JPS61106430A - Ceramic die for blow-molding glass article - Google Patents
Ceramic die for blow-molding glass articleInfo
- Publication number
- JPS61106430A JPS61106430A JP59227965A JP22796584A JPS61106430A JP S61106430 A JPS61106430 A JP S61106430A JP 59227965 A JP59227965 A JP 59227965A JP 22796584 A JP22796584 A JP 22796584A JP S61106430 A JPS61106430 A JP S61106430A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- mold
- molding
- water absorption
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B9/00—Blowing glass; Production of hollow glass articles
- C03B9/30—Details of blowing glass; Use of materials for the moulds
- C03B9/48—Use of materials for the moulds
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の分野)
本発明はガラス器のブロー成形用型に関し、詳しくはセ
ラミック焼結体を型材として用い、これに良好な吸水性
能や耐摩耗性を付与することにより、ガラス器製品の品
格を向上させ、型の保守を簡易にし、また型寿命を延長
したガラス器ブロー成形用セラミック型に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a mold for blow molding glassware, and more specifically, the present invention relates to a mold for blow molding glassware, and more specifically, by using a ceramic sintered body as a mold material and imparting good water absorption performance and wear resistance to the mold. , relates to a ceramic mold for blow molding glassware that improves the quality of glassware products, simplifies maintenance of the mold, and extends the life of the mold.
ここでガラス器とは、食卓用ガラス器、ガラス管球、び
んガラス、ガラス装飾品などその形態(フォルム)自身
に一定の1iIiliiを有するガラス製品であり、通
常ブロー成形、プレス成形、遠心成形、鋳込み成形など
を成形工程で使用するものを言う。Here, glassware refers to glass products such as table glassware, glass tubes, bottle glasses, glass ornaments, etc. whose form itself has a certain 1iIillii, and is usually blow molding, press molding, centrifugal molding, etc. Refers to products used in molding processes such as cast molding.
(発明の背景)
従来、吹込み成形あるいは回し吹き成形などいわゆるガ
ラスのブロー成形に使用されているガラス器成形用型と
しては、鋳鉄製の金型の内面にペーストオイルを塗り、
次にコルク粉末を約0.5〜1、O1m厚で付着させた
後、加熱処理によりスポンジケーキ状の炭化層を形成さ
せたものが知られている。この型を用いてガラス器を成
形する場合は、ガラスが型内面に触れないようにして、
得られる製品の表面を平滑にするため、ガラス吹きの度
毎に炭化層に水を含まぜ、型内面とガラスの間に水蒸気
の膜を形成させている。(Background of the Invention) Conventionally, glassware forming molds used for so-called glass blow molding such as blow molding or rotary blow molding are made by applying paste oil to the inner surface of a cast iron mold.
Next, it is known that cork powder is deposited to a thickness of about 0.5 to 1.0 m, and then heated to form a carbonized layer in the form of a sponge cake. When molding glassware using this mold, make sure that the glass does not touch the inside of the mold.
In order to smooth the surface of the resulting product, each time the glass is blown, water is added to the carbonized layer to form a film of water vapor between the inner surface of the mold and the glass.
しかしながら、このような型では炭化層が薄く、またガ
ラス成形を繰返すことにより炭化層が摩耗して薄くなっ
てしまう。したがって、炭化層に含まれる水量も次第に
少なくなる。そのため、成形中水蒸気膜が不足しガラス
成形品の肌にレコード線状の模様、波打ち等を発生させ
製品の品格を低下させる。また品格の低下を防止するた
めには、定期的に炭化層を再形成する必要があるが、そ
の操作は非常に煩わしいものである。However, in such a mold, the carbonized layer is thin, and repeated glass molding causes the carbonized layer to wear out and become thin. Therefore, the amount of water contained in the carbonized layer also gradually decreases. As a result, the water vapor film is insufficient during molding, causing record-like patterns, undulations, etc. on the skin of the glass molded product, degrading the quality of the product. In addition, in order to prevent deterioration of quality, it is necessary to periodically re-form the carbonized layer, but this operation is extremely troublesome.
また、特公昭53−29163号公報には、金型の内面
に石綿、多孔質アルミナ、珪藻土等よりなる断熱層とア
ルミナ粉末やセラミックス粉末等からなる多孔質層を内
張すしたガラス成形用型が開示されている。しかしなが
ら、このような金型では吸水可能な居が薄いため十分な
吸水率が得られないし、構造が複雑なため製造コストが
高いという欠点がある。Furthermore, Japanese Patent Publication No. 53-29163 describes a glass molding mold in which the inner surface of the mold is lined with a heat insulating layer made of asbestos, porous alumina, diatomaceous earth, etc., and a porous layer made of alumina powder, ceramic powder, etc. is disclosed. However, such a mold has the drawbacks that sufficient water absorption cannot be obtained because the water-absorbing layer is thin, and the manufacturing cost is high due to the complicated structure.
(発明の目的)
本発明は、上述の問題点に鑑みてなされたもので、型面
とガラスの間の水蒸気膜の形成を成形中、安定して保ち
ガラス製品の品格の向上を図り、かつ型の保守を簡易化
し、また型寿命を延長するガラス器ブロー成形用型を提
供することを目的とし、回し吹き成形あるいは吹き込み
成形に用いられる。(Object of the Invention) The present invention was made in view of the above-mentioned problems, and aims to maintain stable formation of a water vapor film between the mold surface and glass during molding, and to improve the quality of glass products. The purpose of this invention is to provide a glassware blow molding mold that simplifies mold maintenance and extends the life of the mold, and is used for rotary blow molding or blow molding.
(発明の経緯)
本発明者らは、上記目的を達成するためK、型の内面に
特別な処理をしなくても短時間で水を吸収させることが
可能で、しかも耐摩耗性の優れた型について研究した結
果、型材としてセラミック焼結体を用い、原料粉体を成
形、焼成することにより、°十分な吸水性能および耐摩
耗性を有するガラス成形用型が得られることを見い出し
本発明に到達した。(Background of the Invention) In order to achieve the above object, the present inventors developed a mold that can absorb water in a short period of time without any special treatment on the inner surface of the mold, and has excellent wear resistance. As a result of research on molds, it was discovered that by using a ceramic sintered body as the mold material and molding and firing the raw material powder, a glass molding mold with sufficient water absorption performance and wear resistance can be obtained. Reached.
(発明の構成)
すなわち、本発明は、セラミック原料粉体を成形した後
、焼成することにより、あるいは成形、焼成を同時に行
なうことにより得られる、JISR2205に準拠する
吸水率が8〜41重和%であるガラス成形用型である。(Structure of the Invention) That is, the present invention provides a ceramic raw material powder having a water absorption rate of 8 to 41% by weight according to JISR2205, which is obtained by molding and then firing ceramic raw material powder, or by simultaneously performing molding and firing. This is a mold for glass molding.
本発明において、ガラス成形用型の型材として、セラミ
ック焼結体を用いる。セラミック焼結体の組成としては
、特に制限されないが、好ましくは以下の5グループが
挙げられる。In the present invention, a ceramic sintered body is used as a mold material for a glass molding mold. The composition of the ceramic sintered body is not particularly limited, but preferably includes the following five groups.
(■グループ)
A J 20370−999重量%およびZrO20〜
30重沿%、RO0〜20重量%、好ましくは0〜5重
量%(但し、RはMg、Ca、8a、Zn(1)1種以
上を表わす)、およびS!020〜30重壷%、R’
200〜20重ffi%(但し、R′はK、Na 。(■Group) A J 20370-999% by weight and ZrO20~
and S! 020-30 heavy pot%, R'
200 to 20% by weight (however, R' is K, Na.
liの1種以上を表わす)およびY0〜30重量%(但
し、YはP20S 、820x 、Y203の1種以上
を表わす)を主成分とするセラミック焼結体、
(■グループ)
A−fzC)310〜80重量%、好ましくは25〜8
0重湯%、R00〜25重量%、好ましくは10〜25
重量%(但し、RはMg、Ca 、Ba 、Znの 1
種以上を表わす)、5i0225〜80重量%、好まし
くは25〜55重量%、より好ましくは30〜55重量
%、R’ 200〜53114%(但し、R′はK、
Na 。Ceramic sintered body whose main components are 0 to 30% by weight of ~80% by weight, preferably 25-8
0% heavy water, R00-25% by weight, preferably 10-25
% by weight (where R is 1 of Mg, Ca, Ba, Zn)
5i0225 to 80% by weight, preferably 25 to 55% by weight, more preferably 30 to 55% by weight, R' 200 to 53114% (however, R' is K,
Na.
1−iの1種以上を表わす)、およびY0〜30重量%
(但し、YはP2O5および/またはB2O3を表わす
)を主成分とし、RO+R’ 20が2〜30重量%を
主成分とするセラミック焼結体、(■グループ)
A420310〜10重量%、好ましくは15〜70重
量%、より好ましくは20〜45重量%、RO0〜31
重量%、好ましくは10〜25重量%(但し、RはMg
、Ca 、Ba 、Znの1種以上を表わす)、5iO
z4G〜90重山%、好ましくは20〜80重量%、よ
り好ましくは55〜15重量%、R’ 200〜10重
量%、好ましくは1〜8重量%、より好ましくは3〜6
重量%(但し、R′はK、Na 、Liの1種以上を表
わす)およびY0〜30重量%(但し、YはP2O5お
よび/またはB2O3を表わす)を主成分とし、RO+
R’ 20が5〜47重量%ぐS! 02 +Yが30
〜90重量%であるセラミック焼結体、
(IVグループ)
AJ2035〜30重堡%、RO0〜10重量%(但し
、RはMg、Ca 、8a 、7nの1種以上゛を表わ
す)、5iOz70〜95重ロ%、R’ 200〜2重
M%(但し、R′はK、Na、Liの1種以上を表わす
)を主成分とし、RO+R’ 20が2〜10重量%で
あるセラミック焼結体、(Vグループ)
Si C,Si 3Na 、AJ N、7r 02 の
&’fれか1種ないし3種を70〜99重量%、800
〜31重量%(但し、Rはfvlo 、 Ca 、 B
a 、 Zn ヲ表わす)、5i020〜30重量%、
R′2O0〜2重量%(但し、R′はK、Na、Ltの
1種以上を表わす)およびY0〜301!! 1%(但
し、YはP2O3 、B203.Y203の1種以上を
表わす)を主成分とするセラミック焼結体、また、本発
明に用いるセラミックスにおいては、これら主成分に加
えて、Pb 0.3n 02 。1-i), and Y0 to 30% by weight
(However, Y represents P2O5 and/or B2O3) as a main component, and a ceramic sintered body containing 2 to 30% by weight of RO+R'20 as a main component (Group ■) A420310 to 10% by weight, preferably 15 ~70% by weight, more preferably 20-45% by weight, RO0-31
% by weight, preferably 10-25% by weight (where R is Mg
, Ca, Ba, Zn), 5iO
z4G to 90% by weight, preferably 20 to 80% by weight, more preferably 55 to 15% by weight, R' 200 to 10% by weight, preferably 1 to 8% by weight, more preferably 3 to 6
RO+
R'20 is 5-47% by weight! 02 +Y is 30
~90% by weight ceramic sintered body, (IV group) AJ2035~30% by weight, RO0~10% by weight (however, R represents one or more of Mg, Ca, 8a, 7n), 5iOz70~ Ceramic sintered whose main components are 95% by weight, R' 200 to 2% by weight (where R' represents one or more of K, Na, and Li), and RO+R' 20 is 2 to 10% by weight. (Group V) 70 to 99% by weight of one or three of SiC, Si3Na, AJN, 7r02, 800
~31% by weight (where R is fvlo, Ca, B
a, representing Zn), 5i020 to 30% by weight,
R'2O0-2% by weight (wherein R' represents one or more of K, Na, and Lt) and Y0-301! ! In addition to these main components, a ceramic sintered body containing Pb 0.3n as a main component (where Y represents one or more of P2O3, B203, and Y203) as a main component, and ceramics used in the present invention 02.
Gd 2 C)3. Ce 02 、3r o、 3e
3 N2 。Gd2C)3. Ce 02, 3ro, 3e
3 N2.
5C203等の任意成分またはTl 02 、 Fe
203等の不可避不純物成分が少量含有されていてもよ
い。Optional components such as 5C203 or Tl 02 , Fe
A small amount of unavoidable impurity components such as 203 may be contained.
このような組成を有するセラミック焼結体を得るために
は、造岩鉱物および土壌鉱物を適宜選択することが必要
であり、例えば長石、珪石、タルク、ドロマイト、粘土
等の鉱物およびシャモット等の鉱物仮焼品が適宜選択さ
れる。In order to obtain a ceramic sintered body having such a composition, it is necessary to appropriately select rock-forming minerals and soil minerals, such as minerals such as feldspar, silica, talc, dolomite, clay, and minerals such as chamotte. A calcined product is selected as appropriate.
さらK、本発明のガラス器ブロー成形用型においては、
これらセラミックス原料に加えて高吸水性能を持たせる
ためK、クルミ粉、オガクズ、石炭粉、連通気孔を有す
るスポンジ等を混合することもできる。Further, in the glassware blow molding mold of the present invention,
In addition to these ceramic raw materials, K, walnut powder, sawdust, coal powder, sponge with continuous holes, etc. can be mixed in order to provide high water absorption performance.
このようにして配合された型材は、ロクロ成形、鋳込み
成形、プレス成形等の任意の方法で成形され、次いで焼
成される。焼成温度および焼成時間はセラミックス組成
および配合比によって異なるが、例えば、■グループで
は、1300〜1400℃、1〜2時間保持、■グルー
プでは1100〜1400℃、1〜2時間保持、■グル
ープでは950〜1200℃、1〜2時間保持、IV
クルー 7 r G、t 1250〜1400℃、1〜
2時間保持、■グループでは1400〜1900℃、0
.5〜2時間保持がそれぞれ好ましい範囲である。The mold material blended in this manner is molded by any method such as potter's wheel molding, casting molding, press molding, etc., and then fired. The firing temperature and firing time vary depending on the ceramic composition and blending ratio, but for example, in the ■ group, 1300 to 1400 °C, held for 1 to 2 hours, in the ■ group, 1100 to 1400 °C, held for 1 to 2 hours, in the ■ group, 950 °C ~1200℃, held for 1-2 hours, IV
Crew 7 r G, t 1250~1400℃, 1~
Hold for 2 hours, 1400-1900℃ for ■group, 0
.. The preferable range is 5 to 2 hours.
本発明のガラス器ブロー成形用型の好ましい成形および
焼成方法の一例としては以下の方法が挙げられる。A preferred method for molding and firing the glassware blow molding mold of the present invention includes the following method.
すなわち、第1図に承すような石膏型1および1′より
なる鋳込型の隙間2K、第2図に示すように任意の密度
のスポンジ3を挟む。次K、セラミック原料粉体に媒体
として水を加え粘度500〜1000 cpsの泥漿(
型材原料)4とし、これを第3図に示すように注入パイ
プ5上方から加圧状態で流し込み、圧力を加えてスポン
ジ3の透気孔6内に泥漿4を充填する。一定時間経過復
、泥漿4は石膏型1および1′により水分を奪われ固形
体となり、脱型すると第4図に示すようにスポンジ3を
内部に構成した型となる。このようにして成形された未
焼成の型を乾燥した債、所定温度にて焼成を行ない、ス
ポンジ3を焼失させる。That is, a sponge 3 of arbitrary density as shown in FIG. 2 is sandwiched between a gap 2K of a casting mold made up of plaster molds 1 and 1' as shown in FIG. Next, add water as a medium to the ceramic raw powder to form a slurry with a viscosity of 500 to 1000 cps (
The mold material raw material) 4 is poured under pressure from above the injection pipe 5 as shown in FIG. 3, and the slurry 4 is filled into the air holes 6 of the sponge 3 by applying pressure. After a certain period of time has elapsed, the slurry 4 is dehydrated by the plaster molds 1 and 1' and becomes a solid body, and when removed from the mold, it becomes a mold having a sponge 3 inside as shown in FIG. The thus formed unfired mold is dried and fired at a predetermined temperature to burn out the sponge 3.
このようにして得られた型7は第5図に示すようK、多
孔質素材の内部にスポンジ3の焼失によりざらに連通気
孔8が構成される。この型7は、多孔質素材により速や
かに内部まで水の浸透が可能となり、また内部が連通気
孔8によって構成されているため、型7の外側から水を
通すことも可能であり、吸水率の大小に関係なく、任意
の水沿を型7内に簡単に供給することができる。As shown in FIG. 5, the mold 7 thus obtained is made of a porous material with communicating holes 8 formed therein by the burnout of the sponge 3. This mold 7 is made of a porous material that allows water to quickly penetrate into the interior, and since the interior is composed of communicating holes 8, it is also possible for water to pass through from the outside of the mold 7, reducing the water absorption rate. Any water feature, regardless of size, can be easily supplied into the mold 7.
本発明のガラス成形用型は、JISR2205に準拠す
る吸水率が8〜41!!! 19%、瞬間吸水率4〜2
0重量%、摩耗量が70 o+g以下であることが必要
である。なお、摩耗[100mgはJIS A145
2で規定する耐摩耗性試験における80〜90mgの摩
耗量にほぼ相当する。また、吸水率と瞬間吸水率はほぼ
比例関係にある。ここでいう瞬間吸水率と摩耗量は以下
の試験法により測定される。The glass molding mold of the present invention has a water absorption rate of 8 to 41 according to JISR2205! ! ! 19%, instantaneous water absorption rate 4-2
It is necessary that the amount of wear is 0% by weight and the amount of wear is 70 o+g or less. In addition, wear [100mg is JIS A145
This approximately corresponds to a wear amount of 80 to 90 mg in the wear resistance test specified in 2. Further, the water absorption rate and the instantaneous water absorption rate are almost proportional to each other. The instantaneous water absorption rate and the amount of wear mentioned here are measured by the following test method.
先ず、瞬間吸水率は140x 100x7 mm+の
板状の試料を常温(25℃)、常圧下で3秒間水中に浸
して吸水した重量を測定し、以下の式より計桿した。First, the instantaneous water absorption rate was calculated by immersing a plate-shaped sample of 140 x 100 x 7 mm+ in water for 3 seconds at room temperature (25° C.) and under normal pressure, measuring the weight of water absorbed, and calculating it using the following formula.
瞬間吸水率(i1m%)−
100(,3水に”した後の重量−重量)(乾燥重量)
また、摩耗量は100X 70X 7 IIの板状とし
た試料を45°に傾斜して固定し1.試料の真上100
0■の位置から、漏斗に入れた合成ムライト粒(2〜3
mm) 3Kgを誘導管を通して試料の上に落下させ
、試料のm1tffi減を測定し一〇単位で示した。Instantaneous water absorption rate (i1m%) - 100 (, 3 Weight after soaking in water - Weight) (Dry weight) Also, the amount of wear is 100X 70X 7 A plate-shaped sample of II was fixed at an angle of 45°. 1. Directly above the sample 100
From the 0 ■ position, add synthetic mullite grains (2 to 3
mm) was dropped onto the sample through the guide tube, and the decrease in m1tffi of the sample was measured and expressed in units of 10.
本発明において、ガラス成形用型の瞬間吸水率が4重量
%未満であったり、吸水率が8重量%未満だと保水量が
少なく、得られるガラス製品の肌にレコード線状の模様
、波打ち等の発生が見られ、また瞬間吸水率が20重量
%を越えたり、吸水率が41重φ%を越えると型内に構
成される気孔が多過ぎるか、気孔径が大き過ぎて耐摩耗
性が悪くなる。In the present invention, if the instantaneous water absorption rate of the glass molding mold is less than 4% by weight, or if the water absorption rate is less than 8% by weight, the amount of water retained will be small, and the skin of the resulting glass product will have record-like patterns, undulations, etc. Also, if the instantaneous water absorption rate exceeds 20% by weight or the water absorption rate exceeds 41% by weight, there are too many pores formed in the mold, or the pore diameter is too large, resulting in poor wear resistance. Deteriorate.
また、摩耗量が70 mgを越えると型内面の摩耗度が
大きいため耐久性が悪く、また摩耗した型材がガラス表
面に付着して傷の発生原因となる。Furthermore, if the amount of wear exceeds 70 mg, the inner surface of the mold is abraded to a large degree, resulting in poor durability, and the worn mold material adheres to the glass surface, causing scratches.
このようにセラミックスを成形、焼成して得られ、かつ
上記した性状を有する本発明のガラス成形用型は、水蒸
気を逃がす割れ目を型に一般けても、金属製の型に比べ
て肌がきれいなガラス製品が得られる。また、型の垂直
方向に縦断する割れ目を設けることによって、型そのも
のの亀裂または割 ゛れを防止することができ、型
寿命をさらに延長する。The glass molding mold of the present invention, which is obtained by molding and firing ceramics and has the properties described above, has a cleaner skin than a metal mold, even if the mold generally has cracks that allow water vapor to escape. Glass products are obtained. Furthermore, by providing a vertical crack in the mold, it is possible to prevent the mold itself from cracking or splitting, further extending the life of the mold.
以下、本発明を実施例および比較例に基づいて詳細に説
明するが、本発明はこれらによって制限されるものでは
ない。Hereinafter, the present invention will be explained in detail based on Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1〜2)
セラミックス(ニゲループのセラミック焼結体組成)等
の型材原料粉体を第1表に示す化学組成になるよう所定
の割合で配合し、ボールミルを使用して粒度が8μm以
下のものが60〜700〜70重量なるように湿式微粉
砕した。その後、フィルタープレスにより脱水処理、つ
いでスクリュ一式混線機により真空混線を行なって成形
用の坏土とし、常法によりロクロ成形により未焼成の型
を成形した。さらK、第1表に示す温度にて焼成を行な
い、ガラス成形用型を製造した。得られた型の吸水率、
摩耗量(耐摩耗性測定値)、瞬間吸水率および見掛気孔
率を測定し、その結果を第1表に示した。(Examples 1 and 2) Raw material powders for mold materials such as ceramics (ceramic sintered body composition of Nigeloop) were mixed in a predetermined ratio so as to have the chemical composition shown in Table 1, and the particle size was 8 μm or less using a ball mill. It was wet-pulverized to a weight of 60-700-70%. Thereafter, the mixture was dehydrated using a filter press, and then vacuum mixed using a screw mixer to obtain a molding clay, which was then molded into an unfired mold by potter's wheel molding in a conventional manner. Further, firing was performed at the temperatures shown in Table 1 to produce a glass molding mold. The water absorption rate of the mold obtained,
The amount of wear (measured value of wear resistance), instantaneous water absorption rate, and apparent porosity were measured, and the results are shown in Table 1.
ここにおいて、摩耗量および瞬間吸水率は前述の方法に
従って行ない、見掛気孔率はJIS R2205に準
拠して測定した。Here, the amount of wear and instantaneous water absorption were measured according to the method described above, and the apparent porosity was measured according to JIS R2205.
さらK、このようにして得られた型を回し吹き成形に使
用してガラス器製品を製造し、得られたガラス製品の肌
の状態および型寿命を第1表に示した。なお、これらの
評価は以下に示す4段階で評価した。Further, the mold thus obtained was used for rotary blow molding to produce glassware products, and the skin condition and mold life of the resulting glassware are shown in Table 1. In addition, these evaluations were evaluated in the four stages shown below.
得られたガラス製品の肌の状態の評価
A・・・レコード線模様、波打ちが全(なく、非常に良
好。Evaluation of the skin condition of the obtained glass product: A: Very good, with no record line patterns or waving.
B・・・レコード線模様、波打ちなく、良好。B...Record line pattern, no waving, good condition.
C・・・レコード線模様、波打ちが多少発生し不良。C: Record line pattern and some waving occur, which is defective.
D・・・レコード線模様、波打ちが多く発生し非常に不
良。D...Very poor record with line patterns and a lot of waving.
型寿命の評価 A・・・寿命が非常に長い。Evaluation of mold life A: It has a very long lifespan.
B・・・寿命が長い。B...Long lifespan.
C・・・寿命が短い。C...Short lifespan.
D・・・寿命が非常に短い。D: Very short lifespan.
第1表に示されるようK、実施例1〜2で得られた型は
いずれも吸水率および摩耗量が本発明で要求される性状
の範囲内であり、得られたガラス製品の肌の状態や型寿
命も十分に満足できるものであった。As shown in Table 1, the molds obtained in Examples 1 and 2 all had water absorption rates and abrasion levels within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also fully satisfactory.
(比較例1および参考例1)
焼成温度を変えた以外は、実施例1および2と同様にし
て型を製造した。これらの型の吸水率等の性状を実施例
1および2と同様に測定して第1表に示すと共K、得ら
れた型を回し吹き成形に使用してガラス、製品を製造し
、得られたガラス製品の肌の状態と型寿命を実施例1お
よび2と同様に測定し、結果を第1表に示した。(Comparative Example 1 and Reference Example 1) Molds were manufactured in the same manner as in Examples 1 and 2, except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Examples 1 and 2 and are shown in Table 1. The skin condition and mold life of the glass products were measured in the same manner as in Examples 1 and 2, and the results are shown in Table 1.
比較例1および参考例1で得られた型は吸水率および摩
耗量のいずれかまたは両方が本発明で要求される性状の
範囲外であり、得られたガラス製品の肌の状態や型寿命
も満足できるものではなかった。The molds obtained in Comparative Example 1 and Reference Example 1 had water absorption and/or abrasion that were outside the range of properties required by the present invention, and the skin condition and mold life of the resulting glass products were also poor. It wasn't satisfying.
この結果から明らかなようK、前記し−たニゲループの
範囲のセラミックス組成では、焼成温度は、1300〜
1400℃の範囲が好ましいことが判った。As is clear from this result, for ceramic compositions in the above-mentioned Niger loop range, the firing temperature is 1300~1300~
It has been found that a range of 1400°C is preferable.
(実施例3〜8)
セラミックス(グループ■のセラミック焼結体組成)等
の型材原料粉体を第1表に示す化学組成になるよう所定
の割合で配合し、ボールミルを使用して粒度が8μ■以
下のものが60〜10重重%となるように湿式、微粉砕
した。その後、フィルタープレスにより脱水処理、つい
でスクリュ一式混線機により真空混線を行なって成形用
の坏土とし、常法によりロクロ成形により未焼成の型を
成形した。さらK、第1表に示す温度にて焼成を行ない
ガラス成形用型を製造し、得られた型の吸水率、摩耗m
、瞬間吸水率および見掛気孔率を実施例1と同様に測定
し、結果を第1表に示した。(Examples 3 to 8) Raw material powders for mold materials such as ceramics (ceramic sintered body composition of group ■) were mixed in a predetermined ratio so as to have the chemical composition shown in Table 1, and a particle size of 8μ was obtained using a ball mill. (2) The following materials were wet-pulverized to a concentration of 60 to 10% by weight. Thereafter, the mixture was dehydrated using a filter press, and then vacuum mixed using a screw mixer to obtain a molding clay, which was then molded into an unfired mold by potter's wheel molding in a conventional manner. Furthermore, a mold for glass molding was produced by firing at the temperature shown in Table 1, and the water absorption rate and wear m of the mold obtained were determined.
, instantaneous water absorption and apparent porosity were measured in the same manner as in Example 1, and the results are shown in Table 1.
また、得られた型を回し吹き成形に使用してガラス器製
品を製造し、得られたガラス製品の肌の状態と型寿命を
実施例1と同様に第1表に示した。Further, the obtained mold was used for rotary blow molding to produce glassware products, and the skin condition and mold life of the obtained glassware are shown in Table 1 as in Example 1.
第1表に示されるようK、実施例3〜8で得られた型は
いずれも吸水率および摩耗量が本発明で要求される性状
の範囲内であり、得られたガラス製品の肌の状態や型寿
命も十分に満足できるものであった。As shown in Table 1, the molds obtained in Examples 3 to 8 all had water absorption rates and wear amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also fully satisfactory.
(参考例2および比較例2)
焼成温度を代えた以外は、実施例3〜8と同様にしてガ
ラス成形用型を製造した。これらの型の吸水率等の性状
を実施例1と同様に測定して第1表に示すと共K、得ら
れた型を回し吹き成形に使用してガラス製品を製造し、
得られたガラス製品の肌の状態と型寿命を実施例1と同
様に測定し、結果を第1表に示した。(Reference Example 2 and Comparative Example 2) Glass molding molds were manufactured in the same manner as Examples 3 to 8 except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Example 1 and are shown in Table 1.The molds obtained were used for rotary blow molding to produce glass products,
The skin condition and mold life of the obtained glass products were measured in the same manner as in Example 1, and the results are shown in Table 1.
参考例2および比較例2で得ら−れた型は吸水率および
摩耗量のいずれがまたは両方が本発明で要求される性状
の範囲外であり、得られたガラス製品の肌の状態や型寿
命も満足できるものではなかった。The molds obtained in Reference Example 2 and Comparative Example 2 had either or both of the water absorption rate and the amount of abrasion outside the range of properties required by the present invention, and the skin condition and mold of the obtained glass products The lifespan was also not satisfactory.
この結果から明らかなようK、前記した■グループの範
囲のセラミックス組成では、焼成温度は1ioo〜14
00℃の範囲が好ましいことが判った。As is clear from this result, for ceramic compositions in the range of K and the above-mentioned group (2), the firing temperature is 1iooo to 14
It has been found that a range of 00°C is preferable.
(実施例9〜13)
セラミックス(■グループのセラミック焼結体組成)等
の型材原料粉体を第1表に示す化学組成になるよう所定
の割合で配合し、ボールミルを使用して粒度が8μIl
l以下のものが80−70垂m%となるように湿式微粉
砕した。その後、フィルタープレスにより脱水処理、次
にスクリュ一式混線機により真空混線を行なって成形用
の坏土とし、常法によりロクロ成形により中間製品に成
形した。(Examples 9 to 13) Raw material powders for mold materials such as ceramics (ceramic sintered body composition of group ■) were mixed in a predetermined ratio to have the chemical composition shown in Table 1, and a particle size of 8μIl was prepared using a ball mill.
Wet pulverization was carried out so that the content of 1 or less particles was 80-70 m%. Thereafter, the mixture was dehydrated using a filter press, then vacuum mixed using a screw mixer to obtain a molding clay, which was then molded into an intermediate product by potter's wheel molding in a conventional manner.
さらK、第1表に示す濃度にて焼成を行ないガラス成形
用型を製造し、得られた型の吸水率、摩耗m、瞬間吸水
率および見掛気孔率を実施例1と同様に測定し、結果を
第1表に示した。Furthermore, a mold for glass molding was produced by firing at the concentrations shown in Table 1, and the water absorption rate, abrasion m, instantaneous water absorption rate, and apparent porosity of the obtained mold were measured in the same manner as in Example 1. The results are shown in Table 1.
また、得られた型を回し吹き成形に使用してガラス製品
を製造し、得られたガラス製品の肌の状態と型寿命を実
施例1と同様に測定し、結果をそれぞれ第1表に示した
。In addition, the obtained mold was used for rotary blow molding to produce glass products, and the skin condition and mold life of the obtained glass products were measured in the same manner as in Example 1. The results are shown in Table 1. Ta.
第7表に示されるようK、実施例7〜9で得られた型は
いずれも吸水率および摩耗量が本発明の要求される性状
の範囲内であり、得られたガラス製品の肌の状態や型寿
命も十分に満足できるものであった。As shown in Table 7, the molds obtained in Examples 7 to 9 all had water absorption rates and abrasion amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also fully satisfactory.
(比較IN3および参考例3〜5)
焼成温度を変えた以外は、実施例9〜13と同様にして
型を製造した。これらの型の吸水率等の性状を実施例1
とJBJl!に測定して第1表に示ずと共K、得られた
型を回し吹き成形に使用してガラス器製品を製造し、得
られたガラス製品の肌の状態と型寿命を実施例1と同様
に測定し、結果を第1表に示した。(Comparative IN3 and Reference Examples 3 to 5) Molds were manufactured in the same manner as Examples 9 to 13, except that the firing temperature was changed. The properties such as water absorption rate of these molds are shown in Example 1.
and JBJl! The obtained mold was used for rotary blow molding to produce glassware products, and the skin condition and mold life of the obtained glass products were measured as in Example 1. Measurements were made in the same manner, and the results are shown in Table 1.
比較例3および参考例3〜5の型は吸水率および摩耗量
のいずれかまたは両方が本発明で要求される性状の範囲
外であり、得られたガラス製品の肌の状態や型寿命も満
足できるものではなかった。The molds of Comparative Example 3 and Reference Examples 3 to 5 had either or both of the water absorption rate and the amount of wear outside the range of properties required by the present invention, and the skin condition and mold life of the obtained glass products were also satisfactory. It wasn't possible.
この結果から明“らかなようK、前記した■グループの
範囲のセラミックス組成では、焼成温度は950〜12
00℃の範囲が好ましいことが判った。From this result, it is clear that for ceramic compositions in the range of K, the above-mentioned group 1, the firing temperature is 950 to 12
It has been found that a range of 00°C is preferable.
(実施例14〜15)
セラミックス(■グループのセラミック焼結体組成)等
の型材原料粉体を第1表に示す化学組成になるよう所定
の割合で配合し、ランキャスター(商品名)粉体混合機
(マラー型混合器のリボンまたはパドルが水平回転し、
かつ容器自体も水平回転するもの)にて水を5〜7重量
%加えて半湿式混合を行ないプレス成形用坏土とし、プ
レス成形により中間製品に成形した。さらに第1表に示
す温度にて焼成を行ないガラス器プロー成形用型を製造
し、得られた型の吸水率、摩耗量、瞬間吸水率および見
掛気孔率を実施例1と同様に測定し、結果を第1表に示
した。(Examples 14 to 15) Raw material powders for mold materials such as ceramics (ceramic sintered body composition of group ■) were mixed in a predetermined ratio to have the chemical composition shown in Table 1, and Lancaster (trade name) powder was prepared. Mixer (Muller type mixer ribbon or paddle rotates horizontally,
5 to 7% by weight of water was added in a container (which also rotates horizontally) and mixed in a semi-wet manner to obtain a press-molding clay, which was then press-molded into an intermediate product. Furthermore, a glassware blow molding mold was manufactured by firing at the temperature shown in Table 1, and the water absorption rate, wear amount, instantaneous water absorption rate, and apparent porosity of the mold obtained were measured in the same manner as in Example 1. The results are shown in Table 1.
また得られた型を回し吹き成形に使用してガラス製品を
製造し、得られたガラス製品の肌の状態と型寿命を実施
例1と同様に測定し、結果をそれぞれ第1表に示した。In addition, the obtained mold was used for rotary blow molding to produce glass products, and the skin condition and mold life of the obtained glass products were measured in the same manner as in Example 1, and the results are shown in Table 1. .
第1表に示されるように実施例14および15で得られ
た型はいずれも吸水率および摩耗量が本発明の要求され
る性状の範囲内であり、得られたガラス器製品の肌の状
態ヤ型寿命も十分に満足できるものであった。As shown in Table 1, the water absorption rate and amount of abrasion of the molds obtained in Examples 14 and 15 are within the range of properties required by the present invention, and the skin condition of the obtained glassware products is The mold life was also fully satisfactory.
(参考例6および比較例4)
焼成温度を変えた以外は、実施例15と同様にして型を
製造した。これらの型の吸水率等の性状を実施例1と同
様に測定して第1表に示すと共に得られた型を回し吹き
成形に使用してガラス製品を製造し、得られたガラス器
製品の肌の状態と型寿命を実施例1と同様に測定し、結
果を第1表に示した。(Reference Example 6 and Comparative Example 4) A mold was manufactured in the same manner as in Example 15 except that the firing temperature was changed. The water absorption rate and other properties of these molds were measured in the same manner as in Example 1 and are shown in Table 1, and the molds obtained were used in rotary blow molding to manufacture glass products, and the resulting glassware products were The skin condition and mold life were measured in the same manner as in Example 1, and the results are shown in Table 1.
この結果から明らかなように前記した■グループの範囲
のセラミックス組成では焼成温度は1250〜1400
℃の範囲が好ましいことが判った。As is clear from this result, the firing temperature is 1250 to 1400 for ceramic compositions in the range of group 1 mentioned above.
It has been found that a range of .degree. C. is preferred.
(実施例16〜18)
実施例2、実施例6および実施例12と同様の組成およ
び配合比の型材原料粉体を用い、第1図に示すような石
膏型1および1′よりなる鋳込型の隙間2K、第2図に
示すように任意の密度のスポンジ3を挟み、次にセラミ
ックス等の前記型材原料を粘度500〜1000 cp
s の泥漿4とし、これを第3図に示すようにバイブ
5に上方より加圧状態で流し込み、圧力を加えてスポン
ジ゛3の運気孔6内に泥漿4を充填した。40〜90分
後、泥漿4は石膏型1および1′により水分を奪われ固
形体となり脱型すると第4図に示すようにスポンジ3を
内部に構成した型7Aとなった。このようにして成形さ
れた型を乾燥した後、第1表に示す温度で焼成を行ない
、スポンジ3を焼失させ、ガラス器プロー成形用セラミ
ック型7を製造した。(Examples 16 to 18) Using mold material raw material powder with the same composition and blending ratio as in Examples 2, 6, and 12, casting was performed using plaster molds 1 and 1' as shown in Fig. 1. A sponge 3 of arbitrary density is sandwiched between the molds with a gap of 2K as shown in FIG.
As shown in FIG. 3, this slurry 4 was poured into the vibrator 5 from above under pressure, and pressure was applied to fill the air transport hole 6 of the sponge 3 with the slurry 4. After 40 to 90 minutes, the slurry 4 was dehydrated by the plaster molds 1 and 1' and turned into a solid body. When the mold was removed, a mold 7A having a sponge 3 inside was formed as shown in FIG. After drying the mold thus formed, it was fired at the temperature shown in Table 1 to burn out the sponge 3 and produce a ceramic mold 7 for glassware blow molding.
得られた型の吸水率、摩耗量、瞬間吸水率および見掛気
孔率を実施例1と同様に測定し、結果を第1表に示した
。The water absorption rate, wear amount, instantaneous water absorption rate, and apparent porosity of the mold obtained were measured in the same manner as in Example 1, and the results are shown in Table 1.
また、得られた型を回し吹き成形に使用してガラス製品
を製造し、得られたガラス製品の肌の状態と型寿命を実
施例1と同様に測定し、第1表に示した。Further, the obtained mold was used for rotary blow molding to produce a glass product, and the skin condition and mold life of the obtained glass product were measured in the same manner as in Example 1, and are shown in Table 1.
第1表に示されるようK、実施例16〜18で得られた
型はいずれも吸水率および摩耗量が本発明で要求される
性状の範囲内であり、得られたガラス製品の肌の状態や
型寿命も十分に満足できるものであった。As shown in Table 1, the molds obtained in Examples 16 to 18 all had water absorption rates and abrasion amounts within the range of properties required by the present invention, and the skin condition of the obtained glass products. The mold life and mold life were also fully satisfactory.
また、これらの型は第5図に示すようK、多孔質素材の
内部にスポンジの焼失によりさらに連通気孔8が構成さ
れており、より速やかに内部まで水の浸透が可能となっ
た。さらK、これらの型は内部が連通気孔8によって構
成されているため、型の外側から水を通すことも可能で
あり、吸水率の大小に関係なく、任意の水量を型内に簡
単に供給することが可能であった。In addition, as shown in FIG. 5, these molds have additional communication holes 8 formed inside the porous material by burning out the sponge, allowing water to penetrate into the inside more quickly. Moreover, since these molds have internal ventilation holes 8, it is possible to pass water from the outside of the mold, and any amount of water can be easily supplied into the mold regardless of the water absorption rate. It was possible to do so.
(発明の効果)
以上説明したようK、セラミックス原料粉体を成形、焼
成して得られ、かつ上記した性状を有する本発明のガラ
ス器プロー成形用セラミック型は、型の肉厚を任意に選
択できるために十分な吸水性能が得られることから、ガ
ラス器プロー成形の際に型とガラスの間に十分な水蒸気
を供給することができ、この結果ガラス器製品の肌にレ
コード線状の模様、波打ち等を発生させず製品の品格を
大幅に向上させることができる。なお、水蒸気が過、剰
の場合は水蒸気を逃がす割れ目を型に設けても、金属製
の型に比べて肌がきれいなガラス製品が得られる。(Effects of the Invention) As explained above, the ceramic mold for glassware blow molding of the present invention, which is obtained by molding and firing the K ceramic raw material powder and has the above-mentioned properties, has a wall thickness that can be selected arbitrarily. Because sufficient water absorption performance is obtained, sufficient water vapor can be supplied between the mold and the glass during blow molding of glassware, resulting in record-like linear patterns on the skin of glassware. The quality of the product can be greatly improved without causing waving or the like. Note that if there is excess or excess water vapor, even if the mold is provided with cracks to allow the water vapor to escape, a glass product with a cleaner surface than a metal mold can be obtained.
また、従来必要であった型内面の処理が不要となること
から、型の保守が簡易に行なえ、しかも耐摩耗性に優れ
ているため、型寿命を大幅に延長することができる。Furthermore, since the treatment of the inner surface of the mold, which was conventionally required, is no longer necessary, maintenance of the mold can be easily performed, and since the mold has excellent wear resistance, the life of the mold can be significantly extended.
ざらK、本発明のガラス器ブロー成形用セラミック型に
おいては、型の垂直方向に縦断する割れ目を設けること
によって、型そのものの亀裂または割れを防止すること
ができ、さらに型寿命を延長することができる。Zara K. In the ceramic mold for glassware blow molding of the present invention, by providing a vertical crack in the mold, it is possible to prevent the mold itself from cracking or cracking, and furthermore, the life of the mold can be extended. can.
第1図〜第5図は、本発明のガラス器ブロー成形用型を
製造する際の好ましい成形方法を示す各工程図および焼
成後のセラミック型の断面図である。
1.1′・・・石膏型、2・・・鋳込型の1IJi間、
3・・・スポンジ、4・・・泥漿、5・・・パイプ、6
・・・運気孔、7A・・・未焼成セラミツク型、7・・
・セラミック型、8:連通気孔。FIGS. 1 to 5 are process diagrams showing a preferable molding method for manufacturing the glassware blow molding mold of the present invention, and a sectional view of the ceramic mold after firing. 1.1'...Gypsum mold, 2...1IJi of the casting mold,
3...Sponge, 4...Sludge, 5...Pipe, 6
...Lucky hole, 7A...Unfired ceramic type, 7...
・Ceramic type, 8: Continuous ventilation holes.
Claims (1)
JIS R2205に準拠する吸水率が8〜41重量%
であるセラミック焼結体からなるガラス器ブロー成形用
セラミック型。 2、前記セラミック焼結体の組成がX5〜99重量%(
但し、XはAl_2O_3、SiC、Si_3N_4、
AlN、ZrO_2のいずれか1種ないし3種を表わす
)、RO0〜37重量%(但し、RはMg、Ca、Ba
、Znの1種以上を表わす)、SiO_20〜90重量
%、R′_2O0〜10重量%(但し、R′はK、Na
、Liの1種以上を表わす)、およびY0〜30重量%
(但し、YはP_2O_5、B_2O_3、Y_2O_
3の1種以上を表わす)を主成分とする前記特許請求の
範囲第1項記載のガラス器ブロー成形用セラミック型。 3、前記セラミック焼結体の組成がAl_2O_310
〜99重量%およびZrO_20〜30重量%、RO0
〜20重量%(但し、RはMg、Ca、Ba、Znの1
種以上を表わす)、SiO_20〜30重量%、R′_
2O0〜2重量%(但し、R′はK、Na、Liの1種
以上を表わす)、およびY0〜30重量%(但し、Yは
P_2O_5、B_2O_3、Y_2O_3の1種以上
を表わす)を主成分とする前記特許請求の範囲第2項記
載のガラス器ブロー成形用セラミック型。 4、前記セラミック焼結体の組成がAl_2O_310
〜80重量%、RO0〜25重量%(但し、RはMg、
Ca、Ba、Zn、の1種以上を表わす)、SiO_2
25〜80重量%およびR′_2O0〜5重量%(但し
、R′はK、Na、Liの1種以上を表わす)およびY
0〜30重量%(但し、YはP_2O_5および/また
はB_2O_3を表わす)を主成分とし、RO+R′_
2Oが2〜30重量%である前記特許請求の範囲第2項
記載のガラス器ブロー成形用セラミック型。 5、前記セラミック焼結体の組成がAl_2O_310
〜70重量%、RO0〜37重量%(但し、RはMg、
Ca、Ba、Znの1種以上を表わす)、SiO_22
0〜90重量%、R′_2O0〜10重量%(但し、R
′はK、Na、Liの1種以上を表わす)およびY0〜
30重量%(但し、YはP_2O_5および/またはB
_2O_3を表わす)を主成分とし、RO+R′_2O
が5〜47重量%で、SiO_2+Yが30〜90重量
%である前記特許請求の範囲第2項記載のガラス器ブロ
ー成形用セラミック型。 6、前記セラミック焼結体の組成がAl_2O_35〜
30重量%、RO0〜10重量%(但し、RはMg、C
a、Ba、Znの1種以上を表わす)、SiO_270
〜95重量%およびR′_2O0〜2重量%(但し、R
′はK、Na、Liの1種以上を表わす)を主成分とし
、RO+R′_2Oが2〜10重量%である前記特許請
求の範囲第2項記載のガラス器ブロー成形用セラミック
型。[Claims] 1. Obtained by molding and firing ceramic raw material powder,
Water absorption rate according to JIS R2205 is 8-41% by weight
A ceramic mold for glassware blow molding made of a ceramic sintered body. 2. The composition of the ceramic sintered body is X5 to 99% by weight (
However, X is Al_2O_3, SiC, Si_3N_4,
(represents any one to three of AlN, ZrO_2), RO0 to 37% by weight (however, R represents Mg, Ca, Ba
, Zn), SiO_20-90% by weight, R'_2O0-10% by weight (however, R' is K, Na
, represents one or more types of Li), and Y0 to 30% by weight
(However, Y is P_2O_5, B_2O_3, Y_2O_
3. The ceramic mold for blow molding glassware according to claim 1, which comprises as a main component one or more of the following. 3. The composition of the ceramic sintered body is Al_2O_310
~99 wt% and ZrO_20-30 wt%, RO0
~20% by weight (where R is 1 of Mg, Ca, Ba, Zn)
species), SiO_20-30% by weight, R'_
The main components are 0 to 2% by weight of 2O (however, R' represents one or more of K, Na, and Li) and 0 to 30% by weight of Y (however, Y represents one or more of P_2O_5, B_2O_3, and Y_2O_3). A ceramic mold for blow molding glassware according to claim 2. 4. The composition of the ceramic sintered body is Al_2O_310
~80% by weight, RO0~25% by weight (where R is Mg,
represents one or more of Ca, Ba, Zn), SiO_2
25 to 80% by weight and R'_2O0 to 5% by weight (wherein R' represents one or more of K, Na, and Li) and Y
The main component is 0 to 30% by weight (however, Y represents P_2O_5 and/or B_2O_3), and RO+R'_
A ceramic mold for blow molding a glassware according to claim 2, wherein the 2O content is 2 to 30% by weight. 5. The composition of the ceramic sintered body is Al_2O_310
~70% by weight, RO0~37% by weight (However, R is Mg,
represents one or more of Ca, Ba, and Zn), SiO_22
0 to 90% by weight, R'_2O0 to 10% by weight (however, R
'represents one or more of K, Na, and Li) and Y0~
30% by weight (however, Y is P_2O_5 and/or B
_2O_3) is the main component, and RO+R'_2O
The ceramic mold for blow molding glassware according to claim 2, wherein the amount of SiO_2+Y is 5 to 47% by weight and 30 to 90% by weight. 6. The composition of the ceramic sintered body is Al_2O_35~
30% by weight, RO0-10% by weight (where R is Mg, C
a, Ba, and Zn), SiO_270
~95% by weight and R'_2O0~2% by weight (however, R
The ceramic mold for blow molding glassware according to claim 2, wherein RO+R'_2O is 2 to 10% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59227965A JPS61106430A (en) | 1984-10-31 | 1984-10-31 | Ceramic die for blow-molding glass article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59227965A JPS61106430A (en) | 1984-10-31 | 1984-10-31 | Ceramic die for blow-molding glass article |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61106430A true JPS61106430A (en) | 1986-05-24 |
JPH0223485B2 JPH0223485B2 (en) | 1990-05-24 |
Family
ID=16869030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59227965A Granted JPS61106430A (en) | 1984-10-31 | 1984-10-31 | Ceramic die for blow-molding glass article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61106430A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989007093A1 (en) * | 1988-01-27 | 1989-08-10 | The Dow Chemical Company | A self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
US4891344A (en) * | 1985-12-20 | 1990-01-02 | Fujitsu Limited | Low dielectric constant ceramic substrate |
US4919689A (en) * | 1988-01-27 | 1990-04-24 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness |
US5021372A (en) * | 1988-01-27 | 1991-06-04 | The Dow Chemical Company | Method of preparing a self-reinforced silicon nitride ceramic of high fracture toughness |
US5091347A (en) * | 1990-08-15 | 1992-02-25 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic body and a method of preparing the same |
US5098449A (en) * | 1990-08-24 | 1992-03-24 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic with crystalline grain boundary phase, and a method of preparing the same |
US5120328A (en) * | 1988-01-27 | 1992-06-09 | The Dow Chemical Company | Dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering |
JPH04182357A (en) * | 1990-11-16 | 1992-06-29 | Kyocera Corp | Black aluminum nitride sintered body |
US5160508A (en) * | 1988-01-27 | 1992-11-03 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness |
US5312785A (en) * | 1993-05-18 | 1994-05-17 | The Dow Chemical Company | Sintered self-reinforced silicon nitride |
US5407875A (en) * | 1992-03-04 | 1995-04-18 | Vgt Industriekeramik Gmbh | Superduty fireclay refractory brick and methods for its manufacture |
RU2494994C1 (en) * | 2012-04-11 | 2013-10-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of producing alumina ceramic |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855367A (en) * | 1981-09-22 | 1983-04-01 | 株式会社アドバンス | Die for glass manufacture |
-
1984
- 1984-10-31 JP JP59227965A patent/JPS61106430A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855367A (en) * | 1981-09-22 | 1983-04-01 | 株式会社アドバンス | Die for glass manufacture |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4891344A (en) * | 1985-12-20 | 1990-01-02 | Fujitsu Limited | Low dielectric constant ceramic substrate |
US5160508A (en) * | 1988-01-27 | 1992-11-03 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness |
US4883776A (en) * | 1988-01-27 | 1989-11-28 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
US4919689A (en) * | 1988-01-27 | 1990-04-24 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness |
US5021372A (en) * | 1988-01-27 | 1991-06-04 | The Dow Chemical Company | Method of preparing a self-reinforced silicon nitride ceramic of high fracture toughness |
WO1989007093A1 (en) * | 1988-01-27 | 1989-08-10 | The Dow Chemical Company | A self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
US5118645A (en) * | 1988-01-27 | 1992-06-02 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
US5120328A (en) * | 1988-01-27 | 1992-06-09 | The Dow Chemical Company | Dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering |
US5091347A (en) * | 1990-08-15 | 1992-02-25 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic body and a method of preparing the same |
US5098449A (en) * | 1990-08-24 | 1992-03-24 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic with crystalline grain boundary phase, and a method of preparing the same |
JPH04182357A (en) * | 1990-11-16 | 1992-06-29 | Kyocera Corp | Black aluminum nitride sintered body |
US5407875A (en) * | 1992-03-04 | 1995-04-18 | Vgt Industriekeramik Gmbh | Superduty fireclay refractory brick and methods for its manufacture |
US5312785A (en) * | 1993-05-18 | 1994-05-17 | The Dow Chemical Company | Sintered self-reinforced silicon nitride |
RU2494994C1 (en) * | 2012-04-11 | 2013-10-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of producing alumina ceramic |
EA021431B1 (en) * | 2012-04-11 | 2015-06-30 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of producing alumina ceramic |
Also Published As
Publication number | Publication date |
---|---|
JPH0223485B2 (en) | 1990-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61106430A (en) | Ceramic die for blow-molding glass article | |
US3520705A (en) | Non-vitreous ceramic ware made from pseudowollastonite | |
JP3303221B2 (en) | Refractory brick as tin bath brick | |
US6726977B2 (en) | Cordierite honeycomb structure and manufacturing method thereof | |
CN109265175B (en) | A kind of high-strength ceramic product and preparation method thereof | |
US3959002A (en) | Method of manufacturing white furnace boats for firing ceramic articles and novel furnace boats | |
JPH01500426A (en) | Manufacturing method of porous silicon nitride mold for die casting | |
US7452606B2 (en) | Silicon carbide ceramic components having oxide layer | |
US4146670A (en) | Manufacture of ceramic articles | |
EP0051617A1 (en) | Method for the manufacture of phosphatic ceramic bodies. | |
KR910003250B1 (en) | Casting nozzle | |
US3773531A (en) | Dense chrome refractory material | |
JP2000128671A (en) | Glazed ceramic and its production | |
CN115432994B (en) | Fragrance slow-release ceramic plate with multistage pore size structure | |
US2007052A (en) | Porous article of ceramic bonded granular material | |
US4301214A (en) | Low thermal expansion ceramic and process | |
US3585056A (en) | Sintered ceramic bodies of alumina-nepheline syenite compositions | |
Barbieri et al. | Technological and Product Requirements for Fast Firing Glass‐Ceramic Glazes | |
US3423217A (en) | Method of making ceramic shapes | |
RU2286968C1 (en) | Method of manufacturing quartz ceramics products | |
US2332343A (en) | Ceramic material | |
SU1470423A1 (en) | Method of investment-pattern casting | |
US2895840A (en) | Kiln refractory | |
JPH0848561A (en) | Clay parts for molten glass | |
SU933653A1 (en) | Process for making filtering ceramic |