[go: up one dir, main page]

JPS6323811B2 - - Google Patents

Info

Publication number
JPS6323811B2
JPS6323811B2 JP55178606A JP17860680A JPS6323811B2 JP S6323811 B2 JPS6323811 B2 JP S6323811B2 JP 55178606 A JP55178606 A JP 55178606A JP 17860680 A JP17860680 A JP 17860680A JP S6323811 B2 JPS6323811 B2 JP S6323811B2
Authority
JP
Japan
Prior art keywords
flow rate
main
differential pressure
condensate
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55178606A
Other languages
Japanese (ja)
Other versions
JPS57102212A (en
Inventor
Tomohisa Amako
Juji Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP55178606A priority Critical patent/JPS57102212A/en
Publication of JPS57102212A publication Critical patent/JPS57102212A/en
Publication of JPS6323811B2 publication Critical patent/JPS6323811B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 本発明は、流量が変化する主流入路と主流出路
との間に並列に挿入されたほぼ等しい形状の複数
個の処理装置において、個々の処理装置の限界目
づまり状態を検出する目づまり状態検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides for a plurality of processing devices having approximately the same shape inserted in parallel between a main inflow path and a main outflow path where the flow rate changes, to reduce the critical clogging state of each processing device. The present invention relates to a clogging state detection method for detecting a clogging state.

例えば、原子力、火力発電所の復水処理系には
復水脱塩装置、イオン交換過装置、電磁フイル
タ装置等各種の処理装置が使用されている。而し
てこれらの処理装置は、主流入路と主流出路との
間にほぼ等しい容量の同一機種装置を複数個並列
に挿入し、それぞれの限界目づまりまでに時間差
をもたせて限界目づまりに達したものから逐次再
生した処理装置と交替せしめて連続的な運転を行
なつている。
For example, various treatment devices such as condensate desalination devices, ion exchange devices, and electromagnetic filter devices are used in condensate treatment systems of nuclear and thermal power plants. In these processing devices, a plurality of devices of the same model with approximately equal capacity are inserted in parallel between the main inflow path and the main outlet path, and each reaches its limit clogging with a time difference. It is operated continuously by replacing the processing equipment with one that has been successively regenerated.

一般に、系全体が一定流量で運転される並列複
数個の過器等における個々の過器について、
目づまりを検出するには、それぞれの過器にお
ける損失水頭△Pの増加、したがつて当該過器
の流量の低下を目安とすることができ、これによ
つていずれの過器が限界目づまりの状態にある
か否かを推定することができる。上記発電所の復
水浄化系における処理装置においてもその例外で
はなく、個々の処理装置の目づまりを検出するの
に若干の改良を加えた同形式のものが使われてい
る。
In general, for each superconductor in a system with multiple superconductors in parallel, where the entire system is operated at a constant flow rate,
To detect clogging, it is possible to use the increase in head loss △P in each excess vessel, and therefore the decrease in the flow rate of the said excess vessel, as a guideline. It is possible to estimate whether the The treatment equipment in the condensate purification system of the power plant mentioned above is no exception, and the same type of equipment with some improvements is used to detect clogging in individual treatment equipment.

しかしながら、近年になつて、原子力や火力発
電所では、運転管理にコンピユータを採用し刻々
と変化する電力需要に対応して、発電量を制御す
ることが容易になつた為に、かなり大きな発電所
においても、その発電量を調整して運転するよう
になつてきており、したがつて復水の流量も一定
でなく、時々刻々変動するようになつている。
However, in recent years, nuclear and thermal power plants have adopted computers for operational management, making it easier to control the amount of power generated in response to ever-changing power demand. As well, the amount of power generated has come to be adjusted during operation, and as a result, the flow rate of condensate is no longer constant, but fluctuates from moment to moment.

ところで上記のように、復水処理系の流量が一
定でない場合において、個々の処理装置毎に損失
水頭△Pの増加や流量低下を検出しても、当該処
理装置が限界目づまり状態にあるか否かの目安と
はならない。例えば1個の処理装置について流量
が一定の場合の限界目づまり状態を示す水頭損失
がわかつているとしても、系全体の流量が減小す
るときはこれに伴つて当該処理装置の水頭損失も
低下するから、該処理装置が限界目づまり状態に
なつているにも拘わらずその危険信号を発すると
は限らないからである。かかる事態に対処して系
全体の流量に変動があつても、個々の処理装置に
ついて、より確実にその限界目づまり状態の有無
を検出する方法が要求されるのである。
By the way, as mentioned above, when the flow rate of the condensate treatment system is not constant, even if an increase in the head loss △P or a decrease in the flow rate is detected for each individual treatment device, it is not possible to determine whether the treatment device is at the limit of clogging. It cannot be used as a guideline for whether or not it is true. For example, even if you know the water head loss that indicates the critical clogging state for one treatment device when the flow rate is constant, when the flow rate of the entire system decreases, the head loss of the treatment device will decrease accordingly. Therefore, even though the processing device is in a critical clogging state, it does not necessarily issue a danger signal. In order to cope with such a situation, there is a need for a method for more reliably detecting the presence or absence of a critical clogging state in each processing device even if the flow rate of the entire system fluctuates.

本発明は、上記要求に応えるべく開発されたも
ので、流量の変化する復水処理系の主流入路と主
流出路との間に並列に挿入されたほぼ等しい形状
の複数個の処理装置において、主流入路と主流出
路間の差圧を計測する差圧計と、各処理装置個別
の流量を測定する複数の流量計と、主流入路と主
流出路間の差圧△Pと限界目づまりに達した時の
一個の処理装置の流量Qとの関係式△P=AQ2
BQ+C(但しA,B,Cは定数)を記憶した演
算装置とを設け、前記差圧計にあらわれる主流入
路と主流出路間の差圧から前記関係式により許容
最小流量を演算々出し、当該算出流量と前記個々
の流量計にあらわれる流量とを比較することによ
り、個々の処理装置における限界目づまり状態の
有無を検出することを特徴とする復水処理装置の
目づまり状態検出方法を提供するものである。
The present invention was developed in response to the above requirements, and includes a plurality of treatment devices having approximately the same shape inserted in parallel between the main inflow path and the main outflow path of a condensate treatment system where the flow rate changes. A differential pressure gauge measures the differential pressure between the main inflow channel and the main stream outlet channel, multiple flow meters measure the flow rate of each processing device individually, and the differential pressure △P between the main inlet channel and the main stream outlet channel reaches the limit clogging. The relational expression between the flow rate Q of one processing device and the time △P=AQ 2 +
A calculation device that stores BQ+C (A, B, and C are constants) is provided, and the minimum allowable flow rate is calculated from the differential pressure between the main inflow passage and the main output passage shown on the differential pressure gauge using the above relational expression. Provided is a clogging state detection method for a condensate treatment device, characterized in that the presence or absence of a critical clogging state in each treatment device is detected by comparing the flow rate with the flow rate appearing on the individual flowmeters. It is.

以下第1図に示すように主流入路が水使用装置
(図示せず)の復水排出管に接続する入口側復水
母管5であり、主流出路が水使用装置への復水供
給ブースターポンプ(図示せず)に接続する出口
側復水母管6である復水処理系において、母管
5,6間に復水処理装置として4個の過通水塔
1乃至4を並列に接続した復水処理系について、
本発明の目づまり検出原理を説明する。
As shown in FIG. 1 below, the main inflow path is the inlet side condensate main pipe 5 that connects to the condensate discharge pipe of the water use device (not shown), and the main outlet path is the condensate supply booster pump to the water use device. In the condensate treatment system, which is the outlet side condensate main pipe 6 connected to the main pipe (not shown), four passing water towers 1 to 4 are connected in parallel as a condensate treatment device between the main pipes 5 and 6. Regarding the processing system,
The clogging detection principle of the present invention will be explained.

第1図において、母管5,6間には、両管間の
差圧を計測する差圧計7が設けられ、復水処理系
の全流量が時々刻々変動しても、それに応じて母
管間差圧を計測し、その差圧△Pを発信する。ま
た通水塔1乃至4は、ほぼ等しい容量の同一機種
のものであり、それぞれの母管6に接続する排出
側には流量計11乃至14が設けられ、個別に流
量を測定し、その流量Q1乃至Q4を発信する。
In Fig. 1, a differential pressure gauge 7 is installed between the main pipes 5 and 6 to measure the differential pressure between the two pipes. The differential pressure is measured and the differential pressure ΔP is transmitted. Furthermore, the water towers 1 to 4 are of the same model with approximately equal capacity, and flow meters 11 to 14 are provided on the discharge side connected to the main pipe 6, respectively, to measure the flow rate individually, and the flow rate Q Send 1 to Q 4 .

第1図中8は、1個の通水塔について限界目づ
まり状態時における△P−Q特性図を記憶させて
ある演算装置で、差圧計7からの差圧値入力によ
り、該差圧値に対応する許容最小流量Qsを演
算々出する。また9は演算装置8により算出され
る当該流量Qsと前記流量計11乃至14からの
流量値Q1乃至Q4とを比較する比較器で、これに
よつて各通水塔の目づまり状態の判定信号を発信
するものである。
Reference numeral 8 in FIG. 1 is an arithmetic unit that stores the ΔP-Q characteristic diagram for one water tower in the critical clogging state. Compute the corresponding minimum allowable flow rate Q s . Further, 9 is a comparator that compares the flow rate Q s calculated by the arithmetic unit 8 with the flow rate values Q 1 to Q 4 from the flow meters 11 to 14, and thereby determines the clogging state of each water tower. It transmits a judgment signal.

通水塔1乃至4は、それぞれ同時に限界目づま
り状態にならないように、通水運転経過時間に時
間差をもたせてあるので、それぞれの目づまりの
程度は異なつており、通水塔1乃至4はどれもが
独自の目づまり状況に応じた△P−Q特性を持つ
ている。例示として第1図中に各塔毎に△P−Q
特性図を示しているが、塔4はそのカーブが最も
立つており、限界目づまり状態にあることが推定
される。また塔3はそのカーブが最も寝ており、
再生後間もないことが推定されるのである。とこ
ろで今、演算器8に塔の限界目づまり状態に対応
する△P−Q特性図カーブを記憶させておき、一
方入口側復水母管5と出口側復水母管6との間の
母管間差圧△Pを差圧計7にて計測し、前記の記
憶されたカーブから、計測された△Pに対応する
基準となる許容最小流量Qsを算出する。而して
この流量Qsを各個別の流量Q1乃至Q4と比較し、
流量Q1乃至Q4の中許容最小流量Qsより少いもの
があればその通水塔が限界目づまり状態にあると
判定するのである。
Water towers 1 to 4 have different elapsed water flow operation times so that they do not reach the limit of clogging at the same time, so the degree of clogging of each tower is different, and all of water towers 1 to 4 It has a ΔP-Q characteristic that corresponds to a unique clogging situation. As an example, △P-Q for each tower in Figure 1
As shown in the characteristic diagram, the curve of tower 4 is the steepest, and it is presumed that it is in a critical clogging state. Also, the curve of tower 3 is the most curved,
It is presumed that it has just been regenerated. By the way, now, a ΔP-Q characteristic diagram curve corresponding to the critical clogging state of the tower is stored in the calculator 8, and on the other hand, between the main condensate pipe 5 on the inlet side and the condensate main pipe 6 on the outlet side, The differential pressure ΔP is measured by the differential pressure gauge 7, and the reference minimum allowable flow rate Q s corresponding to the measured ΔP is calculated from the above-mentioned stored curve. Then, compare this flow rate Q s with each individual flow rate Q 1 to Q 4 ,
If any of the flow rates Q1 to Q4 is smaller than the minimum allowable flow rate Qs , it is determined that the water tower is in a critical clogging state.

上記限界目づまり状態のカーブは以下に説明す
る近似式△P=AQ2+BQ+C(但し、△Pは母管
間差圧、Qは流量、A,B,Cはいずれも定数)
によつて表わされ、該カーブを演算装置に記憶さ
せておくものとする。なお定数A,B,Cの算出
は次の如くして行なわれる。
The above-mentioned limit clogging state curve is expressed by the approximate formula △P=AQ 2 +BQ+C (where △P is the differential pressure between the main pipes, Q is the flow rate, and A, B, and C are all constants)
It is assumed that the curve is stored in the arithmetic device. Note that the constants A, B, and C are calculated as follows.

今、具体例として定格流量683mm3/Hにおいて
限界目づまり状態を示す母管間最大設計差圧3.9
Kg/cm2の混床式復水脱塩装置の一塔の通水塔につ
いて、△P−Qのカーブを実測すると、第2図乃
至第4図に太い実線で示すように表わされる。と
ころで管水路の損失水頭はDarcy−Weisbachの
式のように流量の2乗に係数を乗じた式で近似さ
れる。
Now, as a specific example, the maximum design differential pressure between the main pipes is 3.9, which indicates a critical clogging condition at a rated flow rate of 683 mm 3 /H.
When the curve of ΔP-Q is actually measured for one water tower of a mixed-bed condensate desalination device of kg/cm 2 , it is expressed as shown by the thick solid line in FIGS. 2 to 4. By the way, the head loss of a pipe can be approximated by a formula such as the Darcy-Weisbach formula, which is the square of the flow rate multiplied by a coefficient.

△P=k・Q2 k:係数 Q:流量 しかしこの式は、第2図の点線および鎖線で示
すように実測値との間にかなりの誤差を生ずるの
で演算装置に記憶されるべきカーブとしては不適
当である。次に考えられるのが指数の修正で次の
式のようになる。
△P=k・Q 2 k: Coefficient Q: Flow rate However, as shown by the dotted line and chain line in Figure 2, this equation causes a considerable error between the actual measurement value and the curve that should be stored in the calculation device. is inappropriate. The next possibility is to modify the index as shown in the following formula.

△P=k・Qn k,n:係数 Q:流量 これは前記Darcy−Weisbachの式よりも一層
近似してくるが、第3図に示すようになお誤差を
解消していない。
ΔP=k·Q n k,n: Coefficient Q: Flow rate Although this approximates more than the above-mentioned Darcy-Weisbach equation, the error still remains as shown in FIG.

本発明においては、最も近似できる式として下
記の二次式を試みた。
In the present invention, the following quadratic equation was tried as the equation that could be most approximated.

△P=AQ2+BQ+C A:B:C 係数 係数A,B,Cは、流量をQ、2Q,3Qの3
点をとり、それに対応する母管管差圧を△P1
△P2,△P3とするとき △P1=AQ2+BQ+C △P2=4AQ2+2BQ+C △P3=9AQ2+3BQ+C の三式が成立するから、これの連式方程式を解い
て A=△P3−2△P2+△P1/2Q2 B=△P2−△P1−3AQ2/Q C=△P1−AQ2−BQ として求めることができる。すなわち第4図にお
いて実測カーブから △P1(200m3/Hの時)0.57Kg/cm2 △P2(400m3/Hの時)1.53Kg/cm2 △P3(600m3/Hの時)3.07Kg/cm2 であるから上記式に代入して A=7.25×10-6 B=4.5×10-4 C=0.19 となつて係数値が定まる。
△P=AQ 2 +BQ+C A:B:C Coefficients Coefficients A, B, and C represent the flow rate of Q, 2Q, and 3Q.
Take the point and calculate the corresponding pressure difference in the main tube as △P 1 ,
When △P 2 and △P 3 , △P 1 = AQ 2 +BQ+C △P 2 = 4AQ 2 +2BQ+C △P 3 = 9AQ 2 +3BQ+C Since the following three equations hold true, solve this simultaneous equation and get A=△ It can be obtained as P 3 −2ΔP 2 +ΔP 1 /2Q 2 B=ΔP 2 −ΔP 1 −3AQ 2 /Q C=ΔP 1 −AQ 2 −BQ. In other words, from the measured curve in Figure 4, △P 1 (at 200m 3 /H) 0.57Kg/cm 2 △P 2 (at 400m 3 /H) 1.53Kg/cm 2 △P 3 (at 600m 3 /H) ) 3.07Kg/cm 2 , so by substituting it into the above formula, A=7.25×10 -6 B=4.5×10 -4 C=0.19, and the coefficient values are determined.

そこで△P=7.25×10-6Q2+4.5×10-4Q+0.19
なる式を図に示すと第4図の鎖線カーブとして表
わされ、該カーブは△Pが0.4Kg/cm2以上の領域
では算出カーブが実測カーブに極めて良く近似し
ていることが理解できる。なお第4図からわかる
ように△Pが0.4Kg/cm2以下の領域では或る程度
の誤差を生じているが、この領域では流量に対し
て差圧が高い値を示すことになるので、算出カー
ブが安全側にあることになり実際上問題になるこ
とはない。
So △P=7.25×10 -6 Q 2 +4.5×10 -4 Q+0.19
The equation is shown as a chain line curve in FIG. 4, and it can be seen that the calculated curve closely approximates the measured curve in the region where ΔP is 0.4 Kg/cm 2 or more. As can be seen from Figure 4, a certain amount of error occurs in the region where ΔP is 0.4Kg/cm 2 or less, but in this region the differential pressure shows a high value relative to the flow rate, so Since the calculation curve is on the safe side, there is no problem in practice.

なお、係数A,B,Cの数値は、復水水処理装
置の種類や同じ種類の復水処理装置であつてもそ
の大きさなどで異なるので本発明を実施するに当
つては、前述したような手法で△P−Qのカーブ
を実測し、その実測値に近似する係数A,B,C
をそれぞれ決定するものとする。
Note that the values of coefficients A, B, and C vary depending on the type of condensate water treatment equipment and the size of the condensate treatment equipment even if the same type of condensate treatment equipment is used. Measure the curve of △P-Q using this method, and find coefficients A, B, C that approximate the measured value.
shall be determined respectively.

本発明を実施するのに使用される装置を第5図
にブロツク線図として示す。第5図において復水
は矢印に示す如く入口側母管5から過通水塔1
乃至4に分配されてそれぞれを通過し出口側母管
6へと流れるが、このとき母管5,6間の差圧△
Pは差圧計7により計測され、その差圧△Pの信
号は、△P=AQ2+BQ+Cなる二次式の回路を
有する演算装置8に入力されて、計算が行なわ
れ、許容最小流量Qsが定まりその信号が出力さ
れる。一方各通水塔1乃至4の出口側には、それ
ぞれ流量計11乃至14が配設され、これら流量
計は各通水塔毎に流量Q1乃至Q4の信号を発信す
る。
The apparatus used to carry out the invention is shown in block diagram form in FIG. In Fig. 5, condensate flows from the inlet main pipe 5 to the passing water tower 1 as shown by the arrow.
4, passes through each, and flows to the outlet side main pipe 6, but at this time, the differential pressure between the main pipes 5 and 6 is
P is measured by a differential pressure gauge 7, and the signal of the differential pressure △P is input to an arithmetic unit 8 having a quadratic circuit of △P=AQ 2 +BQ+C to perform calculations and calculate the allowable minimum flow rate Q s is determined and the signal is output. On the other hand, flow meters 11 to 14 are disposed on the outlet side of each water tower 1 to 4, respectively, and these flow meters transmit signals of flow rates Q 1 to Q 4 for each water tower.

前記許容最小流量Qsと前記流量Q1乃至Q4とは
それぞれ比較器91乃至94に入力されて比較さ
れ、Qs>Q1乃至Q4ならば比較器91乃至94から
警報信号を発信し、対応する警報表示灯151
至154を点灯して該当する通水塔が限界目づま
り状態にあることを警報する。
The allowable minimum flow rate Q s and the flow rates Q 1 to Q 4 are input to comparators 9 1 to 9 4 and compared, and if Q s >Q 1 to Q 4 , an alarm is issued from the comparators 9 1 to 9 4 . A signal is transmitted and the corresponding alarm indicator lights 15 1 to 15 4 are lit to warn that the corresponding water tower is in the critical clogging state.

なお、通水塔のいずれかに何らかの原因で過大
流量の通水が行なわれるのを防止するため流量計
11乃至14からの流量Q1乃至Q4の信号を、最
大流量設定器17により設定された最大流量
Qnaxが入力される比較器101乃至104に入力し
て両者を比較し、流量Q1乃至Q4が流量Qnaxをこ
えるとき比較器101乃至104から警報信号を発
信し、対応する警報表示灯161乃至164を点灯
して、該当する通水塔が最大設定流量以上の通水
状態にあることを警報させるようにすることがで
きる。
In addition, in order to prevent excessive flow of water from flowing through any of the water towers for some reason, the signals of the flow rates Q 1 to Q 4 from the flow meters 11 to 14 are set by the maximum flow rate setting device 17. maximum flow rate
Q nax is input to the comparators 10 1 to 10 4 to compare the two, and when the flow rates Q 1 to Q 4 exceed the flow rate Q nax , an alarm signal is sent from the comparators 10 1 to 10 4 and a countermeasure is taken. The warning indicator lights 16 1 to 16 4 can be turned on to warn that the water tower in question is flowing water at a flow rate higher than the maximum set flow rate.

前記二次式△P=AQ2+BQ+Cを記憶して、
復水処理系の母管間差圧から許容最小流量Qs
演算々出する演算装置については、アナログとデ
イジタルの両方式が可能であるが、デイジタルの
方が精度、価格などの点で有利である。
Remembering the quadratic formula △P=AQ 2 +BQ+C,
Regarding the calculation device that calculates the allowable minimum flow rate Q s from the pressure difference between the main pipes of the condensate treatment system, both analog and digital methods are possible, but digital is more advantageous in terms of accuracy and cost. It is.

以上の説明によつて明らかなように、本発明に
よれば、流量の変化する復水処理系の主流入路と
主流出路との間に一個の差圧計を設け、また主流
入路と主流出路との間に並列に挿入された複数個
の処理装置の各々に流量計を設け、これらによつ
て得られる差圧および流量から演算装置により演
算を行ない、この演算結果に基づいて個々の処理
装置について確実にその目づまり状態を検出でき
るので、復水処理系の運転に際しその効果は極め
て大きい。
As is clear from the above description, according to the present invention, one differential pressure gauge is provided between the main inlet and the main outlet of the condensate treatment system where the flow rate changes, and the main inlet and the main outlet are A flow meter is installed in each of the plurality of processing devices inserted in parallel between the Since the clogging state can be detected reliably, the effect is extremely large when operating the condensate treatment system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による復水処理装置の目づまり
検出原理の説明図、第2図は式△P=k・Q2
よつて示される△P−Q特性図、第3図は式△P
=k・Qnによつて示される△P−Q特性図、第
4図は本発明において式△P=AQ2+BQ+Cに
よつて示される△P−Q特性図、第5図は本発明
を実施する装置のブロツク線図である。 1,2,3,4……過通水塔、5……入口側
復水母管、6……出口側復水母管、7……差圧
計、8……演算装置、91,92,93,94……比
較器、101,102,103,104……比較器、
11,12,13,14……流量計、151,1
2,153,154……警報表示灯(流量低)、1
1,162,163,164……警報表示灯(流量
高)、17……最大流量設定器。
Fig. 1 is an explanatory diagram of the clogging detection principle of the condensate treatment equipment according to the present invention, Fig. 2 is a △P-Q characteristic diagram shown by the formula △P = k・Q 2 , and Fig. 3 is a diagram of the formula △ P
=k・Q n , FIG. 4 is a ΔP-Q characteristic diagram shown by the formula ΔP=AQ 2 +BQ+C in the present invention, and FIG. 5 is a ΔP-Q characteristic diagram in the present invention. FIG. 2 is a block diagram of the apparatus for implementation. 1, 2, 3, 4... Passing water tower, 5... Inlet side condensate main pipe, 6... Outlet side condensate main pipe, 7... Differential pressure gauge, 8... Arithmetic device, 9 1 , 9 2 , 9 3 , 9 4 ... comparator, 10 1 , 10 2 , 10 3 , 10 4 ... comparator,
11, 12, 13, 14...flow meter, 15 1 , 1
5 2 , 15 3 , 15 4 ... Alarm indicator light (low flow rate), 1
6 1 , 16 2 , 16 3 , 16 4 ... Alarm indicator light (high flow rate), 17 ... Maximum flow rate setting device.

Claims (1)

【特許請求の範囲】[Claims] 1 流量の変化する復水処理系の主流入路と主流
出路との間に並列に挿入されたほぼ等しい形状の
複数個の処理装置において、主流入路と主流出路
間の差圧を計測する差圧計と、各処理装置個別の
流量を測定する複数の流量計と、主流入路と主流
出路間の差圧△Pと限界目づまりに達した時の一
個の処理装置の流量Qとの関係式△P=AQ2
BQ+C(但しA,B,Cは定数)を記憶した演
算装置とを設け、前記差圧計にあらわれる主流入
路と主流出路間の差圧から前記関係式により許容
最小流量を演算々出し、当該算出流量と個々の流
量計にあらわれる流量とを比較することにより
個々の処理装置における限界目づまり状態の有無
を検出することを特徴とする処理装置の目づまり
状態検出方法。
1 A difference in measuring the differential pressure between the main inlet and the main outlet in a plurality of treatment devices of approximately the same shape inserted in parallel between the main inlet and the main outlet in a condensate treatment system where the flow rate changes. A pressure gauge, a plurality of flowmeters that measure the flow rate of each processing device individually, a relational expression △ between the differential pressure △P between the main inflow path and the main outlet path, and the flow rate Q of one processing device when the limit clogging is reached. P= AQ2 +
A calculation device that stores BQ+C (A, B, and C are constants) is provided, and the allowable minimum flow rate is calculated from the differential pressure between the main inflow passage and the main output passage shown on the differential pressure gauge using the above relational expression. 1. A method for detecting a clogging state of a processing device, characterized in that the presence or absence of a critical clogging state in each processing device is detected by comparing the flow rate with the flow rate appearing on each flowmeter.
JP55178606A 1980-12-17 1980-12-17 Detection of clogging for condensed water treating apparatus Granted JPS57102212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55178606A JPS57102212A (en) 1980-12-17 1980-12-17 Detection of clogging for condensed water treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55178606A JPS57102212A (en) 1980-12-17 1980-12-17 Detection of clogging for condensed water treating apparatus

Publications (2)

Publication Number Publication Date
JPS57102212A JPS57102212A (en) 1982-06-25
JPS6323811B2 true JPS6323811B2 (en) 1988-05-18

Family

ID=16051387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55178606A Granted JPS57102212A (en) 1980-12-17 1980-12-17 Detection of clogging for condensed water treating apparatus

Country Status (1)

Country Link
JP (1) JPS57102212A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157318A (en) * 1984-12-28 1986-07-17 Ebara Corp Method for detecting filtering function of precoat type filter
DE4119040C2 (en) * 1991-06-10 1997-01-02 Pall Corp Method and device for testing the operating state of filter elements
DE4209519C3 (en) * 1992-03-24 2000-06-15 Pall Corp Method and device for quickly testing the integrity of filter elements
US5576480A (en) * 1992-11-06 1996-11-19 Pall Corporation System and method for testing the integrity of porous elements
CN109626452B (en) * 2018-11-02 2021-09-24 深圳安吉尔饮水产业集团有限公司 Method for determining dosage of filter element active carbon and application thereof

Also Published As

Publication number Publication date
JPS57102212A (en) 1982-06-25

Similar Documents

Publication Publication Date Title
US4727748A (en) Method and apparatus for detecting leaks in a gas pipe line
CN106643987A (en) Fault diagnosis and compensation method for multi-channel ultrasonic gas flow meter
JPS6323811B2 (en)
GB2231669A (en) Flowmeters
CN101324457A (en) Intelligent detection method of steam tiny flow quantity
JP2000249619A (en) Gas leak detection method
JP2787395B2 (en) Steam flow meter
JPS5679230A (en) Leakage detecting method for pipeline
CN220120152U (en) Multichannel high-precision vortex shedding flowmeter
JPH05296860A (en) Measuring apparatus for consumed calory of device using steam
CN221077702U (en) Boiler ash conveying energy consumption monitoring device of thermal power generating unit
JP2787396B2 (en) Steam flow meter
JPH0468519B2 (en)
JPS6384751A (en) Method for detecting clogging of spray nozzle for continuous casting
JPH0774769B2 (en) Gas pipeline leak detection method
JPH0561521B2 (en)
SU1029045A1 (en) Densitometer
JP2684240B2 (en) Productivity control device for steam-using equipment
JPS63241389A (en) Monitor for state of plant
JPS6285820A (en) Flow rate monitoring device for hydraulic power generation system
JPH08303699A (en) Detecting method and device for abnormality of fluid transport piping system
SU765596A1 (en) Arrangement for monitoring tube bursts in steam generators
JPS6395391A (en) Pressurized water type reactor
JPH02302591A (en) Corrosionproof and contamination preventive control device for condenser
CN114857509A (en) Pipe network pipe burst leakage monitoring method and device and platform positioning and verifying method