricated with 6 wavelengths 1.
1.5 to rotate a 3 μm laser beam by 45
Although a kG magnetic field was required, the optical transmittance was high and the insertion loss was suppressed to 1.2 dB. As a result, it was confirmed that it could be used satisfactorily as an optical isolator.

に示すようにInP基板9上に形成し、当該半導体レー
ザ8をホトレジストで覆った。その後。
The semiconductor laser 8 was formed on an InP substrate 9 as shown in FIG. 2, and the semiconductor laser 8 was covered with photoresist. after that.

MBE(分子線エピタキシィ)法でHg+Cd、Mn。Hg+Cd, Mn using MBE (molecular beam epitaxy) method.

Teを同時蒸着した。各元素はクヌーセンセル(Hg、
Cd、Te)および電子ビームハース(Mn)から同時
に蒸着した。その際蒸着速度を予め測定し、膜組成がH
go、4c d、、4M no、、T e  になるよ
うにクヌーセンセルの温度と電子ビームの電流値を保持
した。基板温度は200℃、成長速度は0.3重m/s
であった。InPと(HgCdMn)Teでは格子定数
に違いがあるが、(100)InP基板上に膜はエピタ
キシャル成長し、膜厚5.5 μmの単結晶膜になった
。ホトリソグラフィとアルゴンイオンミリングにより幅
50μm、長さ1.6悶の薄膜型の光アイソレータ10
を作製した。さらに金属膜を用いた偏光子を形成した半
導体レーザと光アイソレータを同一基板上にモノリシッ
ク化したものを磁場中に入れ、レーザ発振を行わせた。
Te was co-evaporated. Each element is a Knudsen cell (Hg,
Cd, Te) and electron beam hearth (Mn) were deposited simultaneously. At that time, the deposition rate was measured in advance, and the film composition was determined to be H.
The temperature of the Knudsen cell and the current value of the electron beam were maintained so that go, 4c d, 4M no, , T e . Substrate temperature is 200℃, growth rate is 0.3 m/s
Met. Although there is a difference in lattice constant between InP and (HgCdMn)Te, the film was epitaxially grown on the (100) InP substrate, resulting in a single crystal film with a thickness of 5.5 μm. A thin-film optical isolator 10 with a width of 50 μm and a length of 1.6 μm was created by photolithography and argon ion milling.
was created. Furthermore, a monolithic semiconductor laser with a metal film polarizer and an optical isolator on the same substrate was placed in a magnetic field to cause laser oscillation.

その結果、導波路を形成しないにもかかわらず、レーザ
光の入出射端面および、アイソレータ中での散乱損失は
少なく、挿入損失は2dBであった。
As a result, even though no waveguide was formed, the scattering loss at the input/output end face of the laser beam and in the isolator was small, and the insertion loss was 2 dB.

実施例 4 実施例3と同じプロセスに従い、G a A s基板上
に波長0.83 μmの半導体レーザを作製したのち、
Hga、xc do、sM na、3T e  の組成
をもつ薄膜を同一基板上に形成した。幅50μm、長さ
1.6 閣の島状光アイソレータを加工形成した結果、
0.88  kGの磁場のもとて15dBのアイソレー
ションが達成された。その際の挿入損失は2.5dBで
あった。
Example 4 Following the same process as Example 3, a semiconductor laser with a wavelength of 0.83 μm was fabricated on a GaAs substrate.
Thin films having compositions of Hga, xc do, sM na, and 3T e were formed on the same substrate. As a result of processing and forming an island-shaped optical isolator with a width of 50 μm and a length of 1.6 mm,
An isolation of 15 dB was achieved under a magnetic field of 0.88 kG. The insertion loss at that time was 2.5 dB.

〔発明の効果〕〔Effect of the invention〕

本発明によれば実用上有用な波長0.8〜1.5μmの
レーザ光に対する挿入損失が小さく、かっアイソレーシ
ョンの優れた光アイソレータが作製できる。また、m−
v族化合物半導体上にエピタキシャル成長させ、半導体
レーザと光アイソレータを一体化することができるため
、光部品としての信頼性が高くなる。すなわち、半導体
レーザと光アイソレータの個別部品を1つの基板上に接
着した場合には、温度変動によって各部分の距離が変化
するなどの現象が生じる。これに対して、モノリシック
化することによって、これらの変動要因が除去できる。
According to the present invention, an optical isolator with low insertion loss and excellent isolation for a practically useful laser beam having a wavelength of 0.8 to 1.5 μm can be manufactured. Also, m-
Since the semiconductor laser and the optical isolator can be integrated by epitaxial growth on a V group compound semiconductor, the reliability as an optical component is increased. That is, when separate parts such as a semiconductor laser and an optical isolator are bonded onto one substrate, phenomena such as the distance between the parts change due to temperature fluctuations occur. On the other hand, by making it monolithic, these fluctuation factors can be removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザと光アイソレータからなる光部品の構成
を示す図、第2図はHg T e −M n T eC
a T eの3元系相図、第3図は(Hg−Mn・Cd
)Teの各試料のバンドギャップエネルギを示す図、第
4W1は(Hg =Mn−Cd)Teの各科の波長1゜
3 μmの光に対するベルデ定数を示す図、第6図は(
Hg−Mn−Cd)Tsの各試料の波長1.5 μmの
光に対するベルデ定数を示? を示す図、第1図は半導体レーザと光アイソレータをモ
ノリシック化した光部品の構造を示す図である。 1・・・光アイソレータ、2・・・偏光子、3・・・レ
ーザ光、4・・・検光子、5・・・レーザ、6・・・レ
ーザ光、7・・・2相になった組成、8・・・半導体レ
ーザ、9・・・InP不1図 1図Z  図 トLhTe (Atom(、%〕 第 3  図 note  uLImrc  %ノ 冨 5  図
Figure 1 is a diagram showing the configuration of an optical component consisting of a laser and an optical isolator, and Figure 2 is a diagram showing the configuration of an optical component consisting of a laser and an optical isolator.
The ternary system phase diagram of a T e, Figure 3 is (Hg-Mn・Cd
) A diagram showing the bandgap energy of each sample of Te, 4th W1 is a diagram showing the Verdet constant for each family of (Hg = Mn-Cd)Te for light with a wavelength of 1°3 μm, and Figure 6 is (
Show the Verdet constant for light with a wavelength of 1.5 μm for each sample of Hg-Mn-Cd)Ts? FIG. 1 is a diagram showing the structure of an optical component in which a semiconductor laser and an optical isolator are made monolithic. 1... Optical isolator, 2... Polarizer, 3... Laser light, 4... Analyzer, 5... Laser, 6... Laser light, 7... Two phases now Composition, 8...Semiconductor laser, 9...InP

Claims (1)

【特許請求の範囲】 1、MnTe−HgTe−CdTe系合金より成ること
を特徴とするファラデー効果を有する磁性半導体材料。 2、前記MnTe−HgTe−CdTe系合金は、Mn
Te−HgTe−CdTe3元系相図において、Mn_
0_._1Hg_0_._2Cd_0_._7Te、M
n_0_._1Hg_0_._4Cd_0_._5Te
、Mn_0_._3、Hg_0_._4Cd_0_._
3Te、Mn_0_._4Hg_0_._2Cd_0_
._4Te、Mn_0_._4Hg_0_._1Cd_
0_._5Te、Mn_0_._2、Hg_0_._1
Cd_0_._7Teの6点に囲まれる範囲に組成にも
つことを特徴とする特許請求の範囲第1項記載の磁性半
導体材料。 3、前記MnTe−HgTe−CdTe磁性半導体層は
III−V族化合物半導体基板上にエピタキシャル成長に
て形成されたことを特徴とする特許請求の範囲第1項又
は第2項記載の磁性半導体材料。 4、前記III−V族化合物半導体基板がInP結晶より
成ることを特徴とする特許請求の範囲第3項記載の磁性
半導体材料。 5、前記III−V族化合物半導体基板がGaAs結晶よ
り成ることを特徴とする特許請求の範囲第3項記載の磁
性半導体材料。 6、MnTe−HgTe−CdTe系合金を用いて構成
されたことを特徴とする光アイソレータ。 7、前記MnTe−HgTe−CdTe系合金は、Mn
Te−HgTe−CdTe3元系相図において、Mn_
0_._1Hg_0_._2Cd_0_._7Te、M
n_0_._1Hg_0_._4Cd_0_._5Te
、Mn_0_._3Hg_0_._4Cd_0_._3
Te、Mn_0_._4Hg_0_._2Cd_0_.
_4Te、Mn_0_._4Hg_0_._1Cd_0
_._5Te、Mn_0_._2Hg_0_._1Cd
_0_._7Teの6点に囲まれた範囲に組成をもつこ
とを特徴とする特許請求の範囲第6項記載の光アイソレ
ータ。 8、前記MnTe−HgTe−CdTe磁性半導体層は
III−V族化合物半導体基板上にエピタキシャル成長に
て形成されたことを特徴とする特許請求の範囲第7項記
載の光アイソレータ。 9、前記III−V族化合物半導体基板がInP結晶より
成ることを特徴とする特許請求の範囲第8項記載の光ア
イソレータ。 10、前記III−V族化合物半導体基板がGaAs結晶
より成ることを特徴とする特許請求の範囲第8項記載の
光アイソレータ。
[Claims] 1. A magnetic semiconductor material having a Faraday effect, characterized by being made of a MnTe-HgTe-CdTe alloy. 2. The MnTe-HgTe-CdTe alloy has Mn
In the Te-HgTe-CdTe ternary system phase diagram, Mn_
0__. _1Hg_0_. _2Cd_0_. _7Te, M
n_0_. _1Hg_0_. _4Cd_0_. _5Te
, Mn_0_. _3, Hg_0_. _4Cd_0_. _
3Te, Mn_0_. _4Hg_0_. _2Cd_0_
.. _4Te, Mn_0_. _4Hg_0_. _1Cd_
0__. _5Te, Mn_0_. _2, Hg_0_. _1
Cd_0_. The magnetic semiconductor material according to claim 1, characterized in that the magnetic semiconductor material has a composition within a range surrounded by six points of _7Te. 3. The MnTe-HgTe-CdTe magnetic semiconductor layer is
The magnetic semiconductor material according to claim 1 or 2, characterized in that it is formed by epitaxial growth on a III-V group compound semiconductor substrate. 4. The magnetic semiconductor material according to claim 3, wherein the III-V group compound semiconductor substrate is made of InP crystal. 5. The magnetic semiconductor material according to claim 3, wherein the III-V compound semiconductor substrate is made of GaAs crystal. 6. An optical isolator characterized by being constructed using a MnTe-HgTe-CdTe alloy. 7. The MnTe-HgTe-CdTe alloy has Mn
In the Te-HgTe-CdTe ternary system phase diagram, Mn_
0__. _1Hg_0_. _2Cd_0_. _7Te, M
n_0_. _1Hg_0_. _4Cd_0_. _5Te
, Mn_0_. _3Hg_0_. _4Cd_0_. _3
Te, Mn_0_. _4Hg_0_. _2Cd_0_.
_4Te, Mn_0_. _4Hg_0_. _1Cd_0
_. _5Te, Mn_0_. _2Hg_0_. _1Cd
_0_. The optical isolator according to claim 6, characterized in that the optical isolator has a composition within a range surrounded by six points of _7Te. 8. The MnTe-HgTe-CdTe magnetic semiconductor layer is
8. The optical isolator according to claim 7, wherein the optical isolator is formed by epitaxial growth on a III-V group compound semiconductor substrate. 9. The optical isolator according to claim 8, wherein the III-V group compound semiconductor substrate is made of InP crystal. 10. The optical isolator according to claim 8, wherein the III-V compound semiconductor substrate is made of GaAs crystal.
JP24444384A 1984-11-21 1984-11-21 optical isolator Granted JPS61123814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24444384A JPS61123814A (en) 1984-11-21 1984-11-21 optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24444384A JPS61123814A (en) 1984-11-21 1984-11-21 optical isolator

Publications (2)

Publication Number Publication Date
JPS61123814A true JPS61123814A (en) 1986-06-11
JPH0576611B2 JPH0576611B2 (en) 1993-10-25

Family

ID=17118726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24444384A Granted JPS61123814A (en) 1984-11-21 1984-11-21 optical isolator

Country Status (1)

Country Link
JP (1) JPS61123814A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932760A (en) * 1988-02-26 1990-06-12 Mitsubishi Gas Chemical Company, Inc. Magneto-optic garnet
US5245465A (en) * 1990-08-04 1993-09-14 Canon Kabushiki Kaisha Optical polarization-state converting apparatus for use as isolator, modulator and the like
WO1994017437A1 (en) * 1993-01-25 1994-08-04 Tokin Corporation Magneto-optical element
JPH06222310A (en) * 1993-01-25 1994-08-12 Tokin Corp Magneto-optical element
JPH06222309A (en) * 1993-01-25 1994-08-12 Tokin Corp Magneto-optical element
WO1995017538A1 (en) * 1993-12-22 1995-06-29 Tokin Corporation Magneto-optical device and method for production thereof
US5790299A (en) * 1995-12-15 1998-08-04 Optics For Research Optical isolator employing a cadmium-zinc-tellurium composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED OPTICS=1983 *
PHYS.STAT.SOL.64707=1981 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932760A (en) * 1988-02-26 1990-06-12 Mitsubishi Gas Chemical Company, Inc. Magneto-optic garnet
US5245465A (en) * 1990-08-04 1993-09-14 Canon Kabushiki Kaisha Optical polarization-state converting apparatus for use as isolator, modulator and the like
WO1994017437A1 (en) * 1993-01-25 1994-08-04 Tokin Corporation Magneto-optical element
JPH06222310A (en) * 1993-01-25 1994-08-12 Tokin Corp Magneto-optical element
JPH06222309A (en) * 1993-01-25 1994-08-12 Tokin Corp Magneto-optical element
US5596447A (en) * 1993-01-25 1997-01-21 Tokin Corporation Magnetooptical element
WO1995017538A1 (en) * 1993-12-22 1995-06-29 Tokin Corporation Magneto-optical device and method for production thereof
US5790299A (en) * 1995-12-15 1998-08-04 Optics For Research Optical isolator employing a cadmium-zinc-tellurium composition

Also Published As

Publication number Publication date
JPH0576611B2 (en) 1993-10-25

Similar Documents

Publication Publication Date Title
JPS61123814A (en) optical isolator
JP2786078B2 (en) Faraday rotator and optical isolator
US6483645B1 (en) Garnet crystal for Faraday rotator and optical isolator having the same
US4755026A (en) Magnetooptic garnet
JP2816370B2 (en) Magneto-optical material
JPH06281902A (en) Magneto-optical element material
JPS61292613A (en) Faraday rotor and its production
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JP2841260B2 (en) Magneto-optical element
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH0654744B2 (en) Manufacturing method of bismuth substituted magnetic garnet
JPH0727823B2 (en) Magnetic material for magneto-optical element
Whitcomb et al. Fabrication of thin film magnetic garnet structures for intra‐cavity laser applications
Honda et al. DyBi garnet films with improved temperature dependence of Faraday rotation
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
Nakajima et al. A new improved (YbTbBi)/sub 3/Fe/sub 5/O/sub 12/epitaxial thick film
JPH0666216B2 (en) Manufacturing method of bismuth substituted magnetic garnet
JPS63212901A (en) Reflection preventing film for magnetic garnet element
JP2831279B2 (en) Magneto-optical element material
JPS63159225A (en) Magnetooptical garnet
JPH1036192A (en) Faraday rotator
JPS6369800A (en) Magneto-optical crystal
JPH03242620A (en) Magneto-optical material
JPH05173102A (en) Faraday rotor
JPH06222310A (en) Magneto-optical element