[go: up one dir, main page]

JPS6058689A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6058689A
JPS6058689A JP16654083A JP16654083A JPS6058689A JP S6058689 A JPS6058689 A JP S6058689A JP 16654083 A JP16654083 A JP 16654083A JP 16654083 A JP16654083 A JP 16654083A JP S6058689 A JPS6058689 A JP S6058689A
Authority
JP
Japan
Prior art keywords
layer
groove
active layer
conductivity type
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16654083A
Other languages
Japanese (ja)
Other versions
JPH0434316B2 (en
Inventor
Jun Osawa
大沢 潤
Kenji Ikeda
健志 池田
Wataru Suzaki
須崎 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16654083A priority Critical patent/JPS6058689A/en
Publication of JPS6058689A publication Critical patent/JPS6058689A/en
Publication of JPH0434316B2 publication Critical patent/JPH0434316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable high output action by displacement of the position of an active layer in the undermentioned part by a method wherein the cross-sectional area of a stripe groove is varied in the neighborhood of one of two crystal planes forming the resonator of an internal stripe laser. CONSTITUTION:A current block layer 2 of the second conductivity type, a clad layer 3 and the active layer 4 of the first conductivity type, and a clad layer 5 of the second conductivity type are successively formed on a substrate 1 of the first conductivity type. The groove 6 is formed through this layer 2, and thus the resonator of the internal stripe laser is formed. Groove sections 8 with the sectional area varied are formed in the groove 6 in the neighborhood of the crystal end planes 7 of this resonator, and the position of the active layer 4 is varied in the recess part 9 of the layer in the neighborhood of the surfaces 7. A light guided to the surfaces 7 due to this rapid positional displacement of the active layer 4 is made to go straight into the layer 5. Then, high output action is enabled with a simple construction by the prevention of the breakdown of the surfaces 7.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体レーザ、特に内部ストライプレーザと
呼ばれる注入形半導体レーザに関する本のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention is a book related to semiconductor lasers, particularly injection type semiconductor lasers called internal stripe lasers.

〔従来技術〕[Prior art]

従来のとの種の半導体レーザを第1図(a) 、 (b
)に示す。これらの各図は平面および正面の模式図であ
ル、図中、符号(1)はP−GaAi基板、(2) 、
 (3) 、 (4)および(5)祉基板(1)上に積
層された。−G、A、電流阻止層e P−AtyGal
−yAsり2ツド屑r P−A’zGal−1As活性
層(x<y)、およびn−”zGal−zAsクラッド
層(x<z )を示し、また(6)は電流阻止N(2)
を貫通するV形の溝、(’t)#i結晶端面であシ、簡
略化のために基板(1)の下面とn形りラフド層(5)
の上面に設けられる電極は省略しである。しかして前記
(2)。
Figures 1 (a) and (b) show conventional semiconductor lasers of the type.
). Each of these figures is a schematic plan view and a front view, and in the figures, symbol (1) represents a P-GaAi substrate, (2)
(3), (4) and (5) were laminated on the substrate (1). -G, A, current blocking layer e P-AtyGal
-yAsR2TsudsrP-A'zGal-1As active layer (x<y), and n-"zGal-zAs cladding layer (x<z), and (6) shows the current blocking N(2)
A V-shaped groove passing through the ('t) #i crystal end face, for simplicity, the bottom surface of the substrate (1) and the n-shaped rough layer (5)
The electrode provided on the top surface of is omitted. However, (2) above.

(3) 、(4) 、および(5)の各層の典型的な厚
さは、それぞれに’ I Jim 、 0.44m 、
 0.1 fim 、および34mである。
Typical thicknesses for each layer of (3), (4), and (5) are 'I Jim, 0.44 m, respectively.
0.1 fim, and 34 m.

この従来溶成での動作としては、まず基板(11側を正
、n形りラフド層(5)側を負にして電圧を印加すると
、基板(1)から流入した電流社、電流阻止層(2)と
p形りラフド層(3)との界面の、逆バイアスされたp
−n接合によって、■溝(6)の部分に狭搾される。そ
してp形りラフド層(3)が薄く、活性層(4)と電流
阻止層(2)との間隔が小さいためKsv溝(6)を通
った電流は大きく広がらすに1活性層(4)を通過して
n形りラフド層(5)に入シ、活性層(4)のV溝(6
)上方に位置する部分に対して、n形りラフド層(5)
から注入された電子が、活性層(4)内で放射再結合さ
れて発光する。この光は電流阻止層(2)で吸収されて
損失を受けるために、p形りラフド層(3)が゛厚くな
った■溝(6)の中央部では損失が小さく、結果として
Vi(6)の上方に位置する部分の実効的屈折率が周辺
よシも大きくなシ、光はこの屈折率分布により導波され
、2つの結晶端面(力、(7)によって構成される共振
器内で増幅され、レーザ発振に至るものである。
The operation of this conventional melting process is as follows: first, when a voltage is applied with the substrate (11 side positive and the n-type rough layer (5) side negative), the current flowing from the substrate (1) and the current blocking layer ( 2) and the p-shaped rough layer (3), the reverse biased p
The -n junction narrows the groove (6). Since the p-shaped rough layer (3) is thin and the distance between the active layer (4) and the current blocking layer (2) is small, the current passing through the Ksv groove (6) can be spread greatly by one active layer (4). It passes through the n-shaped rough layer (5) and enters the V-groove (6) of the active layer (4).
) For the upper part, an n-shaped rough layer (5)
Electrons injected from the active layer (4) are radiatively recombined and emit light. Since this light is absorbed by the current blocking layer (2) and undergoes loss, the loss is small in the central part of the groove (6) where the p-type rough layer (3) is thickened, resulting in Vi(6 The effective refractive index of the part located above ) is larger than that of the periphery, and the light is guided by this refractive index distribution within the resonator formed by the two crystal end faces (force, (7)). This is amplified and leads to laser oscillation.

しかし乍らこの構成による従来の内部ストライプレーザ
は、結晶端面(力において、光密度の高い発光部が活性
層(4)上に位置しているために、端面破壊を生じ易く
、かつ高出力動作が困難であるという不都合があった。
However, in conventional internal stripe lasers with this configuration, because the light-emitting part with high optical density is located on the active layer (4) at the crystal end face (in terms of power), it is easy to cause end face breakage and operate at high output. The disadvantage was that it was difficult to

そしてこれは内部に比較して端面近傍でに光密度が高く
、かつ活性層内での吸収が大きいことに基づいている。
This is based on the fact that the optical density is higher near the end face than inside, and the absorption within the active layer is large.

〔発明の概要〕[Summary of the invention]

この発明は従来のこのような欠点に鑑み、端面近傍で活
性層の位置をずらし、光が光吸収の少ないクラッド層を
通過して放射される構造とし、これによって端面破壊の
防止、ひいては高出力動作を可能にしたものである。
In view of these conventional drawbacks, this invention shifts the position of the active layer near the end face, and creates a structure in which light passes through a cladding layer with low light absorption and is emitted. This prevents end face destruction and, in turn, increases output power. It made the operation possible.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明に係る内部ストライプレーザの実施例に
つき、第2図(IL)〜(d)および第3図(、)〜(
、)を参照して詳細に説明する。
Examples of the internal stripe laser according to the present invention will be described below with reference to FIGS. 2 (IL) to (d) and FIGS.
, ) for a detailed explanation.

第2図(&) 、 (b) 、 (c)および(d)は
、第1実施例による平面、正面、、[c−[e断面、お
よびnd−irdvfr面の各模式図、また第3図(a
)、(b)、(e)l(d)、および(e)は、第2実
施例による平面、正面、me−IHc断面。
FIGS. 2(&), (b), (c), and (d) are schematic diagrams of the plane, front, [c-[e, and nd-irdvfr planes] according to the first embodiment, and the third Figure (a
), (b), (e), (d), and (e) are plane, front, and me-IHc cross sections according to the second embodiment.

TIId−md断面、およびIIIe−ms断面の各模
式図であシ、これらの各図において前記第1図(a) 
、 (b)と同一符号は同一または相当部分を示してい
る。
These are schematic diagrams of a TIId-md cross section and a IIIe-ms cross section, and in each of these diagrams, the above-mentioned FIG. 1(a)
, The same reference numerals as in (b) indicate the same or corresponding parts.

まず第1実施例において、符号(8)は前記V溝(6)
K連なって結晶端面(7)の近傍に形成される幅の広い
溝部、(9)は同端面近傍の溝部(8)に対応させた前
記活性層(4)の窪み部である。
First, in the first embodiment, the code (8) indicates the V groove (6).
A series of wide grooves (9) are formed in the vicinity of the crystal end face (7), and are recessed portions of the active layer (4) corresponding to the grooves (8) near the end face.

この第1実施例構造の形成は、前記従来例の場合と同様
に、基板(1)の電流阻止層(2)に幅の広い溝部(8
)を含むVn(6)をつけたのちに、液相エピタキシー
(LPE)法によシ、p形りラフド層(3)、窪み部(
9)を含む活性層(4)、およびn形りラフド層(5)
を連続して成長させればよい。すなわち、一般に、溝゛
をつけた結晶上へのLPE法の施行においては、平坦部
での成長層厚が一定値以上になると、溝部上での成長層
が平坦部と揃って溝部を完全に埋めることができ、この
溝部が埋められる時間は、同溝部の容積によってほぼ決
まるのを利用すればよい。
The structure of the first embodiment is formed in the same way as in the conventional example, with wide grooves (8) in the current blocking layer (2) of the substrate (1).
), and then the p-type rough layer (3) and the depression (
9), and an n-shaped rough layer (5).
should be allowed to grow continuously. In other words, in general, when performing the LPE method on a grooved crystal, when the thickness of the grown layer on the flat part exceeds a certain value, the grown layer on the groove aligns with the flat part and completely fills the groove. It is sufficient to utilize the fact that the time for filling the groove is approximately determined by the volume of the groove.

この第1実施例においても、従来例と同様にV溝(6)
の上方に位置する活性層(4)内で発光し、溝に沿って
活性層(4)内を導波光が伝播する点は同様であるが、
第1実施例では結晶端面(力の近傍の活性層(4)に窪
み部(9)を形成して、活性層位置を急激にずらせであ
るために1内部から結晶端面(7)K導波されてきた光
は、端面付近に至ってn形りラフド層(5)内を直進す
る。ことになる。そしてとの導波光は、さきに従来例で
述べたように、誘導放出にょシ増幅されて端面で光強度
が最高になるために、光吸収が大きいときにはこの光に
よる結晶端面の破壊を生じ易かったのであるが、p−A
zXcal −XAll活性層(4)内で放射再結合に
ょヤ生じた光は、この活性層(4)のバンドギャップに
対応した波長を有して、より大きなバンドギャップのn
−AtzGal−zAsクラッド層(5ン内では殆んど
吸収を受けないために、この第1実施例構造の場合には
、光強度の高い結晶端面(力付近での光吸収が不さく、
従って端面破壊が防止さ九、ひいては高出方動作を可能
にし得るのである。
In this first embodiment as well, the V groove (6) is
They are similar in that light is emitted within the active layer (4) located above the waveguide, and the guided light propagates within the active layer (4) along the grooves.
In the first embodiment, a recess (9) is formed in the active layer (4) near the crystal end face (force), and in order to rapidly shift the active layer position, the K waveguide is guided from the inside of the crystal end face (7). The guided light reaches the vicinity of the end face and travels straight through the n-shaped rough layer (5).Then, the guided light is amplified by stimulated emission, as described earlier in the conventional example. Since the light intensity is highest at the edge of the crystal, when light absorption is large, this light tends to destroy the edge of the crystal.
The light generated by radiative recombination in the zXcal-XAll active layer (4) has a wavelength corresponding to the bandgap of this active layer (4), and
-AtzGal-zAs cladding layer (there is almost no absorption within 5 nm, so in the case of this first example structure, the crystal edge face with high light intensity (light absorption is poor near the force)
Therefore, breakage of the end face can be prevented, and high-output operation can be made possible.

またこの第1実施例構造では、幅の広い溝部(8)を通
過する電流は発振に寄与せずに発振しきい値電流の増大
をもたらすが、これを避けるためKは、第2実施例にみ
られるように1幅の広い溝部(8)よルも広い範囲に亘
って、厚い電流阻止領域DIを形成して、同溝部(8)
が基板(1)に接続されない構造にすればよい。
Furthermore, in the structure of the first embodiment, the current passing through the wide groove (8) does not contribute to oscillation but increases the oscillation threshold current. As can be seen, a thick current blocking region DI is formed over a wide area of the wide groove part (8).
It is sufficient if the structure is not connected to the substrate (1).

なお、前記第1.第2各実施例においては、何れも幅の
広い溝部を形成しているが、深い溝部を形成して溝の断
面積を変化させるようにしてもよく、またここではAL
G、A、/G、LA、結晶の場合について述べたが、他
の半導体結晶からなる内部ストライプレーザであっても
同様の効果が得られることは勿論である。
In addition, the above-mentioned No. 1. In each of the second embodiments, a wide groove is formed, but a deep groove may be formed to change the cross-sectional area of the groove.
Although the case of G, A, /G, LA, and crystals has been described, it goes without saying that similar effects can be obtained with internal stripe lasers made of other semiconductor crystals.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によれば、内部ストライプ
レーザにおいて、共振器を形成している2つの結晶端面
の少なくとも一方の近傍で、ストライプ溝の断面積を変
化させ、同部分での活性層の位置を変位させるようVC
,@成したので、端面破壊の防止、従って高出力動作が
可能になシ、また端面保護膜とか端面埋込み部を別途形
成する必要がないなどの特長を有するものである。
As detailed above, according to the present invention, in an internal stripe laser, the cross-sectional area of the stripe groove is changed in the vicinity of at least one of the two crystal end faces forming the resonator, and the active layer in the same portion is changed. VC to displace the position of
, @ is formed, it has features such as prevention of end face destruction, thus enabling high output operation, and no need to separately form an end face protective film or an end face buried portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Ik) 、 (b)は従来例による内部ストラ
イプレーザを示す平面、正面模式図、第2図(a)、(
b)、(e) 。 (d)はこの発明の第1実施例による内部ストライプレ
ーザを示す平面、正面、He−Hc断面、nd−nd断
面模式図、第3図(−) 、 (b)、 (c)、(d
)、 (e)は同上第2実施例を示す平面、正面、■e
 −Ill e断面、■d−1d断面、me−IrIe
断面模式図である。 (1)・・・・第1導電形の基板、(2)・・・・第2
導電形の電流阻止層、(3)・・・・第1導電形のクラ
ッド層、(4)・・・・活性層、(5)・・・・第2導
電形のクラッド層、(6)・・・・電流阻止層を貫通す
る溝、(7)・・・・結晶端面、(8)・・・・断面積
を変化させた溝部、(9)・・・・活性層の窪み部(位
置変位させた活性層)。 特許出願人 工業技術院長 川 1)裕 部第1図 第2図 (C) 第3図 7 (b) (C) (d)
Figures 1 (Ik) and (b) are plane and front schematic diagrams showing internal stripe lasers according to the conventional example, and Figures 2 (a) and (
b), (e). (d) is a plan view, front view, He-Hc cross section, and nd-nd cross-sectional schematic diagram showing the internal stripe laser according to the first embodiment of the present invention;
), (e) is a plane showing the second embodiment, front view, ■e
-Ill e cross section, ■d-1d cross section, me-IrIe
It is a cross-sectional schematic diagram. (1)...First conductivity type substrate, (2)...Second conductivity type substrate
Current blocking layer of conductivity type, (3)... cladding layer of first conductivity type, (4)... active layer, (5)... cladding layer of second conductivity type, (6)... ...Groove penetrating the current blocking layer, (7)...Crystal end face, (8)...Groove portion with a changed cross-sectional area, (9)...Recessed portion of the active layer ( positionally displaced active layer). Patent applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Hirobe Figure 1 Figure 2 (C) Figure 3 7 (b) (C) (d)

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の半導体結晶基板と、この基板上に形成され
た第2導電形の電流阻止層と、この電流阻止層を貫通す
る溝と、この溝を埋めて前記電流阻止層上に形成された
第1導電形のクラッド層と、とのり”ラッド層上に形成
されて、そのバンドギャップより小さいバンドギャップ
をもつ活性層と、この活性層上に形成されて、そのバン
ドギャップよシ大きいバンドギャップをもつ第2導電形
のクラッド層とを備えた半導体レーザにおいて、共振器
を形成する2つの結晶端面の少なくとも一方の近傍で、
前記溝の断面積を変化させ、同部分での前記活性層の位
置を変位させたことを特徴とする半導体レーザ。
A semiconductor crystal substrate of a first conductivity type, a current blocking layer of a second conductivity type formed on the substrate, a groove penetrating the current blocking layer, and a groove formed on the current blocking layer filling the groove. a cladding layer of a first conductivity type, an active layer formed on the cladding layer and having a bandgap smaller than the bandgap, and a cladding layer formed on the active layer and having a bandgap larger than the bandgap. In a semiconductor laser equipped with a cladding layer of a second conductivity type having a gap, in the vicinity of at least one of two crystal end faces forming a resonator,
A semiconductor laser characterized in that the cross-sectional area of the groove is changed and the position of the active layer in the same portion is displaced.
JP16654083A 1983-09-12 1983-09-12 Semiconductor laser Granted JPS6058689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16654083A JPS6058689A (en) 1983-09-12 1983-09-12 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16654083A JPS6058689A (en) 1983-09-12 1983-09-12 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6058689A true JPS6058689A (en) 1985-04-04
JPH0434316B2 JPH0434316B2 (en) 1992-06-05

Family

ID=15833170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16654083A Granted JPS6058689A (en) 1983-09-12 1983-09-12 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6058689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302732A2 (en) * 1987-08-04 1989-02-08 Sharp Kabushiki Kaisha A semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302732A2 (en) * 1987-08-04 1989-02-08 Sharp Kabushiki Kaisha A semiconductor laser device
US4926431A (en) * 1987-08-04 1990-05-15 Sharp Kabushiki Kaisha Semiconductor laser device which is stable for a long period of time

Also Published As

Publication number Publication date
JPH0434316B2 (en) 1992-06-05

Similar Documents

Publication Publication Date Title
JP2008135786A (en) High power semiconductor laser diode
JPS63124486A (en) Manufacture of semiconductor laser
JPS6343908B2 (en)
JPH06181363A (en) Semiconductor laser and manufacture thereof
JP6925540B2 (en) Semiconductor optical device
JPS6058689A (en) Semiconductor laser
WO2019111804A1 (en) Optical semiconductor element driving method, and optical semiconductor element
JPH0426558B2 (en)
JPS62291987A (en) Optical integrated device
KR19980018320A (en) Light emitting diode and manufacturing method
JPH0671121B2 (en) Semiconductor laser device
KR100278626B1 (en) Semiconductor laser diode
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor
JPH0474876B2 (en)
JP3617119B2 (en) Super luminescent diode
US4868837A (en) Semiconductor laser
JPS6155276B2 (en)
KR100273337B1 (en) Manufacturing method of high power laser diode
JPH07106694A (en) Semiconductor laser
JPH0831655B2 (en) Semiconductor laser device
JPS6342867B2 (en)
JPS6244439B2 (en)
JPH0337875B2 (en)
KR960043385A (en) Semiconductor laser diode
JPS61276389A (en) semiconductor optical device