JPH06281902A - Magneto-optical element material - Google Patents
Magneto-optical element materialInfo
- Publication number
- JPH06281902A JPH06281902A JP9068493A JP9068493A JPH06281902A JP H06281902 A JPH06281902 A JP H06281902A JP 9068493 A JP9068493 A JP 9068493A JP 9068493 A JP9068493 A JP 9068493A JP H06281902 A JPH06281902 A JP H06281902A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- magnetic garnet
- garnet single
- substrate
- magneto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 12
- 239000013078 crystal Substances 0.000 claims abstract description 63
- 239000002223 garnet Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 239000007791 liquid phase Substances 0.000 claims abstract description 3
- 229910052797 bismuth Inorganic materials 0.000 abstract description 17
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical group [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 17
- 238000006467 substitution reaction Methods 0.000 abstract description 17
- 238000010521 absorption reaction Methods 0.000 abstract description 14
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 6
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 28
- 230000003287 optical effect Effects 0.000 description 13
- 239000002994 raw material Substances 0.000 description 10
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 bismuth-substituted iron Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Abstract
(57)【要約】
【目的】 波長0.93〜1.05μm帯での吸収を低
減し、性能指数の高い、LPE法により成膜した磁性ガ
ーネット単結晶膜からなる磁気光学素子材料を得る。
【構成】 Gd3 (ScGa)5 O12なる化学式で示さ
れる組成を有する非磁性ガーネット基板上に、組成式が
R3-x-y Gdx Biy Fe5 O12で示され、液相エピタ
キシャル法により育成させた磁性ガーネット単結晶膜を
有する、使用波長0.93〜1.05μm帯用の磁気光
学素子材料である。但しRはSm,Nd,Pr,Laか
ら選ばれる1種以上の希土類元素であり、ガドリニウム
量xは0≦x<1.5、ビスマス置換量yは1.2≦y
≦1.7であり、1.2≦x+y<3である。
(57) [Summary] [Purpose] To obtain a magneto-optical element material comprising a magnetic garnet single crystal film formed by the LPE method, which has a reduced absorption in the wavelength band of 0.93 to 1.05 μm and has a high figure of merit. [Structure] On a non-magnetic garnet substrate having a composition represented by the chemical formula Gd 3 (ScGa) 5 O 12 , the composition formula is represented by R 3-xy Gd x Bi y Fe 5 O 12 , and a liquid phase epitaxial method is used. It is a magneto-optical element material having a grown magnetic garnet single crystal film for use wavelengths of 0.93 to 1.05 μm band. However, R is one or more kinds of rare earth elements selected from Sm, Nd, Pr, and La, the gadolinium amount x is 0 ≦ x <1.5, and the bismuth substitution amount y is 1.2 ≦ y.
≦ 1.7 and 1.2 ≦ x + y <3.
Description
【0001】[0001]
【産業上の利用分野】本発明は、波長0.93〜1.0
5μm帯域で使用する磁気光学素子材料に関し、更に詳
しく述べると、液相エピタキシャル法(以下、「LPE
法」と略記する)による磁性ガーネット単結晶の基板と
して、Gd3 (ScGa)5 O12なる化学式で示される
組成を有する非磁性ガーネット基板を用いた磁気光学素
子材料に関するものである。この磁気光学素子材料は、
ファラデー効果を利用した光アイソレータなどに有用で
ある。BACKGROUND OF THE INVENTION The present invention has a wavelength of 0.93 to 1.0.
The magneto-optical element material used in the 5 μm band will be described in more detail. A liquid phase epitaxial method (hereinafter referred to as “LPE
Method)) as a magnetic garnet single crystal substrate using a non-magnetic garnet substrate having a composition represented by the chemical formula Gd 3 (ScGa) 5 O 12 . This magneto-optical element material is
It is useful for optical isolators that utilize the Faraday effect.
【0002】[0002]
【従来の技術】光通信において、光源である半導体レー
ザに反射戻り光が入ると伝送品質が悪化する。そのため
ファラデー効果を利用した光アイソレータが用いられて
いる。磁性ガーネット単結晶はファラデー効果を持って
おり、光アイソレータの中心材料である。現在、光通信
に使用されている波長帯は1.3μmと1.55μmで
ある。そして近年、この波長帯に適用される磁性ガーネ
ット単結晶は、基板(板状の種結晶)を用いたLPE法
によるビスマス置換型希土類鉄ガーネットが主になって
きている。その理由は、LPE法が量産性に優れている
からである。代表的な基板としては、格子定数a=12.4
96Åの(CaGd)3 (ZrMgGa)5O12がある。2. Description of the Related Art In optical communication, transmission quality deteriorates when reflected return light enters a semiconductor laser which is a light source. Therefore, an optical isolator utilizing the Faraday effect is used. The magnetic garnet single crystal has the Faraday effect and is the central material of the optical isolator. Currently, the wavelength bands used for optical communication are 1.3 μm and 1.55 μm. In recent years, magnetic garnet single crystals applied to this wavelength band are mainly bismuth-substituted rare earth iron garnets by the LPE method using a substrate (plate-shaped seed crystal). The reason is that the LPE method is excellent in mass productivity. As a typical substrate, lattice constant a = 12.4
There is 96Å of (CaGd) 3 (ZrMgGa) 5 O 12 .
【0003】ビスマス置換型希土類鉄ガーネットの場
合、ビスマス置換量に比例してファラデー効果が大きく
なり、結果として性能指数F(deg/dB)が大きくなる。
そのためビスマス多量置換が試みられている。性能指数
はF=θF /αで表され、θFはファラデー回転係数(d
eg/cm)、αは吸収係数(dB/cm )である。この場合、
ビスマス置換量に比例して結晶の格子定数が大きくなる
ため、基板としては格子定数aの大きなものを用いてい
る。例えばa=12.509ÅのNd3 Ga5 O12、a=12.5
15ÅのTb3 (ScGa)5 O12、a=12.56 ÅのGd
3 (ScGa)5O12がある。これらは全て、ビスマス
を多量置換し、ファラデー効果を大きくすること、つま
りファラデー回転係数を大きくすることを目的としてい
る。In the case of bismuth substitution type rare earth iron garnet, the Faraday effect increases in proportion to the bismuth substitution amount, and as a result, the figure of merit F (deg / dB) increases.
Therefore, a large amount of bismuth substitution has been attempted. The figure of merit is expressed by F = θ F / α, where θ F is the Faraday rotation coefficient (d
eg / cm) and α are absorption coefficients (dB / cm 2). in this case,
Since the crystal lattice constant increases in proportion to the bismuth substitution amount, a substrate having a large lattice constant a is used. For example, a = 12.509Å Nd 3 Ga 5 O 12 , a = 12.5
15 Å Tb 3 (ScGa) 5 O 12 , a = 12.56 Å Gd
There is 3 (ScGa) 5 O 12 . All of them are intended to replace a large amount of bismuth to increase the Faraday effect, that is, to increase the Faraday rotation coefficient.
【0004】[0004]
【発明が解決しようとする課題】ところで近年、光信号
をそのまま増幅できるファイバ型光増幅器の開発が活発
に行われている。1.3μm帯にはプラセオジウムドー
プファイバが、1.55μm帯にはエルビウムドープフ
ァイバがある。各々その実用化のためには、励起光用光
アイソレータが必要となる。プラセオジウムドープファ
イバの励起光波長は1.017 μm、エルビウムドープファ
イバの励起光波長は0.98μmと1.48μmである。従っ
て、0.98μm,1.017 μm,1.48μm帯の光アイソレー
タが必要であり、それに応じて各々の波長に適した磁性
ガーネット単結晶が必要となる。By the way, in recent years, a fiber type optical amplifier capable of directly amplifying an optical signal has been actively developed. The 1.3 μm band includes praseodymium-doped fiber, and the 1.55 μm band includes erbium-doped fiber. An optical isolator for pumping light is required for practical use of each. The excitation light wavelength of the praseodymium-doped fiber is 1.017 μm, and the excitation light wavelengths of the erbium-doped fiber are 0.98 μm and 1.48 μm. Therefore, 0.98 μm, 1.017 μm, and 1.48 μm band optical isolators are required, and magnetic garnet single crystals suitable for each wavelength are required accordingly.
【0005】現在、このうち、1.48μm帯の磁性ガーネ
ット単結晶は、既存の1.55μm帯用の磁性ガーネット単
結晶を流用し製造している。これに対して0.98μm,1.
017μm帯用に適した磁性ガーネット単結晶は未だ実用
化されていない。この波長帯に既存の1.3μm帯の磁
性ガーネット単結晶を使用しても、光吸収が大きく、特
性が悪化して使用できない。Among them, the 1.48 μm band magnetic garnet single crystal is currently manufactured by diverting the existing 1.55 μm band magnetic garnet single crystal. On the other hand, 0.98 μm, 1.
A magnetic garnet single crystal suitable for the 017 μm band has not yet been put to practical use. Even if an existing 1.3 μm band magnetic garnet single crystal is used in this wavelength band, the light absorption is large and the characteristics are deteriorated, so that it cannot be used.
【0006】本発明の目的は、波長0.93〜1.05
μm帯において良好な特性を呈し、LPE法により成膜
した磁性ガーネット単結晶膜からなる磁気光学素子材料
を提供することである。An object of the present invention is to have a wavelength of 0.93 to 1.05.
It is an object of the present invention to provide a magneto-optical element material which exhibits good characteristics in the μm band and is composed of a magnetic garnet single crystal film formed by the LPE method.
【0007】[0007]
【課題を解決するための手段】本発明は、Gd3 (Sc
Ga)5 O12なる化学式で示される組成を有する非磁性
ガーネット基板上に、組成式がR3-x-y Gdx Biy F
e5 O12 但し、RはSm,Nd,Pr,Laから選ばれる1種以
上の希土類元素 0≦x<1.5 1.2≦y≦1.7 1.2≦x+y<3 で示され、LPE法により育成させた磁性ガーネット単
結晶膜を有する使用波長0.93〜1.05μm帯用の
磁気光学素子材料である。ここで非磁性ガーネット基板
は、Nd,Crをドープしたものであってもよい。The present invention is based on Gd 3 (Sc
Ga) 5 O 12 has a composition formula of R 3-xy Gd x Bi y F on a non-magnetic garnet substrate having a composition represented by a chemical formula.
e 5 O 12 However, R is one or more kinds of rare earth elements selected from Sm, Nd, Pr and La 0 ≦ x <1.5 1.2 ≦ y ≦ 1.7 1.2 ≦ x + y <3 , A magneto-optical element material having a magnetic garnet single crystal film grown by the LPE method for a wavelength band of 0.93 to 1.05 μm. Here, the non-magnetic garnet substrate may be Nd, Cr-doped.
【0008】0.98μm,1.017 μm帯光アイソレータの
ファラデー素子に鉄ガーネットを用いた場合は、Fe3+
固有の吸収が0.9μm付近にピークを持つため、吸収
が大きい問題がある。フラックス法による磁性ガーネッ
ト単結晶では、結晶の格子定数を大きくすると、吸収の
ピークは短波長側にシフトする。そこで、本発明ではL
PE法の基板として、格子定数の大きいGd3 (ScG
a)5 O12なる化学式で示される非磁性ガーネット基板
を用い、それによって成膜する磁性ガーネット単結晶の
格子定数を大きくしている。When iron garnet is used for the Faraday element of the 0.98 μm, 1.017 μm band optical isolator, Fe 3+
Since the intrinsic absorption has a peak near 0.9 μm, there is a problem that the absorption is large. In the magnetic garnet single crystal obtained by the flux method, the absorption peak shifts to the shorter wavelength side when the lattice constant of the crystal is increased. Therefore, in the present invention, L
As a substrate for the PE method, Gd 3 (ScG) having a large lattice constant
a) A non-magnetic garnet substrate represented by the chemical formula 5 O 12 is used, and thereby the lattice constant of the magnetic garnet single crystal formed is increased.
【0009】本発明において必要に応じてガドリニウム
を用いるのは、品川らによる論文、ジャパニーズ・ジャ
ーナル・オブ・アプライド・フィジックス(Japanese J
ournal of Applied Physics )第13巻(1974)1663頁
より、ガドリニウムがビスマスを最も多く固溶できるか
らである。ガドリニウム置換量xを0以上、1.5未満
としたのは、基板と格子定数を合わせるためである。ま
たビスマスの置換量yを1.2以上、1.7以下と規定
しているのは、下記に示す実験結果に基づくものであ
り、1.2未満では性能指数が改善されず、逆に1.7
を超えると基板との熱膨張率の差が大きくなって亀裂の
発生が生じるからである。In the present invention, gadolinium is optionally used in the paper by Shinagawa et al., Japanese Journal of Applied Physics.
This is because gadolinium can form the most solid solution of bismuth from ournal of Applied Physics, Vol. 13 (1974) p. 1663. The gadolinium substitution amount x is set to 0 or more and less than 1.5 in order to match the lattice constant with the substrate. Further, the reason that the substitution amount y of bismuth is specified to be 1.2 or more and 1.7 or less is based on the experimental results shown below. .7
This is because if it exceeds, the difference in the coefficient of thermal expansion with the substrate becomes large and cracks occur.
【0010】ところでLPE法で結晶を育成する場合、
基板と膜の格子定数を合わせなければならない制約を受
ける。そのためビスマス置換量1.2〜1.7が決まる
と、その範囲でGd3 (ScGa)5 O12基板と格子定
数を合わせるためには、B.STROCKA らによる論文〔Phil
ips J.Res.33(1978)186 〕中の式を用いた計算結果に
よれば、Rはイオン半径がユウロピウム(Eu)以上の
希土類元素でなければならない。例えば、格子定数a=
12.561ÅのGd3 (ScGa)5 O12基板と格子定数を
合わせるためには、R=Eu,x=0の場合、Eu1.3
Bi1.7 Fe5O12となり、R=Gdの場合、Gd1.1
Bi1.9 Fe5 O12となる。しかし、ユウロピウムは2
価と3価の両方とも安定であるため、Fe4+を生成させ
る可能性がある。Fe4+が生成すると、0.93〜1.
05μmの吸収が大きくなるため好ましくない。そこ
で、Rはサマリウム、ネオジウム、プラセオジウム、ラ
ンタンから選ばれる1種以上とした。By the way, when a crystal is grown by the LPE method,
It is constrained to match the lattice constants of the substrate and the film. Therefore, if the bismuth substitution amount of 1.2 to 1.7 is determined, in order to match the lattice constant with the Gd 3 (ScGa) 5 O 12 substrate within that range, the paper by B.STROCKA et al. [Phil
ips J. Res. 33 (1978) 186], the R must be a rare earth element having an ionic radius of europium (Eu) or more. For example, the lattice constant a =
In order to match the lattice constant with the 12.561Å Gd 3 (ScGa) 5 O 12 substrate, if R = Eu and x = 0, Eu 1.3
Bi 1.7 Fe 5 O 12 , and when R = Gd, Gd 1.1
It becomes Bi 1.9 Fe 5 O 12 . However, Europium is 2
Since both valence and trivalence are stable, Fe 4+ may be generated. When Fe 4+ is generated, 0.93 to 1.
The absorption at 05 μm becomes large, which is not preferable. Therefore, R is one or more selected from samarium, neodymium, praseodymium, and lanthanum.
【0011】[0011]
【作用】LPE法で用いる非磁性ガーネット基板とし
て、格子定数の大きなGd3 (ScGa)5 O12を使用
し、それに合致したビスマス置換鉄ガーネット単結晶を
育成すると、成膜した単結晶の格子定数が大きくなり、
それによって該単結晶膜の0.9μm付近での吸収のピ
ークが短波長側にシフトする。そのため0.93〜1.
05μmの帯域での吸収低減効果が生じ、性能指数が向
上する。[Operation] When Gd 3 (ScGa) 5 O 12 having a large lattice constant is used as the non-magnetic garnet substrate used in the LPE method and a bismuth-substituted iron garnet single crystal conforming to it is grown, the lattice constant of the formed single crystal is increased. Becomes larger,
As a result, the absorption peak near 0.9 μm of the single crystal film shifts to the short wavelength side. Therefore, 0.93 to 1.
The absorption reduction effect occurs in the band of 05 μm, and the figure of merit is improved.
【0012】[0012]
【実施例】以下、実験例と比較例について説明する。実
験例1〜7には、全て同一の基板〔格子定数a=12.561
ÅのNd,CrドープGd3 (ScGa)5 O12〕を用
いた。比較例には格子定数a=12.496Åの(CaGd)
3 (MgZrGa)5 O12を用いた。いずれも原料を9
50℃で10時間溶融し、同じ950℃で3時間攪拌し
た。その後、材料に応じた単結晶育成温度まで下げ、L
PE法で磁性ガーネット単結晶を育成した。各実験例及
び比較例で用いた原料、単結晶育成温度、育成した磁性
ガーネットの膜厚、組成は次の通りである。なお、実験
例1〜7で使用した基板はNd,Crがドープされてい
るが、そのドープ量は主成分の約1/100程度であっ
て、ドープには特に意味はない。EXAMPLES Hereinafter, experimental examples and comparative examples will be described. In Experimental Examples 1 to 7, the same substrate [lattice constant a = 12.561] was used.
Å Nd, Cr-doped Gd 3 (ScGa) 5 O 12 ] was used. In the comparative example, the lattice constant a = 12.496Å (CaGd)
3 (MgZrGa) 5 O 12 was used. 9 raw materials
It was melted at 50 ° C. for 10 hours and stirred at the same 950 ° C. for 3 hours. After that, the temperature was lowered to the single crystal growth temperature according to the material, and L
A magnetic garnet single crystal was grown by the PE method. The raw materials used in each experimental example and comparative example, the single crystal growth temperature, the film thickness and composition of the grown magnetic garnet are as follows. The substrates used in Experimental Examples 1 to 7 are doped with Nd and Cr, but the doping amount is about 1/100 of the main component, and the doping has no particular meaning.
【0013】(実験例1) 原料…Gd2 O3 ,La2 O3 ,Fe2 O3 ,Bi2 O
3 ,PbO,B2 O3 単結晶育成温度…850℃ 磁性ガーネット単結晶の膜厚…130μm 磁性ガーネット単結晶の組成…Gd1.5 La0.5 Bi
1.0 Fe5 O12 (実験例2) 原料…Sm2 O3 ,Fe2 O3 ,Bi2 O3 ,PbO,
B2 O3 単結晶育成温度…800℃ 磁性ガーネット単結晶の膜厚…125μm 磁性ガーネット単結晶の組成…Sm1.8 Bi1.2 Fe5
O12 (実験例3) 原料…Gd2 O3 ,Nd2 O3 ,Fe2 O3 ,Bi2 O
3 ,PbO,B2 O3 単結晶育成温度…760℃ 磁性ガーネット単結晶の膜厚…120μm 磁性ガーネット単結晶の組成…Gd1.0 Nd0.6 Bi
1.4 Fe5 O12 (実験例4) 原料…Gd2 O3 ,Pr2 O3 ,Fe2 O3 ,Bi2 O
3 ,PbO,B2 O3 単結晶育成温度…740℃ 磁性ガーネット単結晶の膜厚…140μm 磁性ガーネット単結晶の組成…Gd1.1 Pr0.4 Bi
1.5 Fe5 O12 (実験例5) 原料…Gd2 O3 ,La2 O3 ,Fe2 O3 ,Bi2 O
3 ,PbO,B2 O3 単結晶育成温度…720℃ 磁性ガーネット単結晶の膜厚…145μm 磁性ガーネット単結晶の組成…Gd1.2 La0.1 Bi
1.7 Fe5 O12 (実験例6) 原料…Gd2 O3 ,Fe2 O3 ,Bi2 O3 ,PbO,
B2 O3 単結晶育成温度…700℃ 磁性ガーネット単結晶の膜厚…135μm 磁性ガーネット単結晶の組成…Gd1.1 Bi1.9 Fe5
O12 但し、この場合は、単結晶育成終了後、冷却途中、基板
と育成した磁性ガーネット単結晶の界面に亀裂が生じ
た。 (実験例7) 原料…Tb2 O3 ,Fe2 O3 ,Bi2 O3 ,PbO,
B2 O3 単結晶育成温度…680℃ 磁性ガーネット単結晶の膜厚…120μm 磁性ガーネット単結晶の組成…Tb0.9 Bi2.1 Fe5
O12 但し、この場合も、単結晶育成終了後、冷却途中、基板
と育成した磁性ガーネット単結晶の界面に亀裂が生じ
た。 (比較例) 原料…Gd2 O3 ,Lu2 O3 ,Fe2 O3 ,Bi2 O
3 ,PbO,B2 O3 基板…(CaGd)3 (MgZrGa)5 O12 単結晶育成温度…730℃ 磁性ガーネット単結晶の膜厚…145μm 磁性ガーネット単結晶の組成…Gd1.1 Lu0.6 Bi
1.3 Fe5 O12 なお、Luを用いているのは、基板との格子定数を合わ
せるためである。(Experimental Example 1) Raw materials: Gd 2 O 3 , La 2 O 3 , Fe 2 O 3 , Bi 2 O
3 , PbO, B 2 O 3 single crystal growth temperature: 850 ° C. Magnetic garnet single crystal film thickness: 130 μm Magnetic garnet single crystal composition: Gd 1.5 La 0.5 Bi
1.0 Fe 5 O 12 (Experimental Example 2) Raw material: Sm 2 O 3 , Fe 2 O 3 , Bi 2 O 3 , PbO,
B 2 O 3 single crystal growth temperature: 800 ° C. Magnetic garnet single crystal film thickness: 125 μm Magnetic garnet single crystal composition: Sm 1.8 Bi 1.2 Fe 5
O 12 (Experimental Example 3) Raw material: Gd 2 O 3 , Nd 2 O 3 , Fe 2 O 3 , Bi 2 O
3 , PbO, B 2 O 3 single crystal growth temperature: 760 ° C. Magnetic garnet single crystal film thickness: 120 μm Magnetic garnet single crystal composition: Gd 1.0 Nd 0.6 Bi
1.4 Fe 5 O 12 (Experimental Example 4) Raw material: Gd 2 O 3 , Pr 2 O 3 , Fe 2 O 3 , Bi 2 O
3 , PbO, B 2 O 3 single crystal growth temperature: 740 ° C. Magnetic garnet single crystal film thickness: 140 μm Magnetic garnet single crystal composition: Gd 1.1 Pr 0.4 Bi
1.5 Fe 5 O 12 (Experimental Example 5) Raw material: Gd 2 O 3 , La 2 O 3 , Fe 2 O 3 , Bi 2 O
3 , PbO, B 2 O 3 single crystal growth temperature: 720 ° C. Magnetic garnet single crystal film thickness: 145 μm Magnetic garnet single crystal composition: Gd 1.2 La 0.1 Bi
1.7 Fe 5 O 12 (Experimental Example 6) Raw material: Gd 2 O 3 , Fe 2 O 3 , Bi 2 O 3 , PbO,
B 2 O 3 single crystal growth temperature: 700 ° C. Magnetic garnet single crystal film thickness: 135 μm Magnetic garnet single crystal composition: Gd 1.1 Bi 1.9 Fe 5
O 12 In this case, however, after the completion of the single crystal growth, cracks occurred during cooling, the interface of the magnetic garnet single crystal grown with the substrate. (Experimental Example 7) Raw materials: Tb 2 O 3 , Fe 2 O 3 , Bi 2 O 3 , PbO,
B 2 O 3 single crystal growth temperature: 680 ° C. Magnetic garnet single crystal film thickness: 120 μm Magnetic garnet single crystal composition: Tb 0.9 Bi 2.1 Fe 5
O 12 However, also in this case, cracks occurred at the interface between the substrate and the grown magnetic garnet single crystal during cooling after the completion of single crystal growth. (Comparative Example) raw material ... Gd 2 O 3, Lu 2 O 3, Fe 2 O 3, Bi 2 O
3 , PbO, B 2 O 3 substrate ... (CaGd) 3 (MgZrGa) 5 O 12 single crystal growth temperature ... 730 ° C. magnetic garnet single crystal film thickness ... 145 μm magnetic garnet single crystal composition ... Gd 1.1 Lu 0.6 Bi
1.3 Fe 5 O 12 Lu is used to match the lattice constant with the substrate.
【0014】実験例1〜5及び比較例で作製した磁性ガ
ーネット単結晶について、0.85μm〜1.31μmの各波長
帯における吸収係数α(dB/cm )を測定した。その結果
を表1に示す。なお、実験例6及び7の磁性ガーネット
単結晶は、界面の亀裂により入射光が散乱し、透過しな
かったため、測定不能であった。With respect to the magnetic garnet single crystals produced in Experimental Examples 1 to 5 and Comparative Example, the absorption coefficient α (dB / cm) in each wavelength band of 0.85 μm to 1.31 μm was measured. The results are shown in Table 1. In the magnetic garnet single crystals of Experimental Examples 6 and 7, incident light was scattered due to cracks at the interface and did not pass therethrough, and therefore measurement was impossible.
【0015】この表1から、波長0.93〜1.05μ
mの範囲内において、実験例1〜5の磁性ガーネット単
結晶の吸収係数は、比較例の磁性ガーネット単結晶の吸
収係数よりも小さくなることが分かる。つまり、基板と
して格子定数が大きいGd3(ScGa)5 O12を用い
ると、育成した磁性ガーネット単結晶は、0.93〜
1.05μmの波長帯で吸収係数が小さくなる。From Table 1, the wavelength is 0.93 to 1.05 μm.
It is understood that the absorption coefficient of the magnetic garnet single crystals of Experimental Examples 1 to 5 is smaller than the absorption coefficient of the magnetic garnet single crystal of the comparative example within the range of m. That is, when Gd 3 (ScGa) 5 O 12 having a large lattice constant is used as the substrate, the grown magnetic garnet single crystal is 0.93 to
The absorption coefficient decreases in the wavelength band of 1.05 μm.
【0016】[0016]
【表1】 [Table 1]
【0017】次に各試料の波長0.98μmにおけるファラ
デー回転係数θF (deg/cm)を測定し、性能指数F(de
g/dB)を算出した。その結果を表2に示す。併せて吸収
係数α(dB/cm )とビスマス置換量y(atm/f.u.)も記
載する。Next, the Faraday rotation coefficient θ F (deg / cm) at a wavelength of 0.98 μm of each sample was measured, and the performance index F (de
g / dB) was calculated. The results are shown in Table 2. In addition, the absorption coefficient α (dB / cm 2) and the bismuth substitution amount y (atm / fu) are also described.
【0018】表2から、実験例1の磁性ガーネット単結
晶は、吸収係数αは小さいが、ファラデー回転係数θF
も小さいため、性能指数Fは比較例の磁性ガーネット単
結晶よりも小さくなった。ファラデー回転係数はビスマ
ス置換量に比例するので、この結果からビスマス置換量
yは1.2atm/f.u.以上必要である。From Table 2, the magnetic garnet single crystal of Experimental Example 1 has a small absorption coefficient α but a Faraday rotation coefficient θ F.
Therefore, the figure of merit F was smaller than that of the magnetic garnet single crystal of the comparative example. Since the Faraday rotation coefficient is proportional to the bismuth substitution amount, the bismuth substitution amount y needs to be 1.2 atm / fu or more.
【0019】[0019]
【表2】 [Table 2]
【0020】ところで前述のように、実験例6,7の試
料は界面に亀裂が生じた。それについて種々検討した結
果、亀裂の生じた原因は基板と、その上に育成する磁性
ガーネット単結晶との熱膨張率の差によるものであるこ
とが判明した。図1に、実験例1〜7におけるビスマス
置換量yと熱膨張率βの関係を示す。ここで熱膨張率β
は、次式で定義した値である。 β=Δt/t0 =〔(300 ℃における膜厚)−(100 ℃における膜
厚)〕/(100 ℃における膜厚)×〔1/200 〕 図1から、ビスマス置換量yが多くなるほど、基板と磁
性ガーネット単結晶との熱膨張率の差が大きくなること
が分かる。なお、破線は基板の熱膨張率を示している。
これはビスマス置換量yとは無関係であるが、便宜的に
直線で示した。実験例6のビスマス置換量y=1.9at
m/f.u.以上(×印で示す)では、熱膨張率βが大きいた
め、それによる応力増加で亀裂が生じるものと考えられ
る。このため、ビスマス置換量は1.7atm/f.u.以下が
適当である。As described above, the samples of Experimental Examples 6 and 7 had cracks at the interface. As a result of various studies on it, it was found that the cause of the crack was due to the difference in the coefficient of thermal expansion between the substrate and the magnetic garnet single crystal grown on the substrate. FIG. 1 shows the relationship between the bismuth substitution amount y and the coefficient of thermal expansion β in Experimental Examples 1 to 7. Where the coefficient of thermal expansion β
Is a value defined by the following equation. β = Δt / t 0 = [(thickness at 300 ° C.) − (thickness at 100 ° C.)] / (thickness at 100 ° C.) × [1/200] From FIG. 1, as the bismuth substitution amount y increases, It can be seen that the difference in the coefficient of thermal expansion between the substrate and the magnetic garnet single crystal becomes large. The broken line shows the coefficient of thermal expansion of the substrate.
This is irrelevant to the bismuth substitution amount y, but is shown as a straight line for convenience. Bismuth substitution amount of Experimental Example 6 y = 1.9 at
Above m / fu (indicated by x), the coefficient of thermal expansion β is large, and it is considered that cracks occur due to the increased stress. Therefore, the bismuth substitution amount is appropriately 1.7 atm / fu or less.
【0021】[0021]
【発明の効果】本発明は上記のように、Gd3 (ScG
a)5 O12なる化学式の格子定数の大きい非磁性ガーネ
ット基板を用い、その上にR3-x-y Gdx Biy Fe5
O12なる組成式の磁性ガーネット単結晶膜をLPE法に
より育成させた磁気光学素子材料であるから、波長0.
93〜1.05μm帯において性能指数が向上し、その
帯域の光アイソレータとして使用可能な材料が得られ
た。これによって、プラセオジウムドープファイバを用
いる1.3μm帯、及びエルビウムドープファイバを用
いる1.55μm帯のファイバ型光増幅器の励起光用光
アイソレータ等の実用化が可能となる。INDUSTRIAL APPLICABILITY As described above, the present invention provides Gd 3 (ScG
a) A non-magnetic garnet substrate having a large lattice constant of the chemical formula 5 O 12 is used, and R 3-xy Gd x Bi y Fe 5 is formed on the substrate.
Since the magnetic garnet single crystal film having a composition formula of O 12 was grown by the LPE method, the wavelength was 0.
The figure of merit was improved in the 93 to 1.05 μm band, and a material usable as an optical isolator in that band was obtained. As a result, it becomes possible to put the 1.3 μm band using the praseodymium-doped fiber and the pumping light optical isolator of the fiber type optical amplifier in the 1.55 μm band using the erbium-doped fiber into practical use.
【図1】Bi置換量yと熱膨張率βとの関係を示すグラ
フ。FIG. 1 is a graph showing a relationship between a Bi substitution amount y and a coefficient of thermal expansion β.
Claims (2)
示される組成を有する非磁性ガーネット基板上に、組成
式がR3-x-y Gdx Biy Fe5 O12但し、RはSm,
Nd,Pr,Laから選ばれる1種以上の希土類元素 0≦x<1.5 1.2≦y≦1.7 1.2≦x+y<3 で示され、液相エピタキシャル法により育成させた磁性
ガーネット単結晶膜を有する使用波長0.93〜1.0
5μm帯用の磁気光学素子材料。1. A nonmagnetic garnet substrate having a composition represented by the chemical formula Gd 3 (ScGa) 5 O 12 has a composition formula of R 3-xy Gd x Bi y Fe 5 O 12 where R is Sm,
One or more rare earth elements selected from Nd, Pr, and La 0 ≦ x <1.5 1.2 ≦ y ≦ 1.7 1.2 ≦ x + y <3, and magnetic properties grown by liquid phase epitaxial method Working wavelength with garnet single crystal film 0.93-1.0
Magneto-optical element material for 5 μm band.
示される組成を有する非磁性ガーネット基板が、Nd,
Crをドープしたものである請求項1記載の磁気光学素
子材料。2. A nonmagnetic garnet substrate having a composition represented by a chemical formula of Gd 3 (ScGa) 5 O 12 is Nd,
The magneto-optical element material according to claim 1, which is doped with Cr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9068493A JPH06281902A (en) | 1993-03-25 | 1993-03-25 | Magneto-optical element material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9068493A JPH06281902A (en) | 1993-03-25 | 1993-03-25 | Magneto-optical element material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06281902A true JPH06281902A (en) | 1994-10-07 |
Family
ID=14005370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9068493A Pending JPH06281902A (en) | 1993-03-25 | 1993-03-25 | Magneto-optical element material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06281902A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011256073A (en) * | 2010-06-09 | 2011-12-22 | Sumitomo Metal Mining Co Ltd | Method for manufacturing bismuth-substituted type rare earth iron garnet crystal film |
WO2012073671A1 (en) | 2010-11-29 | 2012-06-07 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
WO2012073670A1 (en) | 2010-11-29 | 2012-06-07 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2012131690A (en) * | 2010-11-29 | 2012-07-12 | Sumitomo Metal Mining Co Ltd | Bismuth substituted-type rare earth iron garnet crystal film, and optical isolator |
JP2012188302A (en) * | 2011-03-08 | 2012-10-04 | Sumitomo Metal Mining Co Ltd | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2012188303A (en) * | 2011-03-08 | 2012-10-04 | Sumitomo Metal Mining Co Ltd | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2013087015A (en) * | 2011-10-18 | 2013-05-13 | Sumitomo Metal Mining Co Ltd | Liquid phase epitaxial growth method of bismuth substituted rare earth-iron-garnet film |
-
1993
- 1993-03-25 JP JP9068493A patent/JPH06281902A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011256073A (en) * | 2010-06-09 | 2011-12-22 | Sumitomo Metal Mining Co Ltd | Method for manufacturing bismuth-substituted type rare earth iron garnet crystal film |
CN103221585A (en) * | 2010-11-29 | 2013-07-24 | 住友金属矿山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
WO2012073671A1 (en) | 2010-11-29 | 2012-06-07 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2012116672A (en) * | 2010-11-29 | 2012-06-21 | Sumitomo Metal Mining Co Ltd | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2012131690A (en) * | 2010-11-29 | 2012-07-12 | Sumitomo Metal Mining Co Ltd | Bismuth substituted-type rare earth iron garnet crystal film, and optical isolator |
US9322111B2 (en) | 2010-11-29 | 2016-04-26 | Sumitomo Metal Mining Co., Ltd. | Bismuth-substituted rare-earth iron garnet crystal film and optical isolator |
US9303333B2 (en) | 2010-11-29 | 2016-04-05 | Sumitomo Metal Mining Co., Ltd. | Bismuth-substituted rare-earth iron garnet crystal film and optical isolator |
WO2012073670A1 (en) | 2010-11-29 | 2012-06-07 | 住友金属鉱山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
EP2647743A1 (en) * | 2010-11-29 | 2013-10-09 | Sumitomo Metal Mining Co., Ltd. | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
EP2647743A4 (en) * | 2010-11-29 | 2014-07-23 | Sumitomo Metal Mining Co | CRYSTALLINE FILM OF AN IRON GRENATE AND A RARE EARTH ELEMENT SUBSTITUTED BY BISMUTH AND OPTICAL ISOLATOR |
EP2647742A1 (en) * | 2010-11-29 | 2013-10-09 | Sumitomo Metal Mining Co., Ltd. | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
CN103228826A (en) * | 2010-11-29 | 2013-07-31 | 住友金属矿山株式会社 | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
EP2647742A4 (en) * | 2010-11-29 | 2014-07-16 | Sumitomo Metal Mining Co | CRYSTALLINE FILM OF AN IRON GRENATE AND A RARE EARTH ELEMENT SUBSTITUTED BY BISMUTH AND OPTICAL ISOLATOR |
JP2012188303A (en) * | 2011-03-08 | 2012-10-04 | Sumitomo Metal Mining Co Ltd | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2012188302A (en) * | 2011-03-08 | 2012-10-04 | Sumitomo Metal Mining Co Ltd | Bismuth-substituted rare earth iron garnet crystal film and optical isolator |
JP2013087015A (en) * | 2011-10-18 | 2013-05-13 | Sumitomo Metal Mining Co Ltd | Liquid phase epitaxial growth method of bismuth substituted rare earth-iron-garnet film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5277845A (en) | Oxide garnet single crystal | |
JP4225472B2 (en) | Magnetic garnet material, Faraday rotator, optical device, method for producing bismuth-substituted rare earth iron garnet single crystal film, and single crystal film | |
JP3699629B2 (en) | Magnetic garnet material and magneto-optical element using the same | |
EP2647742B1 (en) | Bismuth-substituted rare earth iron garnet crystal film and optical isolator | |
JPH06281902A (en) | Magneto-optical element material | |
EP2647743B1 (en) | Bismuth-substituted rare earth iron garnet crystal film and optical isolator | |
US6542299B2 (en) | Material for bismuth substituted garnet thick film and a manufacturing method thereof | |
JP3816591B2 (en) | Method for producing bismuth-substituted rare earth iron garnet single crystal film | |
JP2001044026A (en) | Magnetic garnet single crystal and faraday rotator using the same | |
JP2715053B2 (en) | Magneto-optical element material | |
JP2001044027A (en) | Magnetic garnet single crystal and faraday rotator using the same | |
US5596447A (en) | Magnetooptical element | |
JP3649935B2 (en) | Magnetic garnet material and Faraday rotator using the same | |
JP2867736B2 (en) | Magneto-optical material, method of manufacturing the same, and optical element using the same | |
JPH111394A (en) | Unsaturated bismuth substituted rare-earth iron garnet monocrystal film | |
JP2004083387A (en) | Magnetic garnet material, faraday rotator, optical device, manufacturing method for bismuth substitution type rare earth iron garnet single crystal film, and crucible | |
JP2006273594A (en) | Magnetooptic garnet thick-film single crystal and method for producing the same | |
Machida et al. | Growth of Bi-substituted garnet thick epitaxial films for optical isolators | |
JP2543997B2 (en) | Bismuth-substituted oxide garnet single crystal and method for producing the same | |
JPH07134274A (en) | Magneto-optical element | |
JPH05339099A (en) | Magneto-optical garnet | |
JP2011256073A (en) | Method for manufacturing bismuth-substituted type rare earth iron garnet crystal film | |
JP2006265066A (en) | Method of manufacturing magneto-optic garnet thick film single crystal | |
JPH0459280B2 (en) | ||
JP2004331454A (en) | Bismuth substitution type magnetic garnet film and its manufacturing method |