JPS61116081A - Pump control device - Google Patents
Pump control deviceInfo
- Publication number
- JPS61116081A JPS61116081A JP23802184A JP23802184A JPS61116081A JP S61116081 A JPS61116081 A JP S61116081A JP 23802184 A JP23802184 A JP 23802184A JP 23802184 A JP23802184 A JP 23802184A JP S61116081 A JPS61116081 A JP S61116081A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pump
- flow rate
- water pump
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- 239000012530 fluid Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 72
- 238000001514 detection method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910000498 pewter Inorganic materials 0.000 description 1
- 239000010957 pewter Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は管路によって直列接続された複数台のポンプを
有する流体移送系のポンプ制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pump control device for a fluid transfer system having a plurality of pumps connected in series through conduits.
(発明の技術的背景とその問題点)
ポンプの相互間隔が数階にも及ぶ送水系にあっては、そ
の途中にバッファタンクを設けてこれらのポンプを揃速
制御する方式がある。(Technical Background of the Invention and Problems Thereof) In a water supply system in which pumps are spaced several stories apart, there is a method in which a buffer tank is provided in the middle of the system to control the pumps at uniform speeds.
第2図はこの種の制@装置の構成を、適用対象と併せて
示した系統図である。この第2図において送水ポンプ井
9に蓄積された汚水等を遠方に圧送する場合、送水ポン
プ井9の近滴に送水ポンプ4を、数−離れた位置に送水
ポンプ5をそれぞれ設置すると共に、その途中にバッフ
ァタンク11を設け、送水ポンプ4が送水ポンプ井9の
水をバッファタンク11へ、送水ポンプ5がバッファタ
ンク11の水をさらに遠方へそれぞれ管路10を介して
圧送している。FIG. 2 is a system diagram showing the configuration of this type of control device together with the objects to which it is applied. In FIG. 2, when sewage, etc. accumulated in the water pump well 9 is to be pumped to a distant place, the water pump 4 is installed near the water pump well 9, and the water pump 5 is installed at a position several minutes away from the water pump well 9. A buffer tank 11 is provided on the way, and the water pump 4 pumps the water from the water pump well 9 to the buffer tank 11, and the water pump 5 pumps the water from the buffer tank 11 to a further distance via a pipe 10.
ここで、送水ポンプ4を制御するために送水目標流量を
設定して得られる流量設定m5v1と管路10に設けら
れた流量検出器6の流量検出値Pv1との偏差分に基い
て流m調節計1が速度設定1iIS■2を出力する一方
、この速度設定値SV2と速度検出器3の速度検出値P
■2との偏差分が零になるように回転数調節計2が送水
ポンプ4の回転数を調節している。Here, the flow rate m is adjusted based on the deviation between the flow rate setting m5v1 obtained by setting the water supply target flow rate to control the water supply pump 4 and the flow rate detection value Pv1 of the flow rate detector 6 provided in the pipe line 10. Total 1 outputs speed setting 1iIS■2, while this speed setting value SV2 and speed detection value P of speed detector 3
(2) The rotation speed controller 2 adjusts the rotation speed of the water pump 4 so that the deviation from the water pump 4 becomes zero.
また、送水ポンプ4と等量の水を送水ポンプ5によって
圧送するために、上記流m調節計1より出力される速度
設定値SV2を、送水ポンプ4側のテレメータ7および
送水ポンプ5側のテレメータ8を介して、送水ポンプ5
側の回転数調節計2に加え、さらに、この回転数調節計
2に送水ポンプ5の速度検出器の速度検出値Pv3を加
えることによって偏差分が零になるように送水ポンプ5
の回転数を調節している。In order to force-feed the water pump 5 with the same amount of water as the water pump 4, the speed setting value SV2 output from the flow m controller 1 is set to the telemeter 7 on the water pump 4 side and the telemeter 7 on the water pump 5 side. 8, water pump 5
In addition to the rotation speed controller 2 on the side, by adding the speed detection value Pv3 of the speed detector of the water pump 5 to the rotation speed controller 2, the water pump 5 is adjusted so that the deviation becomes zero.
The rotation speed is adjusted.
したがって、送水ポンプ4,5は揃速制御が行なわれる
が、両者の送水量に僅かな違いがあってもバッフ7タン
ク11の水位は上下するので、例えば、この水位が著し
く低下したときに送水ポンプ5を停止させるべくインタ
ーロック回路を必要とする他、バッフ7タンク11の維
持管理が不可欠であった。Therefore, the water pumps 4 and 5 are controlled at the same speed, but even if there is a slight difference in the amount of water sent between the two, the water level in the buff 7 tank 11 will go up or down. In addition to requiring an interlock circuit to stop the pump 5, maintenance of the buffer 7 tank 11 was essential.
しかして、第2図に示した従来のポンプ制御装置ではバ
ッフ7タンク11の建設、インターロック回路の設置お
よび維持管理に多大な費用を要するという欠点があった
。However, the conventional pump control device shown in FIG. 2 has the drawback that construction of the buff 7 tank 11, installation and maintenance of the interlock circuit require a large amount of cost.
この欠点を改善するために、バッファタンク11を除去
して送水ポンプ4および5を管路10によって直結し、
送水ポンプ4および5を揃速制御する方法も考えられる
。In order to improve this drawback, the buffer tank 11 is removed and the water pumps 4 and 5 are directly connected by a pipe 10,
A method of controlling the water pumps 4 and 5 at the same speed may also be considered.
しかしながら、この場合には両ポンプ間の地形差による
損失水頭、配管の構造および経年変化に基づく管路抵抗
の差異等によって送水圧力が低下するために送水中にキ
ャビテーションが発生し、このキャビテーションによっ
て配管およびポンプが損傷をうけるという欠点があった
。However, in this case, cavitation occurs during water supply because the water supply pressure decreases due to head loss due to topographical differences between the two pumps, differences in pipe resistance due to piping structure and aging, etc. Also, there was a disadvantage that the pump was damaged.
本発明は上記の欠点を除去するためになされたもので、
管路および送水ポンプを損傷させることなく目標流量を
安定的に圧送し得、且つ、建設費を含めた装置コストを
大幅に低減させ得るポンプ制御装置の促供を目的とする
。The present invention has been made to eliminate the above-mentioned drawbacks.
The object of the present invention is to provide a pump control device that can stably pump a target flow rate without damaging pipes and water pumps, and can significantly reduce device costs including construction costs.
この目的を達成するために本発明は、管路によって直列
接続された複数台のポンプを有する流体移送系のポンプ
制御装置において、前記管路の流量を検出する流量検出
器を含み、この管路の流量が設定層に等しくなるように
上流側のポンプを制御する第1の制御系と、この上流側
のポンプの吐出側圧力を検出する第1の圧力検出器と、
この第1の圧力検出器および1irJ記流量検出器の検
出値に基いて隣接する下流側のポンプの吸込側圧力を算
出する演算手段と、前記下流側のポンプの吸込側圧力を
検出する第2の圧力検出器を含み、この吸込側圧力が前
記演算手段によって算出された吸込側圧力に等しくなる
ようにこの下流側のポンプを制御する第2の制御系とを
具備したことを特徴としている。In order to achieve this object, the present invention provides a pump control device for a fluid transfer system having a plurality of pumps connected in series through a pipe, including a flow rate detector for detecting the flow rate of the pipe, and a first control system that controls the upstream pump so that the flow rate of the upstream pump is equal to the set layer; a first pressure detector that detects the discharge side pressure of the upstream pump;
a calculation means for calculating the suction side pressure of the adjacent downstream pump based on the detected values of the first pressure detector and the 1irJ flow rate detector; and a second calculation means for detecting the suction side pressure of the downstream pump. The present invention is characterized in that it includes a pressure detector, and a second control system that controls the pump on the downstream side so that the suction side pressure becomes equal to the suction side pressure calculated by the calculation means.
第1図は本発明の一実施例を示す系統図で、第2図と同
一の符号を付したちのはそれぞれ同−若しくは同効の要
素を示している。FIG. 1 is a system diagram showing one embodiment of the present invention, and the same reference numerals as in FIG. 2 indicate elements that are the same or have the same effect.
この第1図において、送水ポンプ4および5は管路10
によって直列接続され、管路10に設けられた流量検出
器6、その流量検出@PV1および流量設定値S■1の
偏差分に対応した速度設定値S■2を得る流m調節計1
、送水ポンプ4の回転速度を検出する速度検出器3、お
よび、速度設定isv と速度検出器3の速度検出値
P■2との偏差分が零になるように送水ポンプ4を調節
する回転数調節計2によって流ωii!I ′#J系を
構成している。In this FIG. 1, the water pumps 4 and 5 are
is connected in series with the flow rate detector 6 provided in the conduit 10, its flow rate detection @PV1, and a flow rate controller 1 that obtains a speed set value S2 corresponding to the deviation of the flow rate set value S1.
, a speed detector 3 that detects the rotational speed of the water pump 4, and a rotation speed that adjusts the water pump 4 so that the deviation between the speed setting isv and the speed detection value P2 of the speed detector 3 becomes zero. Flow ωii with controller 2! It constitutes the I'#J system.
また、送水ポンプ4の出側には送水圧力を検出する圧力
検出器12が設けられ、この圧力検出器12の圧力検出
値および上記流量検出器6の流■検出器が、テレメータ
7および8を介して、送水ポンプ5側に設けられた演痺
器13に送り込まれる。Further, a pressure detector 12 for detecting the water supply pressure is provided on the outlet side of the water supply pump 4, and the pressure detection value of this pressure detector 12 and the flow rate detector of the flow rate detector 6 are connected to the telemeters 7 and 8. The water is then sent to the numbing device 13 provided on the water pump 5 side.
この演算器13はこれに入力される圧力検出値および流
量検出値に基いて送水ポンプ5の入側圧力を演算して圧
力設定値Sv3を出力する。The calculator 13 calculates the inlet pressure of the water pump 5 based on the detected pressure value and the detected flow rate input thereto, and outputs a pressure set value Sv3.
次に、送水ポンプ5の入力側に設けられた圧力検出器1
4、この圧力検出器14の圧力検出値P■3および演算
器13の圧力設定値SV3の隔差分に対応した速度設定
値S■4を得る圧力調節訓15、送水ポンプ4の回転速
度を検出する速度検出器3、および、速度設定値S■4
と速度検出器3の速度検出値P■4との偏差分が零にな
るように送水ポンプ5を調節する回転数調節計2によっ
て圧力制御系を構成している。Next, a pressure detector 1 installed on the input side of the water pump 5
4. Pressure adjustment practice 15 to obtain a speed setting value S■4 corresponding to the difference between the pressure detection value P■3 of the pressure detector 14 and the pressure setting value SV3 of the calculator 13. Detecting the rotational speed of the water pump 4. speed detector 3 and speed setting value S■4
A pressure control system is constituted by a rotation speed controller 2 that adjusts the water pump 5 so that the deviation between the speed value P and the speed detection value P4 of the speed detector 3 becomes zero.
上記の如く構成された本実施例の作用を以下に説明する
。The operation of this embodiment configured as described above will be explained below.
先ず、流量調節計1および回転数調節計2を含む流量調
節系によって、圧送流量が設定置に等しくなるように、
送水ポンプ4が制御される。First, a flow rate adjustment system including a flow rate controller 1 and a rotation speed controller 2 is used to make the pumping flow rate equal to the set point.
Water pump 4 is controlled.
このとき、流量検出器6の流量検出値および圧力検出器
12の圧力検出値が演算器13に加えられると、ここで
、送水ポンプ5の入側圧力が算出される。このことをさ
らに詳しく説明する。At this time, when the flow rate detection value of the flow rate detector 6 and the pressure detection value of the pressure detector 12 are added to the calculator 13, the inlet side pressure of the water pump 5 is calculated. This will be explained in more detail.
送水ポンプ4と送水ポンプ5とは管路10によって接続
されているので、送水ポンプ4の吐出側および送水ポン
プ5の吸込側にそれぞれベルヌーイの定理が適用でき、
次式の関係が成立する。Since the water pump 4 and the water pump 5 are connected by the pipe 10, Bernoulli's theorem can be applied to the discharge side of the water pump 4 and the suction side of the water pump 5, respectively.
The following relationship holds true.
□ρv +g+ρgh=a・・・・・・・・・(1)
但し
ρ:原流体密度
V:流速
p二圧力
g:重力の加速度
h:水頭
a:定数
である。□ρv +g+ρgh=a・・・・・・・・・(1)
However, ρ: original fluid density V: flow rate p, pressure g: acceleration of gravity h: water head a: constant.
したがって送水ポンプ4の吐出側と送水ポンプ5の吸込
側との間には次式の関係が成立する。Therefore, the following relationship holds between the discharge side of the water pump 4 and the suction side of the water pump 5.
但し ■1 :送水ポンプ4の吐出側流速 v2 二送水ポンプ5の吸込側流速 p1 ;送水ポンプ4の吐出側圧力 ρ2 :送水ポンプ5の吸込側圧力 h1 :送水ポンプ4の吐出側水頭 h :送水ポンプ5の吸込側水頭 である。however ■1: Discharge side flow rate of water pump 4 v2 Suction side flow rate of the second water pump 5 p1; Discharge side pressure of water pump 4 ρ2: Suction side pressure of water pump 5 h1: Water head on the discharge side of the water pump 4 h: Water head on the suction side of the water pump 5 It is.
また、上記(2)式は次のように変形することができる
。Further, the above equation (2) can be modified as follows.
+9g(h −h2)+P1
=P、−ρg(h2−hl )
−P h k v 1 ・・・・・・・・・
・・・・・・(3)但し
に:管路損失水頭
である。+9g (h - h2) + P1 = P, -ρg (h2 - hl) -P h k v 1 ......
(3) However: This is the pipe line head loss.
かくして、送水ポンプ4の吐出側の圧力と流速とにより
送水ポンプ5の吸込側圧力を算出し得るので、本実施例
では流速の代わりになる流量検出値と、圧力検出値とを
演算器13に加え、ここで圧力設定値SV3を演算して
いる。In this way, the pressure on the suction side of the water pump 5 can be calculated from the pressure on the discharge side of the water pump 4 and the flow rate, so in this embodiment, the flow rate detection value, which is a substitute for the flow rate, and the pressure detection value are sent to the calculator 13. In addition, the pressure set value SV3 is calculated here.
次に、圧力調節計15および回転数調節計2を含む流量
制御系によって、送水ポンプ5の吸込側の圧力が演算器
13によって算出された設定圧力になるように送水ポン
プ4が制御される。Next, the water pump 4 is controlled by the flow rate control system including the pressure regulator 15 and the rotation speed regulator 2 so that the pressure on the suction side of the water pump 5 becomes the set pressure calculated by the calculator 13.
これによって送水ポンプ5の吸込側圧力が適切に制御さ
れ、キャビテーションの発生を抑えながら目標流量を安
定的に供給することができる。Thereby, the suction side pressure of the water pump 5 is appropriately controlled, and the target flow rate can be stably supplied while suppressing the occurrence of cavitation.
なお、上記実施例では2台の送水ポンプの制御について
説明したが、3台以上の送水ポンプを有。In the above embodiment, control of two water pumps was explained, but three or more water pumps may be used.
する系統であっても、要は上流の送水ポンプ吐出側の圧
力と、管路の流量とによって下流の送水ポンプの吸込側
圧力を算出し得るので上述したと同様な制御が可能であ
る。Even in a system where the water pump is used, the pressure on the suction side of the downstream water pump can be calculated based on the pressure on the discharge side of the upstream water pump and the flow rate of the pipeline, so the same control as described above is possible.
また、上記実施例では送水系について説明したが、複数
台のポンプが管路によって直列接続された流体移送系の
全てに本発明を適用することができる。Furthermore, although the above embodiments have been described with respect to a water supply system, the present invention can be applied to any fluid transport system in which a plurality of pumps are connected in series through conduits.
(発明の効果)
以上の説明によって明らかな如く、本発明によれば、目
標原車を圧送するように上流のポンプを流量制御し、こ
の上流のポンプの吐出側圧力および管路の流量に応じた
適切な吸込側圧力が得られるように下流のポンプを圧力
制御しているので、配管上の圧力損失等によって生じて
いた2白目以降の吸込側のキャビテーションを抑さえ得
ることから管路および送水ポンプを損傷させることなく
目標流量を安定的に圧送し得る。(Effects of the Invention) As is clear from the above description, according to the present invention, the flow rate of the upstream pump is controlled so as to force-feed the target original vehicle, and the flow rate of the upstream pump is controlled according to the discharge side pressure of the upstream pump and the flow rate of the pipe line. Since the pressure of the downstream pump is controlled to obtain an appropriate suction side pressure, cavitation on the suction side after the second pewter, which was caused by pressure loss on the piping, can be suppressed. The target flow rate can be stably pumped without damaging the pump.
また、管路の途中にバッファタンクを設ける場合と比較
して維持費を含めた装置コストを大幅に低減することが
できる。Furthermore, compared to the case where a buffer tank is provided in the middle of the pipeline, the cost of the device including maintenance costs can be significantly reduced.
第1図は本発明の一実施例の構成を示す系統図、第2図
従来装置の構成を示す系統図である。
1・・・流m調節計、2・・・回転数調節計、4,5・
・・送水ポンプ、6・・・流畿検出器、7.8・・・テ
レメータ、9・・−送水弁、10・・・管路、12.1
4・・・圧力検出器、13・・・演算器。FIG. 1 is a system diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a system diagram showing the configuration of a conventional device. 1...Flow meter controller, 2...Rotation speed controller, 4, 5.
・・Water pump, 6・Flow detector, 7.8・Telemeter, 9・・Water feed valve, 10・Pipe line, 12.1
4...Pressure detector, 13...Calculator.
Claims (1)
体移送系のポンプ制御装置において、前記管路の流量を
検出する流量検出器を含み、この管路の流量が設定量に
等しくなるように上流側のポンプを制御する第1の制御
系と、この上流側のポンプの吐出側圧力を検出する第1
の圧力検出器と、この第1の圧力検出器および前記流量
検出器の検出値に基いて隣接する下流側のポンプの吸込
側圧力を算出する演算手段と、前記下流側のポンプの吸
込側圧力を検出する第2の圧力検出器を含み、この吸込
側圧力が前記演算手段によって算出された吸込側圧力に
等しくなるようにこの下流側のポンプを制御する第2の
制御系とを具備したことを特徴とするポンプ制御装置。A pump control device for a fluid transfer system having a plurality of pumps connected in series through a pipe, including a flow rate detector for detecting the flow rate in the pipe, and configured to adjust the flow rate in the pipe to be equal to a set amount. a first control system that controls the upstream pump, and a first control system that detects the discharge side pressure of the upstream pump.
a pressure detector, a calculation means for calculating the suction side pressure of the adjacent downstream pump based on the detected values of the first pressure detector and the flow rate detector, and a suction side pressure of the downstream pump. and a second control system that controls the pump on the downstream side so that the suction side pressure is equal to the suction side pressure calculated by the calculation means. A pump control device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23802184A JPS61116081A (en) | 1984-11-12 | 1984-11-12 | Pump control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23802184A JPS61116081A (en) | 1984-11-12 | 1984-11-12 | Pump control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61116081A true JPS61116081A (en) | 1986-06-03 |
Family
ID=17023978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23802184A Pending JPS61116081A (en) | 1984-11-12 | 1984-11-12 | Pump control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116081A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1043645A1 (en) * | 1999-04-07 | 2000-10-11 | Alcatel | Pressure control system for a vacuum chamber, vacuum pumping unit provided with such a system |
FR2792083A1 (en) * | 1999-04-12 | 2000-10-13 | Cit Alcatel | SYSTEM FOR REGULATING THE PRESSURE OF A VACUUM ENCLOSURE, VACUUM PUMPING GROUP PROVIDED WITH SUCH A SYSTEM |
JP2006233865A (en) * | 2005-02-24 | 2006-09-07 | Tsurumi Mfg Co Ltd | Lift pump device and operation method thereof |
JP2009264351A (en) * | 2008-04-30 | 2009-11-12 | Kubota Corp | Operation control device of pumping-draining facility, pumping-draining facility and operation method of pumping-draining facility |
JP2010223123A (en) * | 2009-03-24 | 2010-10-07 | Toshiba Mitsubishi-Electric Industrial System Corp | Fluid control apparatus |
JP2012190106A (en) * | 2011-03-09 | 2012-10-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Process control system |
-
1984
- 1984-11-12 JP JP23802184A patent/JPS61116081A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1043645A1 (en) * | 1999-04-07 | 2000-10-11 | Alcatel | Pressure control system for a vacuum chamber, vacuum pumping unit provided with such a system |
WO2000060428A1 (en) * | 1999-04-07 | 2000-10-12 | Alcatel | System for regulating pressure in a vacuum chamber, vacuum pumping unit equipped with same |
FR2792083A1 (en) * | 1999-04-12 | 2000-10-13 | Cit Alcatel | SYSTEM FOR REGULATING THE PRESSURE OF A VACUUM ENCLOSURE, VACUUM PUMPING GROUP PROVIDED WITH SUCH A SYSTEM |
JP2006233865A (en) * | 2005-02-24 | 2006-09-07 | Tsurumi Mfg Co Ltd | Lift pump device and operation method thereof |
JP4646026B2 (en) * | 2005-02-24 | 2011-03-09 | 株式会社鶴見製作所 | Operation method of lift pump device |
JP2009264351A (en) * | 2008-04-30 | 2009-11-12 | Kubota Corp | Operation control device of pumping-draining facility, pumping-draining facility and operation method of pumping-draining facility |
JP2010223123A (en) * | 2009-03-24 | 2010-10-07 | Toshiba Mitsubishi-Electric Industrial System Corp | Fluid control apparatus |
JP2012190106A (en) * | 2011-03-09 | 2012-10-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Process control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2456437C2 (en) | Well flow control method and device | |
KR100411942B1 (en) | Method for controlling the filling of containers with a flowable product and filling installation implementing said method | |
JPS61116081A (en) | Pump control device | |
JP2006074027A (en) | Device and method for mixing and feeding chemical liquid | |
CN107131131A (en) | A kind of flow equilibrium method of water pump serial-connection system | |
US5269635A (en) | Slurry processing unit | |
JPS60129103A (en) | Ultrapure water production equipment | |
CN103172185A (en) | Ultrapure water preparation device with outlet water quality regulating mechanism | |
JPH10205483A (en) | Estimated end pressure constant control device for pump | |
JP4047980B2 (en) | Operation method of pumps connected in parallel | |
CN110043482B (en) | Method for determining actual working flow of inclined shaft pump station | |
JP2000154562A (en) | Control of feed water amount in multistory water supply piping system and controller therefor | |
CN219546822U (en) | Oxygenation voltage stabilizing cabinet and oxygenation equipment | |
JP3540627B2 (en) | Distributing valve control device | |
CN116813158B (en) | Intelligent chemical agent filling method and system | |
JPS5585915A (en) | Distribution control method for flow amount of sewage | |
CN108333932A (en) | A kind of flow control system pressure method of estimation | |
JPS6323811B2 (en) | ||
CN207485617U (en) | A kind of water pump serial-connection system with water balance function | |
JPH0682178A (en) | Equipment in circulating water system | |
Maxwell et al. | A method for deaerating water | |
Addie et al. | Design, selection, sizing and control considerations for cyclone feed slurry pumps | |
JPS6335923B2 (en) | ||
JPS5897612U (en) | water level control device | |
CN112814884A (en) | Flow pulsation reduction method under working condition of parallel conveying of double diaphragm pumps |