JPS61103543A - Preparation of co conversion catalyst - Google Patents
Preparation of co conversion catalystInfo
- Publication number
- JPS61103543A JPS61103543A JP59223889A JP22388984A JPS61103543A JP S61103543 A JPS61103543 A JP S61103543A JP 59223889 A JP59223889 A JP 59223889A JP 22388984 A JP22388984 A JP 22388984A JP S61103543 A JPS61103543 A JP S61103543A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- drying
- sample
- treatment
- soln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、空気のようなガス中に含まれているCOを
COlに、室温でも高い効率で転換することができるC
O転換触媒を製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a CO that can convert CO contained in a gas such as air into COl with high efficiency even at room temperature.
The present invention relates to a method for producing an O conversion catalyst.
COをCOlに転換するための触媒として、活性炭に白
金を担持させたものが知られている(たとえば特公昭5
7−36014号公報)。この公知のCO転換触媒は、
適当な粒度の活性炭に必要に応じて塩酸洗浄・乾燥など
の前処理を施してから、塩化白金酸(Hz P t C
l、・6H,O)水溶液で処理したのち乾燥し、ついで
KBH,などの水溶液で還元処理し、水洗・乾燥を経て
空気中で高温加熱処理することによって製造さ九ている
。しかしこのような従来の方法で製造されたCO転換触
媒は、CO転換効率が充分でなく、またCO含有ガスの
流速が速くなると転換効率が急激に低下するという欠点
を有している。たとえば、8V5,300hr″″1の
とき出口のCO濃度が20ppmであったものが、10
.600 hr−”では、170pIm以上になるとい
う例がある。As a catalyst for converting CO to COl, a catalyst in which platinum is supported on activated carbon is known (for example,
7-36014). This known CO conversion catalyst is
Activated carbon with an appropriate particle size is pretreated with hydrochloric acid washing and drying as necessary, and then treated with chloroplatinic acid (Hz P t C
It is manufactured by treating with an aqueous solution of KBH, etc., followed by a reduction treatment with an aqueous solution of KBH, etc., washing with water, drying, and heat treatment at high temperature in air. However, CO conversion catalysts manufactured by such conventional methods have the disadvantage that they do not have sufficient CO conversion efficiency, and that the conversion efficiency rapidly decreases as the flow rate of CO-containing gas increases. For example, when the CO concentration at the outlet was 20ppm at 8V5,300hr''1,
.. There is an example of 170 pIm or more for 600 hr-''.
この発明は、従来の方法で製造されたCO転換触媒よシ
も著しく高いCO転換効率を有するCO転換触媒を製造
する方法を提供することを目的としている。It is an object of the present invention to provide a method for producing a CO conversion catalyst that has a significantly higher CO conversion efficiency than CO conversion catalysts produced by conventional methods.
この発明方法によれば、まず、適当な粒度の活性炭に、
必要に応じて塩酸洗浄・乾燥などの前処理を施してから
、H,PtCl、・6H!0水溶液で処理したのち、炭
酸ソーダ(Na、CO,)水溶液で中和するか又は加熱
空気で乾燥し、これをKBH,またはNaBH4水溶液
で還元処理してから乾燥する。次いで、還元処理・乾燥
後の後処理として、過酸化水1i−(HtOt ) K
よる酸化処理を施して、残存する還元剤を分解する。こ
の酸化処理は、還元処理・乾燥後の触媒を、たとえば3
%程度の簸度の過酸化水素水中に入れ、室温で適当時間
振とりすることによって容易に行なうことができる。According to the method of this invention, first, activated carbon of an appropriate particle size is
After performing pretreatment such as hydrochloric acid washing and drying as necessary, H, PtCl, 6H! After treatment with an aqueous solution of 0, neutralized with an aqueous solution of sodium carbonate (Na, CO,) or dried with heated air, this is reduced with an aqueous KBH or NaBH4 solution and then dried. Next, as a post-treatment after reduction treatment and drying, peroxide water 1i-(HtOt)K
The remaining reducing agent is decomposed by oxidation treatment. In this oxidation treatment, the catalyst after reduction treatment and drying is
This can be easily done by placing the sample in a hydrogen peroxide solution with an elutriation level of about 10% and shaking it at room temperature for an appropriate period of time.
酸化処理後に乾燥することによって得られたCO転換触
媒は、実験の結果、酸化処理のかわシに単なる加熱乾燥
処理を施したものと比較してきわめて高いCO転換率を
有していることが確認された。Experiments have confirmed that the CO conversion catalyst obtained by drying after oxidation treatment has an extremely high CO conversion rate compared to that obtained by simply heating and drying the oxidation treatment. It was done.
ただしこのようなCO転換効率の向上効果は、活性炭に
担持されているPt量が所定の値以上である場合に限っ
て得られる。すなわち活性炭に対する白金(pt)の担
持量が約6mg/g・活性炭以下になるような含浸操作
ではCO転換効率の向上はほとんど認められない。好ま
しいPi担持量は約6wq/I・活性炭以上になるよう
な含浸操作である。また酸化処理を過酸化水素による酸
化以外の手段、たとえば空気中での高温加熱処理によっ
て行なってもCO転換効率は向上しない。However, such an effect of improving CO conversion efficiency can be obtained only when the amount of Pt supported on the activated carbon is equal to or higher than a predetermined value. That is, in an impregnation operation in which the amount of platinum (pt) supported on activated carbon is less than about 6 mg/g activated carbon, hardly any improvement in CO conversion efficiency is observed. A preferred impregnation operation is such that the supported amount of Pi is about 6 wq/I on activated carbon or more. Furthermore, even if the oxidation treatment is performed by means other than oxidation using hydrogen peroxide, such as high-temperature heat treatment in air, the CO conversion efficiency will not improve.
実施例 1
活性炭(第1炭素株製の商品名1’−BFGj )30
0yを2tの5チ塩酸中に90℃で1時間浸漬したのち
引き上げ、十分水洗したのち120℃で2時間乾燥する
ことによって前処理を施した。Example 1 Activated carbon (trade name 1'-BFGj manufactured by Daiichi Carbon Co., Ltd.) 30
0y was immersed in 2 tons of 5-thihydrochloric acid at 90° C. for 1 hour, then taken out, thoroughly washed with water, and then dried at 120° C. for 2 hours for pretreatment.
つぎにこの前処理した活性炭を、水1.5tにH,P
tc l、・6H,016,21? (Pt分約6.1
0.9ンを溶解した溶液中に浸漬し、時々振とうしなが
ら90℃に4時間保持した。つぎKこの混合物中に、6
0、FのNa、C’O,を900 ccの水に溶解した
溶液を室温で30分間にわたって攪拌しながら徐々に滴
下し、ついで0℃に冷却してから、IOFのKB H,
を1,5tの水に溶解した溶液を攪拌下で2時間にわた
って徐々に滴下した。ついで固形物を吸引濾過し、10
tの温水で洗浄したのち、120℃ 1で2時間乾燥
した。Next, add this pretreated activated carbon to 1.5 tons of water with H, P
tc l, 6H, 016, 21? (Pt min approx. 6.1
The sample was immersed in a solution containing 0.9 ml of water and kept at 90° C. for 4 hours with occasional shaking. Then K in this mixture, 6
A solution of 0,F Na, C'O, dissolved in 900 cc of water was gradually added dropwise with stirring at room temperature for 30 minutes, then cooled to 0°C, and then IOF's KB H,
A solution prepared by dissolving 1.5 tons of water was gradually added dropwise over 2 hours while stirring. The solid matter was then suction filtered and
After washing with warm water for 2 hours, it was dried at 120° C. for 2 hours.
この触媒をさらに3tの3チ過酸化水素水中に入れ、室
温で1時間振とうし、ついで20℃で2時間乾燥させる
ことによって酸化処理して試料Aを得た。この触媒はP
tを20.3■7El活性炭の割合で含むような含有操
作を経ている。This catalyst was further oxidized by placing it in 3 tons of trihydrogen peroxide solution, shaking it at room temperature for 1 hour, and then drying it at 20° C. for 2 hours to obtain Sample A. This catalyst is P
The activated carbon was subjected to a containing operation such that it contained t at a ratio of 20.3 x 7 El activated carbon.
比較のために、H,Pi(j6・6H10水溶液として
、水1.5tにH,P tC1,・6H,04,x#(
Pt分約1.50J’)を使用した以外は試料人と同じ
条件で得られた試料B(Ptは5.2119/ 、P活
性炭になるような含浸操作である。以下同じ)と、さら
に過酸化水素水による酸化処理を省いた試料C(Ptは
I)、2岬/I活性炭)および試料D(Ptは20.3
119/11活性炭)とを用意した。For comparison, H, P tC1, 6H, 04, x # (
Sample B (Pt content: 5.2119 J') obtained under the same conditions as the sample except that a Pt content of about 1.50 J') was used (Pt content was 5.2119 J', the impregnation operation was performed to obtain P activated carbon; the same applies hereinafter). Sample C (Pt is I) without oxidation treatment with hydrogen oxide water (2 Misaki/I activated carbon) and Sample D (Pt is 20.3
119/11 activated carbon) was prepared.
各試料A、B、C,DKついてそれらの一部をサンプル
としてとシ、触媒活性試験を行ない、CO転換効率を計
測した。触媒活性試験は、図に示す試験装置を用いて行
なわれた。この試験装置において、既知量のCOを含有
する空気がパルプ(Vl)を通してサンプルガスホルダ
ーIK導入され。A catalytic activity test was conducted using a portion of each sample A, B, C, and DK as a sample, and the CO conversion efficiency was measured. The catalyst activity test was conducted using the test apparatus shown in the figure. In this test device, air containing a known amount of CO was introduced through the pulp (Vl) into the sample gas holder IK.
ついでポンプ(P2)の作用で、洗気ビア2およびフロ
ーメータ3を経て触媒部4に供給される。この触媒部4
は、内径17鱈、高さ50■(容積11.3cId)の
もので、その中に被試験試料が充填される。触媒部4を
通過したガスは、その一定量がバルフー(■4)を経て
出口ガス分取容器5内に収容され、ポンプ(P3)の作
用で攪拌しながら一定時間貯えられ、ついでパルプ(v
5)を経てCO分析器に送られてCO含有量が計測され
る。Then, by the action of the pump (P2), the air is supplied to the catalyst section 4 via the wash via 2 and the flow meter 3. This catalyst section 4
has an inner diameter of 17 mm and a height of 50 cm (volume: 11.3 cId), into which the test sample is filled. A certain amount of the gas that has passed through the catalyst section 4 is stored in the outlet gas separation container 5 through the balfu (■4), where it is stored for a certain period of time while being stirred by the action of the pump (P3), and then pulp (v
5) and sent to a CO analyzer to measure the CO content.
本発明にもとづく試料Aの計測結果を下記の第1表に示
す(転換率は99.9%以上)。試料ガスは湿潤空気中
(乾燥空気ではない)に2,360pIllのCOを添
加したもので、触媒部4に室温で試料ガスがSV≠5.
000hr’″lで流された。The measurement results of sample A based on the present invention are shown in Table 1 below (conversion rate is 99.9% or more). The sample gas is humid air (not dry air) with 2,360 pIll of CO added, and the sample gas is supplied to the catalyst section 4 at room temperature so that SV≠5.
It was swept away at 000hr'''l.
第1表
米 流速をS V= I O,000hr’″1に増加
させたたときの値。Table 1 Values when the flow rate is increased to SV=IO,000hr'''1.
また比較例の試料Cについて同様の試験を行なつた結果
によれば(たソし、入口CO濃度は1,590pP)、
同一条件で、開始から1.5分間の平均CO@度は70
0屏(転換率56.0%)であり、6分後には800四
に上昇した。Furthermore, according to the results of a similar test conducted on sample C as a comparative example (inlet CO concentration was 1,590 pP),
Under the same conditions, the average CO @ degree for the first 1.5 minutes was 70
It was 0 folding (conversion rate 56.0%) and rose to 800.4 after 6 minutes.
さらに試料Bでは(入口CO濃度は1,590p)、開
始から2分間の平均CO濃度は510pI)II(転換
率68.01%)、3.5分後では412解であった。Furthermore, in sample B (inlet CO concentration was 1,590 pI), the average CO concentration during the first 2 minutes was 510 pI) II (conversion rate 68.01%), and after 3.5 minutes it was 412 solutions.
更に試料りでは(入口CO濃度はz、250ppm)、
svs、o OOhr”の場合、10分間2卿以下を保
っていたが、SVを10,000 hr−IKすると2
2分後で110P111,32分後で400解に増加し
た。Furthermore, in the sample (inlet CO concentration is z, 250 ppm),
In the case of ``svs, oOOhr'', it was kept below 2 Lord for 10 minutes, but when SV is 10,000 hr-IK, it is 2
110P111 after 2 minutes, increased to 400 after 32 minutes.
なお、その後、SVを5.000 hr−’に減すると
、2P以下になった。Note that after that, when the SV was reduced to 5.000 hr-', it became 2P or less.
試料BのCO転換率が、試料Cとくらべると、時間の経
過とともにやや回復しているのは、過酸化水素水による
酸化処理の効果であると推定されるが、 Ptの担持量
が少ないために(Ptは5.2キ/l活性炭ン、試料A
(Piは20.31Hi/l活性炭)のような高いCO
転換率は有していない。The reason why the CO conversion rate of sample B slightly recovered over time compared to sample C is presumed to be due to the effect of the oxidation treatment with hydrogen peroxide solution, but this is due to the small amount of Pt supported. (Pt is 5.2 k/l activated carbon, sample A
(Pi is 20.31Hi/l activated carbon)
It does not have a conversion rate.
本発明の試料Aと比較例(H!O!酸化処理をしていな
い)の試料りとをくらべると(ptはいずれも20.3
mF/、9活性炭)、8V5,0OOhr−’のときは
いずれも2騨以下であったが、SVを10.000 h
r”−’にすると、試料りでは12分〜22分後で11
0pp* 〜400?に増加している。Comparing sample A of the present invention and sample sample of comparative example (no H!O! oxidation treatment), the pt is 20.3 in both cases.
mF/, 9 activated carbon) and 8V5,000hr-', the values were all below 2, but when the SV was 10.000 h
When set to r''-', the sample becomes 11 after 12 to 22 minutes.
0pp* ~400? is increasing.
これに対して、H,O,酸化処理をほどこした本発明の
試料Aでは、2分後8四、10分′flk80pp*と
、初期には一時的にやや高くなる傾向があるものの、す
ぐに活性を回復して22分後ですでに29Pl以下とな
シ、これを持続している。すなわち、高いSVでもすぐ
れた活性を示している。On the other hand, sample A of the present invention, which was subjected to H, O, and oxidation treatment, had a flk of 84pp* after 2 minutes and 80pp* after 10 minutes, which tended to be a little high temporarily at the beginning, but soon 22 minutes after the activity was recovered, the level was already below 29 Pl, and this level has been maintained. That is, it shows excellent activity even at high SV.
実施例 2
実施例1と同じ条件で前処理した活性炭30.9を、水
100 ccにH,PtC1,・6H,01,0,9(
Pt分約0.38N)を溶解した溶液中に浸漬し、時々
振とうしながら90℃に30分間保持し、ついで120
℃で30分間乾燥した。(Na、CO,に〜
よる中和のかわシの、加熱空気による乾燥処理)つぎに
0.51のN a B H、を200 ccの水に溶解
した溶液中に浸漬して室温で30分間靜装し、吸引濾過
後に水洗したのち、120℃で30分間乾燥した。Example 2 Activated carbon 30.9 pretreated under the same conditions as Example 1 was added to 100 cc of water with H, PtC1,.6H,01,0,9(
Pt (approximately 0.38N) was immersed in a solution, kept at 90°C for 30 minutes with occasional shaking, and then heated to 120°C.
It was dried at ℃ for 30 minutes. (Drying treatment with heated air of neutralized water with Na, CO, etc.) Next, it was immersed in a solution of 0.51 Na B H dissolved in 200 cc of water and dried at room temperature for 30 minutes. The mixture was vacuum-packed, filtered with suction, washed with water, and then dried at 120° C. for 30 minutes.
さらにこの触媒を500 ccの3チ過酸化水素水中に
入れ、室温で1時間振とうし、ついで20℃で2時間乾
燥させることによって酸化処理して試料E(Ptは12
.61M!/11活性炭)を得た。Further, this catalyst was oxidized by placing it in 500 cc of trihydric hydrogen peroxide solution, shaking it at room temperature for 1 hour, and then drying it at 20°C for 2 hours to give sample E (Pt was 12
.. 61M! /11 activated carbon) was obtained.
比較のために、H20□による酸化処理のかわシに、3
00℃で3時間高温空気で加熱して酸化した以外は同じ
操作を行なって試料F(Ptは12.6■/11活性炭
)を得た。試料Eについて実施例1と同様の触媒活性試
験を行った結果によれば(SV5.300 br−’
、入口CO濃度2,350pp)、開始から2分間の平
均CO濃度は14I1ml(転換率99.4チ)で、そ
の経時変化は第2表のとおシであった。For comparison, 3
Sample F (Pt: 12.6 .mu./11 activated carbon) was obtained by carrying out the same procedure except that it was oxidized by heating with high-temperature air at 00.degree. C. for 3 hours. According to the results of the same catalytic activity test as in Example 1 for Sample E (SV5.300 br-'
, inlet CO concentration 2,350 pp), and the average CO concentration for 2 minutes from the start was 14I 1 ml (conversion rate 99.4 pp), and its change over time was as shown in Table 2.
第2表 また比較試料Fについての同条件下の試験では。Table 2 In addition, in a test under the same conditions for comparative sample F.
初期2分間の平均CO濃度は482P(転換率79.5
チ)で、CO@度は1分後で35P、12分後で176
0pPであった。The average CO concentration during the initial 2 minutes was 482P (conversion rate 79.5
h), CO@ degree is 35P after 1 minute and 176 after 12 minutes.
It was 0 pP.
実施例 3
活性炭300Iについて、試料Aと同様の処理を行なっ
た。ただし、前処理に引きつづいて行なう白金担持処理
で使用した塩化白金酸(H,PtC1゜・6 H,O)
の量は5.51i(Pt2゜07I)であシ、H,0,
酸化処理では、3チの馬O,水を3を使用した。これを
試料Gとし、H102処理をしないものを試料Hとした
。いずれもptは6.9 W / 、? 活性炭である
。Example 3 Activated carbon 300I was treated in the same manner as sample A. However, chloroplatinic acid (H, PtC1゜・6 H, O) used in the platinum supporting treatment performed subsequent to the pretreatment.
The amount of is 5.51i (Pt2゜07I), H,0,
In the oxidation treatment, 3 parts of horse O and 3 parts of water were used. This was designated as Sample G, and that without H102 treatment was designated as Sample H. Both have a pt of 6.9 W/? It is activated carbon.
実施例1と同様の触媒活性試験では(svs、oo。In a catalyst activity test similar to Example 1 (svs, oo.
hr−” 、入口CO濃度はいずれも2,510pp1
1)、試料Gの場合、6分後で出口のCO濃度は18四
、15分後で24pIm、30分後で43111nであ
った。hr-”, the inlet CO concentration is 2,510 pp1.
1), in the case of sample G, the CO concentration at the outlet was 184 pIm after 6 minutes, 24 pIm after 15 minutes, and 43111N after 30 minutes.
これに比して、試料Hは5分後に67酵、10分後に1
lQppaとなシ、本発明による試料Gがはるかに高い
効率を示した。In comparison, sample H had 67 fermentations after 5 minutes and 1 fermentation after 10 minutes.
As for lQppa, sample G according to the invention showed much higher efficiency.
最後にPt量の影響を再度検討してみると、試料A(P
tは20.3キ/I活性炭)、試料E(12,689/
I活性炭ン、試料G(6,9岬/11活性炭)試料B(
5,2W/J活性炭)の順にPt量が少なくなシ、それ
にともなって、初期のCO出濃度は、それぞれ2騨以下
、4碧、18ppl、510解と多くなるが、6.9岬
/II活性炭までは18騨と実用的なのに対して、5.
2”P/l活性炭になると出口CO濃度は51 opp
lと急増する。従って、本発明におけるPt担持量は6
my/I活性炭以上になるような操作が必要である。Finally, when we reexamined the effect of the Pt content, we found that sample A (P
t is 20.3 kg/I activated carbon), sample E (12,689/I activated carbon)
I activated carbon, sample G (6,9 cape/11 activated carbon) sample B (
The amount of Pt decreases in the order of 5.2 W/J activated carbon), and accordingly, the initial CO output concentration increases to 2 or less, 4 Ao, 18 ppl, and 510 ppl, respectively, but 6.9 Misaki/II Activated carbon has a practical value of 18, whereas activated carbon has a practical value of 5.
When it becomes 2”P/l activated carbon, the outlet CO concentration is 51opp
It increases rapidly. Therefore, the amount of Pt supported in the present invention is 6
It is necessary to operate so that the activated carbon becomes more than my/I activated carbon.
図はこの発明の実施例で使用された触媒活性試験装置の
系統図である。
特許出願人 財団法人工業開発研究所
(外2名)The figure is a system diagram of a catalyst activity testing apparatus used in an example of the present invention. Patent applicant: Industrial Development Research Institute (2 others)
Claims (1)
ダ水溶液で中和するか又は加熱空気で乾燥し、これを還
元処理してから乾燥することにより、活性炭に対して少
なくとも6mg/g・活性炭の白金を担持させるような
操作をほどこし、ついで過酸化水素水を接触させること
を特徴とするCO転換触媒の製造方法。After impregnating the activated carbon with an aqueous solution of chloroplatinic acid, neutralizing it with an aqueous solution of sodium carbonate or drying it with heated air, reducing it and then drying it, the activated carbon has a concentration of at least 6 mg/g of activated carbon. A method for producing a CO conversion catalyst, which comprises performing an operation to support platinum, and then contacting it with a hydrogen peroxide solution.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59223889A JPS61103543A (en) | 1984-10-26 | 1984-10-26 | Preparation of co conversion catalyst |
DE19853537894 DE3537894A1 (en) | 1984-10-26 | 1985-10-24 | METHOD FOR PRODUCING A CARBON MONOXIDE CONVERSION CATALYST |
GB08526244A GB2166061B (en) | 1984-10-26 | 1985-10-24 | Process for preparing carbon monoxide conversion catalyst |
US06/791,393 US4652537A (en) | 1984-10-26 | 1985-10-25 | Process for preparing carbon monoxide platinum conversion catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59223889A JPS61103543A (en) | 1984-10-26 | 1984-10-26 | Preparation of co conversion catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61103543A true JPS61103543A (en) | 1986-05-22 |
JPH0446179B2 JPH0446179B2 (en) | 1992-07-29 |
Family
ID=16805293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59223889A Granted JPS61103543A (en) | 1984-10-26 | 1984-10-26 | Preparation of co conversion catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61103543A (en) |
-
1984
- 1984-10-26 JP JP59223889A patent/JPS61103543A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0446179B2 (en) | 1992-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10618807B2 (en) | Method for storage and release of hydrogen | |
TW200400850A (en) | Bismuth-and phosphorus-containing catalyst support, reforming catalysts made from same, method of making and naphtha reforming process | |
CN101362080A (en) | A kind of activated carbon supported ruthenium-based ammonia synthesis catalyst and preparation method thereof | |
US4652537A (en) | Process for preparing carbon monoxide platinum conversion catalyst | |
CN105753907B (en) | A kind of synthetic method of the metal organic framework containing unsaturated coordination mixed valence iron center | |
CN106552620A (en) | A kind of Preparation method and use of the molecular engram catalytic membrane of degradation selectivity tetracycline | |
CN106955718A (en) | A kind of ZnS/Bi2O3Hetero-junctions molecular engram photocatalysis membrana and preparation method and purposes | |
WO2020206976A1 (en) | Preparation method for noble metal-loaded porous organic framework atomic-scale catalyst for catalytic degradation of vocs at room temperature | |
CN1329117C (en) | Method for preparing hydrogenising selectively palladium/carbon catalyzer | |
JPS61103543A (en) | Preparation of co conversion catalyst | |
CN106178944A (en) | A kind of efficient formaldehyde cleanser and preparation method thereof | |
US3165478A (en) | Process for the regeneration of raney-nickel catalyst | |
CN117205953A (en) | A non-metallic nitrogen and phosphorus co-doped porous carbon catalyst and its preparation method and application | |
US4314982A (en) | Catalytic decomposition of H2 SO4 | |
CN112774683B (en) | A kind of carbon-based coated Ac-Fe/Co catalyst and microemulsion preparation method and application | |
CN105712459A (en) | Ozone catalytic wet oxidation method for acrylic acid and its ester waste water | |
JPS61197034A (en) | Preparation method of platinum supported catalyst | |
JPS5839212B2 (en) | Chlorinated roasting method for platinum group metals | |
US1935188A (en) | Method of preparing catalytic gels | |
US4170574A (en) | Process for producing oxidizing metal catalysts incorporating platinum and catalyst produced by the process | |
CN1400160A (en) | Catalyst for producing hydrogen peroxide by using anthraquinone method | |
JPH01135842A (en) | Photocatalyst-immobilized membrane | |
CN116273118B (en) | Preparation and application of carbon-based bimetallic nanocluster catalyst | |
CN110327978A (en) | A kind of preparation method of yttrium metal organic framework supported precious metal catalyst | |
CN114713259B (en) | Preparation of cobalt carbon nitrogen hollow polyhedral catalyst and application thereof in degradation of emerging pollutants |