[go: up one dir, main page]

JPH0446179B2 - - Google Patents

Info

Publication number
JPH0446179B2
JPH0446179B2 JP59223889A JP22388984A JPH0446179B2 JP H0446179 B2 JPH0446179 B2 JP H0446179B2 JP 59223889 A JP59223889 A JP 59223889A JP 22388984 A JP22388984 A JP 22388984A JP H0446179 B2 JPH0446179 B2 JP H0446179B2
Authority
JP
Japan
Prior art keywords
sample
activated carbon
minutes
ppm
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59223889A
Other languages
Japanese (ja)
Other versions
JPS61103543A (en
Inventor
Takaaki Tamura
Norihiko Fujita
Chihiro Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANGYO SOZO KENKYUSHO
Original Assignee
SANGYO SOZO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANGYO SOZO KENKYUSHO filed Critical SANGYO SOZO KENKYUSHO
Priority to JP59223889A priority Critical patent/JPS61103543A/en
Priority to DE19853537894 priority patent/DE3537894A1/en
Priority to GB08526244A priority patent/GB2166061B/en
Priority to US06/791,393 priority patent/US4652537A/en
Publication of JPS61103543A publication Critical patent/JPS61103543A/en
Publication of JPH0446179B2 publication Critical patent/JPH0446179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、空気のようなガス中に含まれてい
るCOをCO2に、室温でも高い効率で転換するこ
とができるCO転換触媒を製造する方法に関する
ものである。 COをCO2に転換するための触媒として、活性
炭に白金を担持させたものが知られている(たと
えば特公昭57−36014号公報)。この公知のCO転
換触媒は、適当な粒度の活性炭に必要に応じて塩
酸洗浄・乾燥などの前処理を施してから、塩化白
金酸(H2PtCl6・6H2O)水溶液で処理したのち
乾燥し、ついでKBH4などの水溶液で還元処理
し、水洗・乾燥を経て空気中で高温加熱処理する
ことによつて製造されている。しかしこのような
従来の方法で製造されたCO転換触媒は、CO転換
効率が充分でなく、またCO含有ガスの流速が速
くなると転換効率が急激に低下するという欠点を
有している。たとえば、SV5300hr-1のとき出口
のCO濃度が20ppmであつたものが、10600hr-1
は、170ppm以上になるという例がある。 この発明は、従来の方法で製造されたCO転換
触媒よりも著しく高いCO転換効率を有するCO転
換触媒を製造する方法を提供することを目的とし
ている。 この発明方法によれば、まず、適当な粒度の活
性炭に、必要に応じて塩酸洗浄・乾燥などの前処
理を施してから、H2PtCl6・6H2O水溶液で処理
したのち、炭酸ソーダ(Na2CO3)水溶液で中和
するか又は加熱空気で乾燥し、これをKBH4また
はNaBH4水溶液で還元処理してから乾燥する。
次いで、還元処理・乾燥後の後処理として、過酸
化水素(H2O2)による酸化処理を施して、残存
する還元剤を分解する。この酸化処理は、還元処
理・乾燥後の触媒を、たとえば3%程度の濃度の
過酸化水素水中に入れ、室温で適当時間振とうす
ることによつて容易に行なうことができる。 酸化処理後に乾燥することによつて得られた
CO転換触媒は、実験の結果、酸化処理のかわり
に単なる加熱乾燥処理を施したものと比較してき
わめて高いCO転換率を有していることが確認さ
れた。ただしこのようなCO転換効率の向上効果
は、活性炭に担持されているPt量が所定の値以
上である場合に限つて得られる。すなわち活性炭
に対する白金(Pt)の担持量が約6mg/g・活
性炭以下になるような含浸操作ではCO転換効率
の向上はほとんど認められない。好ましいPt担
持量は約6mg/g・活性炭以上になるような含浸
操作である。また酸化処理を過酸化水素による酸
化以外の手段、たとえば空気中での高温加熱処理
によつて行なつてもCO転換効率は向上しない。 実施例 1 活性炭(第1炭素(株)製の商品名「BFG」)300
gを2の5%塩酸中に90℃で1時間浸漬したの
ち引き上げ、十分水洗したのち120℃で2時間乾
燥することによつて前処理を施した。 つぎにこの前処理した活性炭を、水1.5にH2
PtCl6・6H2O16.2g(Pt分約6.10g)を溶解した
溶液中に浸漬し、時々振とうしながら90℃に4時
間保持した。つぎにこの混合物中に、60gのNa2
CO3を900c.c.の水に溶解した溶液を室温で30分間
にわたつて攪拌しながら徐々に滴下し、ついで0
℃に冷却してから、10gのKBH4を1.5の水に
溶解した溶液を攪拌下で2時間にわたつて徐々に
滴下した。ついで固形物を吸引過し、10の温
水で洗浄したのち、120℃で2時間乾燥した。 この触媒をさらに3の3%過酸化水素水中に
入れ、室温で1時間振とうし、ついで20℃で2時
間乾燥させることによつて酸化処理して試料Aを
得た。この触媒はPtを20.3mg/g活性炭の割合で
含むような含有操作を経ている。 比較のために、H2PtCl6・6H2O水溶液として、
水1.5にH2PtCl6・6H2O 4.1g(Pt分約1.50
g)を使用した以外は試料Aと同じ条件で得られ
た試料B(Ptは5.2mg/g活性炭になるような含浸
操作である。以下同じ)と、さらに過酸化水素水
による酸化処理を省いた試料C(Ptは5.2mg/g活
性炭)および試料D(Ptは20.3mg/g活性炭)と
を用意した。 各試料A、B、C、Dについてそれらの一部を
サンプルとしてとり、触媒活性試験を行ない、
CO転換効率を計測した。触媒活性試験は、図に
示す試験装置を用いて行なわれた。この試験装置
において、既知量のCOを含有する空気がバルブ
V1を通してサンプルガスホルダー1に導入さ
れ、ついでポンプP2の作用で、洗気ビン2およ
びフローメータ3を経て触媒部4に供給される。
この触媒部4は、内径17mm、高さ50mm(容積11.3
cm3)のもので、その中に被試験試料が充填され
る。触媒部4を通過したガスは、その一定量がバ
ルブV4を経て出口ガス分取容器5内に収容さ
れ、ポンプP3の作用で攪拌しながら一定時間貯
えられ、ついでバルブV5を経てCO分析器に送
られてCO含有量が計測される。 本発明にもとづく試料Aの計測結果を下記の第
1表に示す(転換率は99.9%以上)。試料ガスは
湿潤空気中(乾燥空気ではない)に2360ppmの
COを添加したもので、触媒部4に室温で試料ガ
スがSV=5000hr-1で流された。
The present invention relates to a method for producing a CO conversion catalyst that can convert CO contained in a gas such as air to CO 2 with high efficiency even at room temperature. As a catalyst for converting CO into CO2 , a catalyst in which platinum is supported on activated carbon is known (for example, Japanese Patent Publication No. 57-36014). This known CO conversion catalyst is made by pre-treating activated carbon with an appropriate particle size, such as washing with hydrochloric acid and drying as necessary, treating it with an aqueous solution of chloroplatinic acid (H 2 PtCl 6 6H 2 O), and then drying it. Then, it is manufactured by reducing it with an aqueous solution such as KBH 4 , washing with water, drying, and then heating it at high temperature in the air. However, the CO conversion catalyst produced by such a conventional method has the disadvantage that the CO conversion efficiency is not sufficient and the conversion efficiency rapidly decreases as the flow rate of the CO-containing gas increases. For example, there is an example where the CO concentration at the outlet was 20 ppm at SV 5300 hr -1 , but it increased to over 170 ppm at SV 10600 hr -1 . The present invention aims to provide a method for producing a CO conversion catalyst that has a significantly higher CO conversion efficiency than CO conversion catalysts produced by conventional methods. According to the method of this invention, activated carbon of an appropriate particle size is first pretreated with hydrochloric acid washing and drying as necessary, then treated with an aqueous solution of H 2 PtCl 6 .6H 2 O, and then treated with an aqueous solution of sodium carbonate ( Neutralize with an aqueous solution of Na 2 CO 3 or dry with heated air, reduce with a KBH 4 or NaBH 4 aqueous solution, and then dry.
Next, as a post-treatment after the reduction treatment and drying, an oxidation treatment with hydrogen peroxide (H 2 O 2 ) is performed to decompose the remaining reducing agent. This oxidation treatment can be easily carried out by placing the reduced and dried catalyst in a hydrogen peroxide solution having a concentration of about 3%, for example, and shaking it at room temperature for an appropriate period of time. Obtained by drying after oxidation treatment
As a result of experiments, it was confirmed that the CO conversion catalyst has an extremely high CO conversion rate compared to a catalyst that is simply heated and dried instead of oxidized. However, such an effect of improving CO conversion efficiency can be obtained only when the amount of Pt supported on activated carbon is a predetermined value or more. That is, in an impregnation operation in which the amount of platinum (Pt) supported on activated carbon is less than about 6 mg/g activated carbon, hardly any improvement in CO conversion efficiency is observed. A preferred impregnation operation is such that the amount of Pt supported is approximately 6 mg/g of activated carbon or more. Further, even if the oxidation treatment is performed by means other than oxidation using hydrogen peroxide, such as high-temperature heating treatment in air, the CO conversion efficiency does not improve. Example 1 Activated carbon (trade name “BFG” manufactured by Daiichi Carbon Co., Ltd.) 300
The sample was pretreated by immersing it in 5% hydrochloric acid (2) at 90°C for 1 hour, taking it out, thoroughly washing it with water, and drying it at 120°C for 2 hours. Next, add this pretreated activated carbon to 1.5 liters of water with H 2
It was immersed in a solution containing 16.2 g of PtCl 6 .6H 2 O (approximately 6.10 g of Pt) and kept at 90° C. for 4 hours with occasional shaking. Next, add 60g of Na 2 to this mixture.
A solution of CO 3 in 900 c.c. of water was gradually added dropwise with stirring at room temperature for 30 minutes, and then the temperature was reduced to 0.
After cooling to 0.degree. C., a solution of 10 g of KBH 4 in 1.5 parts of water was slowly added dropwise under stirring over a period of 2 hours. The solid matter was then filtered off by suction, washed with warm water for 10 minutes, and then dried at 120° C. for 2 hours. This catalyst was further oxidized by placing it in 3% hydrogen peroxide solution, shaking it at room temperature for 1 hour, and then drying it at 20°C for 2 hours to obtain Sample A. This catalyst underwent an operation to contain Pt at a ratio of 20.3 mg/g activated carbon. For comparison, as an aqueous solution of H 2 PtCl 6 6H 2 O,
4.1g of H2PtCl66H2O to 1.5% of water (Pt content approx. 1.50
Sample B was obtained under the same conditions as Sample A, except that Pt (Pt: 5.2 mg/g of activated carbon was used. The same applies hereinafter), and the oxidation treatment with hydrogen peroxide solution was omitted. Sample C (Pt: 5.2 mg/g activated carbon) and Sample D (Pt: 20.3 mg/g activated carbon) were prepared. A portion of each sample A, B, C, and D was taken as a sample and a catalytic activity test was conducted.
CO conversion efficiency was measured. The catalyst activity test was conducted using the test apparatus shown in the figure. In this test device, air containing a known amount of CO is introduced into the sample gas holder 1 through the valve V1 and then supplied to the catalyst section 4 via the air wash bottle 2 and the flow meter 3 under the action of the pump P2.
This catalyst section 4 has an inner diameter of 17 mm and a height of 50 mm (volume 11.3 mm).
cm 3 ) into which the test sample is filled. A certain amount of the gas that has passed through the catalyst section 4 is stored in the outlet gas separation container 5 via the valve V4, stored for a certain period of time while being stirred by the action of the pump P3, and then sent to the CO analyzer via the valve V5. The CO content will be measured. The measurement results of Sample A according to the present invention are shown in Table 1 below (conversion rate is 99.9% or more). The sample gas is 2360ppm in humid air (not dry air).
A sample gas containing CO was flowed through the catalyst section 4 at room temperature at SV=5000 hr -1 .

【表】 また比較例の試料Cについて同様の試験を行な
つた結果によれば(たゞし、入口CO濃度は
1590ppm)、同一条件で、開始から1.5分間の平均
CO濃度は700ppm(転換率56.0%)であり、6分
後には800ppmに上昇した。 さらに試料Bでは(入口CO濃度は1590ppm)、
開始から2分間の平均CO濃度は510ppm(転換率
68.01%)、3.5分後では412ppmであつた。 更に試料Dでは(入口CO濃度は2250ppm)、
SV5000hr-1の場合、10分間2ppm以下を保つてい
たが、SVを10000hr-1にすると22分後で110ppm、
32分後で400ppmに増加した。なお、その後、SV
を5000hr-1に減ずると、2ppm以下になつた。 試料BのCO転換率が、試料Cとくらべると、
時間の経過とともにやや回復しているのは、過酸
化水素水による酸化処理の効果であると推定され
るが、Ptの担持量が少ないために(Ptは5.2mg/
g活性炭)、試料A(Ptは20.3mg/g活性炭)のよ
うな高いCO転換率は有していない。 本発明の試料Aと比較例(H2O2酸化処理をし
ていない)の試料Dとをくらべると(Ptはいず
れも20.3mg/g活性炭)、SV5000hr-1のときはい
ずれも2ppm以下であつたが、SVを10000hr-1
すると、試料Dでは12分〜22分後で110ppm〜
400ppmに増加している。これに対して、H2O2
化処理をほどこした本発明の試料Aでは、2分後
8ppm、10分後80ppmと、初期には一時的にやや
高くなる傾向があるものの、すぐに活性を回復し
て22分後ですでに2ppm以下となり、これを持続
している。すなわち、高いSVでもすぐれた活性
を示している。 実施例 2 実施例1と同じ条件で前処理した活性炭30g
を、水100c.c.にH2PtCl6・6H2O 1.0g(Pt分約
0.38g)を溶解した溶液中に浸漬し、時々振とう
しながら90℃に30分間保持し、ついで120℃で30
分間乾燥した。(Na2CO3による中和のかわりの、
加熱空気による乾燥処理)つぎに0.5gのNaBH4
を200c.c.の水に溶解した溶液中に浸漬して室温で
30分間静置し、吸引過後に水洗したのち、120
℃で30分間乾燥した。 さらにこの触媒を500c.c.の3%過酸化水素水中
に入れ、室温で1時間振とうし、ついで20℃で2
時間乾燥させることによつて酸化処理して試料E
(Ptは12.6mg/g活性炭)を得た。 比較のために、H2O2による酸化処理のかわり
に、300℃で3時間高温空気で加熱して酸化した
以外は同じ操作を行なつて試料F(Ptは12.6mg/
g活性炭)を得た。試料Eについて実施例1と同
様の触媒活性試験を行つた結果によれば
(SV5300hr-1、入口CO濃度2350ppm)、開始から
2分間の平均CO濃度は14ppm(転換率99.4%)
で、その経時変化は第2表のとおりであつた。
[Table] Also, according to the results of a similar test on sample C as a comparative example (the inlet CO concentration was
1590ppm), average for 1.5 minutes from the start under the same conditions
The CO concentration was 700 ppm (conversion rate 56.0%) and rose to 800 ppm after 6 minutes. Furthermore, in sample B (inlet CO concentration is 1590 ppm),
The average CO concentration during the first 2 minutes was 510 ppm (conversion rate
68.01%) and 412 ppm after 3.5 minutes. Furthermore, in sample D (inlet CO concentration is 2250 ppm),
In the case of SV5000hr -1 , it was kept below 2ppm for 10 minutes, but when SV was set to 10000hr -1 , it became 110ppm after 22 minutes.
It increased to 400ppm after 32 minutes. Furthermore, after that, SV
When it was reduced to 5000hr -1 , it became less than 2ppm. When the CO conversion rate of sample B is compared with sample C,
It is presumed that the reason for the slight recovery over time is due to the effect of the oxidation treatment with hydrogen peroxide solution, but it is also due to the small amount of Pt supported (Pt is 5.2mg/
It does not have a high CO conversion rate like Sample A (Pt is 20.3 mg/g activated carbon). Comparing Sample A of the present invention with Sample D of the comparative example (no H 2 O 2 oxidation treatment) (Pt is 20.3 mg/g activated carbon in both cases), both are less than 2 ppm at SV5000hr -1 . However, when the SV is set to 10,000 hr -1 , sample D becomes 110 ppm after 12 to 22 minutes.
It has increased to 400ppm. On the other hand, in sample A of the present invention, which was subjected to H 2 O 2 oxidation treatment, after 2 minutes
8ppm, and 80ppm after 10 minutes, which tends to be a little high temporarily at the beginning, but the activity quickly recovers and after 22 minutes, it has already dropped to below 2ppm and continues to do so. In other words, it shows excellent activity even at high SV. Example 2 30g of activated carbon pretreated under the same conditions as Example 1
1.0g of H 2 PtCl 6・6H 2 O (approx. Pt) to 100c.c. of water.
0.38g) was dissolved in the solution, kept at 90°C for 30 minutes with occasional shaking, and then heated at 120°C for 30 minutes.
Dry for a minute. (Instead of neutralization with Na 2 CO 3 ,
(drying treatment with heated air) then 0.5 g of NaBH 4
at room temperature by immersing it in a solution of 200c.c. of water.
After leaving it for 30 minutes, washing with water after suction,
Dry for 30 minutes at °C. Further, this catalyst was placed in 500 c.c. of 3% hydrogen peroxide, shaken at room temperature for 1 hour, and then heated to 20°C for 2 hours.
Sample E was oxidized by drying for hours.
(Pt: 12.6 mg/g activated carbon) was obtained. For comparison, Sample F (Pt was 12.6 mg/kg) was prepared by performing the same procedure except that instead of oxidizing with H 2 O 2 , it was oxidized by heating in high-temperature air at 300°C for 3 hours.
g activated carbon) was obtained. According to the results of the same catalytic activity test as in Example 1 for Sample E (SV5300hr -1 , inlet CO concentration 2350ppm), the average CO concentration during the first 2 minutes was 14ppm (conversion rate 99.4%).
The changes over time were as shown in Table 2.

【表】 また比較試料Fについての同条件下の試験で
は、初期2分間の平均CO濃度は482ppm(転換率
79.5%)で、CO濃度は1分後で35ppm、12分後
で1760ppmであつた。 実施例 3 活性炭300gについて、試料Aと同様の処理を
行なつた。ただし、前処理に引きつづいて行なう
白金担持処理で使用した塩化白金酸(H2PtCl6
6H2O)の量は5.5g(Pt2.07g)であり、H2O2
酸化処理では、3%のH2O2水を3使用した。
これを試料Gとし、H2O2処理をしないものを試
料Hとした。いずれもPtは6.7mg/g活性炭であ
る。 実施例1と同様の触媒活性試験では
(SV5000hr-1、入口CO濃度はいずれも2,
510ppm)、試料Gの場合、6分後で出口のCO濃
度は18ppm、15分後で24ppm、30分後で43ppmで
あつた。これに比して、試料Hは5分後に
67ppm、10分後に110ppmとなり、本発明による
試料Gがはるかに高い効率を示した。 最後にPt量の影響を再度検討してみると、試
料A(Ptは20.3mg/g活性炭)、試料E(12.6mg/
g活性炭)、試料G(6.9mg/g活性炭)試料B
(5.2mg/g活性炭)の順にPt量が少なくなり、そ
れにともなつて、初期のCO出濃度は、それぞれ
2ppm以下、4ppm、18ppm、510ppmと多くなる
が、6.9mg/g活性炭までは18ppmと実用的なの
に対して、5.2mg/g活性炭になると出口CO濃度
は510ppmと急増する。従つて、本発明における
Pt担持量は6mg/g活性炭以上になるような操
作が必要である。
[Table] In addition, in a test under the same conditions for comparative sample F, the average CO concentration during the initial 2 minutes was 482 ppm (conversion rate
79.5%), and the CO concentration was 35 ppm after 1 minute and 1760 ppm after 12 minutes. Example 3 300 g of activated carbon was treated in the same manner as Sample A. However, chloroplatinic acid (H 2 PtCl 6 .
6H 2 O) is 5.5 g (Pt2.07 g), H 2 O 2
In the oxidation treatment, 3% H 2 O 2 water was used.
This was designated as Sample G, and the one not subjected to H 2 O 2 treatment was designated as Sample H. In both cases, Pt was 6.7 mg/g activated carbon. In the same catalyst activity test as in Example 1 (SV5000hr -1 , inlet CO concentration was 2,
In the case of sample G, the CO concentration at the outlet was 18 ppm after 6 minutes, 24 ppm after 15 minutes, and 43 ppm after 30 minutes. In contrast, sample H was released after 5 minutes.
67 ppm, 110 ppm after 10 minutes, sample G according to the invention showed much higher efficiency. Finally, when we reexamined the effect of Pt amount, we found that sample A (Pt was 20.3 mg/g activated carbon) and sample E (12.6 mg/g activated carbon).
g activated carbon), sample G (6.9 mg/g activated carbon) sample B
(5.2 mg/g activated carbon), the amount of Pt decreases, and the initial CO output concentration decreases, respectively.
The CO concentration increases to 2ppm or less, 4ppm, 18ppm, and 510ppm, but up to 6.9mg/g activated carbon, it is practical at 18ppm, but when it reaches 5.2mg/g activated carbon, the outlet CO concentration rapidly increases to 510ppm. Therefore, in the present invention
It is necessary to operate so that the amount of Pt supported is 6 mg/g or more on activated carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施例で使用された触媒活性試
験装置の系統図である。
The figure is a system diagram of a catalyst activity testing apparatus used in an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 活性炭を塩化白金酸水溶液に含浸させたの
ち、炭酸ソーダ水溶液で中和するか又は加熱空気
で乾燥し、これを還元処理してから乾燥すること
により、活性炭に対して少なくとも6mg/g・活
性炭の白金を担持させるような操作をほどこし、
ついで過酸化水素水を接触させることを特徴とす
るCO転換触媒の製造方法。
1. After impregnating activated carbon with an aqueous solution of chloroplatinic acid, neutralizing it with an aqueous solution of sodium carbonate or drying it with heated air, reducing it and then drying it, the activated carbon has a concentration of at least 6 mg/g of activated carbon. The process is carried out in such a way that it supports platinum.
A method for producing a CO conversion catalyst, which comprises then contacting with a hydrogen peroxide solution.
JP59223889A 1984-10-26 1984-10-26 Preparation of co conversion catalyst Granted JPS61103543A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59223889A JPS61103543A (en) 1984-10-26 1984-10-26 Preparation of co conversion catalyst
DE19853537894 DE3537894A1 (en) 1984-10-26 1985-10-24 METHOD FOR PRODUCING A CARBON MONOXIDE CONVERSION CATALYST
GB08526244A GB2166061B (en) 1984-10-26 1985-10-24 Process for preparing carbon monoxide conversion catalyst
US06/791,393 US4652537A (en) 1984-10-26 1985-10-25 Process for preparing carbon monoxide platinum conversion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223889A JPS61103543A (en) 1984-10-26 1984-10-26 Preparation of co conversion catalyst

Publications (2)

Publication Number Publication Date
JPS61103543A JPS61103543A (en) 1986-05-22
JPH0446179B2 true JPH0446179B2 (en) 1992-07-29

Family

ID=16805293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223889A Granted JPS61103543A (en) 1984-10-26 1984-10-26 Preparation of co conversion catalyst

Country Status (1)

Country Link
JP (1) JPS61103543A (en)

Also Published As

Publication number Publication date
JPS61103543A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
CN109939712A (en) A kind of monatomic noble metal catalyst and its preparation and the application in room temperature catalytic oxidation formaldehyde
US4652537A (en) Process for preparing carbon monoxide platinum conversion catalyst
JP2002501430A (en) Method for preparing highly active hydrocarbon synthesis catalyst and catalyst composition
JPH0446179B2 (en)
JP3986586B2 (en) Hydrogen purification method for fuel cells
CN108671909B (en) A kind of Pd carbon catalyst and its preparation method and use
CN113070101A (en) Catalyst for decomposing formaldehyde and preparation method and application thereof
CN107252694B (en) Catalyst for oxidizing CO under a water vapor and carbon dioxide atmosphere and preparation method thereof
CN112774683B (en) A kind of carbon-based coated Ac-Fe/Co catalyst and microemulsion preparation method and application
JP3083463B2 (en) Regeneration method of catalyst for wet oxidation treatment
US1935188A (en) Method of preparing catalytic gels
Radkevich et al. Catalytic systems based on carbon supports for the low-temperature oxidation of carbon monoxide
JPS61197034A (en) Preparation method of platinum supported catalyst
JP2001162175A (en) Method of producing catalyst for removal of nitrogen oxide and device for that production
EP1094898B1 (en) Process for regenerating a used precious metal catalyst
CN111013583A (en) A kind of preparation method of efficient decomposition of carbon monoxide monolith catalyst at room temperature
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JPH01135842A (en) Photocatalyst-immobilized membrane
JP4187845B2 (en) Method for treating ammonia-containing water
JPS6332502B2 (en)
JP3025792B2 (en) Deodorizing treatment method using adsorption treatment agent
CN113929196B (en) Treatment method and application of nitrogenous wastewater
JP4551745B2 (en) CO removal catalyst and method for producing the same
JPS60190240A (en) Preparation of catalyst
JPS62193633A (en) Reducing agent for nitrogen oxide