[go: up one dir, main page]

JPH0434316B2 - - Google Patents

Info

Publication number
JPH0434316B2
JPH0434316B2 JP16654083A JP16654083A JPH0434316B2 JP H0434316 B2 JPH0434316 B2 JP H0434316B2 JP 16654083 A JP16654083 A JP 16654083A JP 16654083 A JP16654083 A JP 16654083A JP H0434316 B2 JPH0434316 B2 JP H0434316B2
Authority
JP
Japan
Prior art keywords
layer
current blocking
active layer
conductivity type
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16654083A
Other languages
Japanese (ja)
Other versions
JPS6058689A (en
Inventor
Jun Oosawa
Kenji Ikeda
Wataru Suzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16654083A priority Critical patent/JPS6058689A/en
Publication of JPS6058689A publication Critical patent/JPS6058689A/en
Publication of JPH0434316B2 publication Critical patent/JPH0434316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体レーザ、特に内部ストライブ
レーザと呼ばれる注入形半導体レーザに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor laser, and particularly to an injection type semiconductor laser called an internal stripe laser.

〔従来技術〕[Prior art]

従来この種の半導体レーザを第1図a,bに示
す。これらの各図は平面および正面の模式図であ
り、図中、符号1はp−GaAs基板、2,3,4
および5は基板1上に積層されたn−GaAs電流
阻止層、p−AlyGa1−yAsクラツド層、p−
AlxGa1−xAs活性層(x<y)、およびn−
AlzGa1−zAsクラツド層(x<z)を示し、ま
た6は電流阻止層2を貫通するV形の溝、7は結
晶端面であり、簡略化のために基板1の下面とn
形クラツド層5の上面に設けられる電極は省略し
てある。しかして前記2,3,4および5の各層
の典型的な厚さは、それぞれに1μm,0.4μm,
0.1μm,および3μmである。
Conventional semiconductor lasers of this type are shown in FIGS. 1a and 1b. Each of these figures is a schematic plan view and a front view, and in the figures, 1 is a p-GaAs substrate, 2, 3, 4
and 5 are an n-GaAs current blocking layer laminated on the substrate 1, a p- AlyGa1 -yAs clad layer, and a p-
AlxGa 1 -xAs active layer (x<y), and n-
Indicates an AlzGa 1 -zAs cladding layer (x<z), 6 is a V-shaped groove penetrating the current blocking layer 2, 7 is a crystal end face, and for simplicity,
The electrodes provided on the upper surface of the shaped cladding layer 5 are omitted. The typical thicknesses of layers 2, 3, 4, and 5 are 1 μm, 0.4 μm, and 0.4 μm, respectively.
They are 0.1μm and 3μm.

この従来構成での動作としては、まず基板1側
を正,n形クラツド層5側を負にして電圧を印加
すると、基板1から流入した電流は、電流阻止層
2とP形クラツド層3との界面の、逆バイアスさ
れたp−a接合によつて、V溝6の部分に狭搾さ
れる。そしてp形クラツド層3が薄く、活性層4
と電流阻止層2との間隔が小さいために、V溝6
を通つた電流は大きく広がらずに、活性層4を通
過してn形クラツド層5に入り、活性層4のV講
6上方に位置する部分に対して、n形クラツド層
5から注入された電子が、活性層4内で放射再結
合されて発光する。この光は電流阻止層2で吸収
されて損失を受けるために、p形クラツド層3が
厚くなつたV溝6の中央部では損失が小さく、結
果としてV溝6の上方に位置する部分の実効的屈
折率が周辺よりも大きくなり、光はこの屈折率分
布により導波され、2つの結晶端面7,7によつ
て構成される共振器内で増幅され、レーザ発振に
至るものである。
The operation of this conventional configuration is as follows: When a voltage is first applied with the substrate 1 side positive and the n-type cladding layer 5 side negative, the current flowing from the substrate 1 flows through the current blocking layer 2 and the p-type cladding layer 3. is squeezed into the V-groove 6 by the reverse biased p-a junction at the interface. The p-type cladding layer 3 is thin and the active layer 4 is thin.
Since the distance between the V groove 6 and the current blocking layer 2 is small, the V groove 6
The current passing through the active layer 4 enters the n-type cladding layer 5 without spreading greatly, and is injected from the n-type cladding layer 5 into the portion of the active layer 4 located above the V-circuit 6. Electrons are radiatively recombined within the active layer 4 and emit light. Since this light is absorbed by the current blocking layer 2 and undergoes loss, the loss is small in the central part of the V-groove 6 where the p-type cladding layer 3 is thick, and as a result, the effective loss in the part located above the V-groove 6 is The refractive index of the crystal becomes larger than that of the surrounding area, and light is guided by this refractive index distribution and is amplified within the resonator formed by the two crystal end faces 7, 7, leading to laser oscillation.

しかし乍らこの構成による従来の内部ストライ
プレーザは、結晶端面7において、光密度の高い
発光部が活性層4上に位置しているために、端面
破壊を生じ易く、かつ高出力動作が困難であると
いう不都合があつた。そしてこれは内部に比較し
て端面近傍では光密度が高く、かつ活性層内での
吸収が大きいことに基づいている。
However, in the conventional internal stripe laser with this configuration, since the light emitting part with high optical density is located on the active layer 4 at the crystal end face 7, the end face is easily damaged and high output operation is difficult. There was an inconvenience. This is based on the fact that the optical density is higher in the vicinity of the end face than in the interior, and that absorption within the active layer is large.

〔発明の概要〕[Summary of the invention]

この発明は従来のこのような欠点に鑑み、端面
近傍部に厚い電流阻止層を設け、この厚い電流阻
止層内にくぼみ部を設けてこのくぼみ部の深さに
沿つて活性層を屈曲せしめることにより、上記く
ぼみ部を通過する電流によつて生ずる発振しきい
値電流の増大を防止すると共に、光を吸収の少な
いクラツド層を通過して放射させることにより、
端面破壊を防止しひいては高出力動作を可能にし
た半導体レーザを提供するものである。
In view of these conventional drawbacks, the present invention provides a thick current blocking layer in the vicinity of the end face, a depression in the thick current blocking layer, and bends the active layer along the depth of the depression. This prevents an increase in the oscillation threshold current caused by the current passing through the recessed portion, and allows light to pass through the cladding layer with low absorption and radiate.
The object of the present invention is to provide a semiconductor laser that prevents end face destruction and enables high output operation.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明に係る内部ストライプレーザの
実施例につき、第2図a〜eを参照して詳細に説
明する。
Hereinafter, embodiments of the internal stripe laser according to the present invention will be described in detail with reference to FIGS. 2a to 2e.

第2図a,b,e,dおよびeは、実施例によ
る平面、正面,c−c断面、およびd−
d断面、e−e断面の各模式図であり、これ
らの各図において前記第1図a,bと同一符号は
同一または相当部分を示している。
Figures 2 a, b, e, d and e are plane, front, cc cross-sections and d-
FIG. 1 is a schematic view of a cross section d and a cross section taken along a line E-E, and in each of these figures, the same reference numerals as in FIGS. 1A and 1B indicate the same or corresponding parts.

この実施例において、符号8は前記V溝6に連
なつて結晶端面7の近傍に形成される幅の広いく
ぼみ部であり、共振端面近傍に形成された厚い電
流阻止層10の上面部より内部に向かつて形成さ
れるが、この底部は基板1には到達しないように
形成する。9は同端面近傍の溝部8に対応させた
前記活性層4の窪み部であり、くぼみ部8の深さ
に沿つて屈曲させている。
In this embodiment, reference numeral 8 denotes a wide recessed portion connected to the V-groove 6 and formed in the vicinity of the crystal end face 7. However, the bottom portion is formed so as not to reach the substrate 1. Reference numeral 9 denotes a recessed portion of the active layer 4 corresponding to the groove portion 8 near the same end face, and is bent along the depth of the recessed portion 8 .

この実施例構造の形成は、前記従来例の場合と
同様に、基板1の電流阻止層2に幅の広い溝部8
を含むV溝6をつけたのちに、液相エピタキシー
(LPE)法により、p形クラツド層3,窪み部9
を含む活性層4、およびn形クラツド層5を連続
して成長させればよい。すなわち、一般に、溝を
つけた結晶上へのLPE法の旋行においては、平
担部での成長層厚が一定値以上になると、溝部上
での成長層が平担部と揃つて溝部を完全に埋める
ことができ、この溝部が埋められる時間は、同溝
部の容積によつてほぼ決まるのを利用すればよ
い。
The structure of this embodiment is formed by forming a wide groove 8 in the current blocking layer 2 of the substrate 1, as in the case of the conventional example.
After forming a V-groove 6 including
The active layer 4 containing the active layer 4 and the n-type cladding layer 5 may be successively grown. In other words, in general, in the LPE process on a grooved crystal, when the thickness of the grown layer on the flat part exceeds a certain value, the grown layer on the groove aligns with the flat part and the groove is closed. It is sufficient to utilize the fact that the groove can be completely filled, and the time for filling the groove is approximately determined by the volume of the groove.

この実施例においても、従来例と同様にV溝6
の上方に位置する活性層4内で発光し、溝に沿つ
て活性層4内を導波光が伝播する点は同様である
が、実施例では結晶端面7の近傍の活性層4に窪
み部9を形成して、活性層位置を急激にずらせて
あるために、内部から結晶端面7に導波されてき
た光は、端面付近に至つてn形クラツド層5内を
直進することになる。そしてこの導波光は、さき
に従来例で述べたように、誘導放出により増幅さ
れて端面で光強度が最高になるために、光吸収が
大きいときにはこの光による結晶端面の破壊を生
じ易かつたのであるが、p−AlxGa1−xAs活性
層4内で放射再結合により生じた光は、この活性
層4のバンドギヤツプに対応した波長を有して、
より大きなバンドギヤツプのn−AlzGa1−zAs
クラツド層5内では殆んど吸収を受けないため
に、この実施例構造の場合には、光強度の高い結
晶端面7付近での光吸収が小さく、従つて端面破
壊が防止され、ひいては高出力動作を可能にし得
るのである。
In this embodiment as well, the V groove 6
The light is emitted in the active layer 4 located above, and the guided light propagates in the active layer 4 along the grooves, but in the embodiment, a recess 9 is formed in the active layer 4 near the crystal end face 7. , and the position of the active layer is sharply shifted, the light guided from the inside to the crystal end face 7 travels straight through the n-type cladding layer 5 to reach the vicinity of the end face. As mentioned earlier in the conventional example, this guided light is amplified by stimulated emission and the light intensity reaches its maximum at the end face, so when light absorption is large, this light tends to destroy the crystal end face. However, the light generated by radiative recombination within the p-AlxGa 1 -xAs active layer 4 has a wavelength corresponding to the band gap of this active layer 4,
Larger bandgap n-AlzGa 1 -zAs
Since there is almost no absorption within the cladding layer 5, in the case of the structure of this example, the light absorption near the crystal end face 7 where the light intensity is high is small, and therefore end face breakage is prevented, resulting in high output. It can enable operation.

しかも、この実施例構造では、幅の広い溝部8
を通過する電流は発振に寄与せずに発振しきい値
電流の増大をもたらすが、これを避けるために幅
の広い溝部8よりも広い範囲に亘つて、厚い電流
阻止領域10を形成して、同溝部8が基板1に接
続されない構造にしている。
Moreover, in this embodiment structure, the wide groove portion 8
The current flowing through the grooves does not contribute to oscillation but causes an increase in the oscillation threshold current, but in order to avoid this, a thick current blocking region 10 is formed over a wider area than the wide groove 8. The structure is such that the groove portion 8 is not connected to the substrate 1.

なお、前記実施例においては、何れも幅の広い
溝部を形成しているが、深い溝部を形成して溝の
断面積を変化させるようにしてもよく、またここ
ではAlGaAs/GaAs結晶の場合について述べた
が、他の半導体結晶からなる内部ストライプレー
ザであつても同様の効果が得られることは勿論で
ある。
In the above embodiments, wide grooves are formed, but deep grooves may be formed to change the cross-sectional area of the grooves. As described above, it goes without saying that similar effects can be obtained even with internal stripe lasers made of other semiconductor crystals.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、内部ストライ
プレーザにおいて、共振器を形成している2つの
結晶端面の少なくとも一方の端面近傍部に厚い電
流阻止層を設け、この厚い電流阻止層内でその上
面部より基板に到達しないようにくぼみ部を設
け、ストライブ溝部の断面積より大きな断面積と
なし、このくぼみ部の深さに沿つて活性層を屈曲
せしめることにより、端面破壊の防止のみなら
ず、発振しきい値電流の増大を有効に防止するこ
とができる。
As described above, according to the present invention, in an internal stripe laser, a thick current blocking layer is provided in the vicinity of at least one of the two crystal end faces forming a resonator, and the upper surface of the thick current blocking layer is By providing a recessed portion so that the strip does not reach the substrate, the cross-sectional area is larger than the cross-sectional area of the stripe groove, and by bending the active layer along the depth of this recessed portion, it is possible to not only prevent end face breakage but also to , it is possible to effectively prevent an increase in the oscillation threshold current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来例による内部ストライプレ
ーザを示す平面、正面模式図、第2図a,b,
c,d,eはこの発明の実施例による内部ストラ
イプレーザを示す平面、正面、c−c断面、
d−d断面、e−e断面模式図、 1……第1導電形の基板、2……第2導電形の
電流阻止層、3……第1導電形のクラツド層、4
……活性層、5……第2導電形のクラツド層、6
……電流阻止層を貫通する溝、7……結晶端面、
8……断面積を変化させた溝部、9……活性層の
窪み部(位置変位させた活性層)、10……厚い
電流阻止層。
Figures 1a and 1b are plane and front schematic diagrams showing a conventional internal stripe laser; Figures 2a and 2b are
c, d, and e are planes, front views, and c-c cross sections showing internal stripe lasers according to embodiments of the present invention;
dd cross section, ee cross section schematic diagram, 1... Substrate of first conductivity type, 2... Current blocking layer of second conductivity type, 3... Cladding layer of first conductivity type, 4
... Active layer, 5 ... Cladding layer of second conductivity type, 6
...Groove penetrating the current blocking layer, 7...Crystal end face,
8... Groove portion with a changed cross-sectional area, 9... Recessed portion of active layer (positionally displaced active layer), 10... Thick current blocking layer.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電形の半導体結晶基板と、この基板上
に形成された第2導電形の電流阻止層と、この電
流阻止層上に形成された第1導電形のクラツド層
と、このクランド層上に形成されて、そのバンド
ギヤツプより小さいバンドギヤツプをもつ活性層
と、この活性層上に形成されて、そのバンドギヤ
ツプより大きいバンドギヤツプをもつ第2導電形
のクラツド層とを備えた半導体レーザにおいて、
共振器を形成する2つの結晶端面の少なくとも一
方の結晶端面からその近傍部にわたつてその近傍
部に連続する内部の電流阻止層よりも厚い電流阻
止層を設け、この厚い電流阻止層内でその上面部
より内部に向かつてくぼみ部を設け、このくぼみ
部の断面積を上記近傍部に連続する内部に形成さ
れた溝部の断面積よりも大きくし、かつ上記くぼ
み部の深さに沿つて上記活性層を屈曲せしめたこ
とを特徴とする半導体レーザ。
1 A semiconductor crystal substrate of a first conductivity type, a current blocking layer of a second conductivity type formed on this substrate, a cladding layer of a first conductivity type formed on this current blocking layer, and a cladding layer of a first conductivity type formed on this cladding layer. A semiconductor laser comprising: an active layer formed on the active layer and having a bandgap smaller than the bandgap; and a cladding layer of a second conductivity type formed on the active layer and having a bandgap larger than the bandgap.
A current blocking layer is provided that is thicker than the internal current blocking layer that extends from at least one of the two crystal end faces forming the resonator to the vicinity thereof, and that the current blocking layer is A recessed portion is provided inward from the upper surface portion, the cross-sectional area of the recessed portion is larger than the cross-sectional area of the groove portion formed inside that is continuous with the adjacent portion, and the recessed portion A semiconductor laser characterized by having a bent active layer.
JP16654083A 1983-09-12 1983-09-12 Semiconductor laser Granted JPS6058689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16654083A JPS6058689A (en) 1983-09-12 1983-09-12 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16654083A JPS6058689A (en) 1983-09-12 1983-09-12 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6058689A JPS6058689A (en) 1985-04-04
JPH0434316B2 true JPH0434316B2 (en) 1992-06-05

Family

ID=15833170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16654083A Granted JPS6058689A (en) 1983-09-12 1983-09-12 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6058689A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884881T2 (en) * 1987-08-04 1994-02-10 Sharp Kk Semiconductor laser device.

Also Published As

Publication number Publication date
JPS6058689A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
JP2008135786A (en) High power semiconductor laser diode
US4797890A (en) Semiconductor light emitting device with vertical light emission
KR100773677B1 (en) Semiconductor laser device and manufacturing method thereof
JPS6343908B2 (en)
JPH06181363A (en) Semiconductor laser and manufacture thereof
JPS60149183A (en) Distributed feedback type semiconductor laser
JP6925540B2 (en) Semiconductor optical device
JPH0434316B2 (en)
JPH0671121B2 (en) Semiconductor laser device
JP7145936B2 (en) Semiconductor laser and manufacturing method thereof
JP2862889B2 (en) Semiconductor laser device
JP2549182B2 (en) Semiconductor laser device
JPS6386579A (en) Light emitting diode
JP3617119B2 (en) Super luminescent diode
KR100278626B1 (en) Semiconductor laser diode
JPS621277B2 (en)
JP3234282B2 (en) Semiconductor laser device
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor
JP2004095822A (en) Semiconductor laser device
US4868837A (en) Semiconductor laser
JP2815936B2 (en) Broad area laser
JPS6155276B2 (en)
JP2872741B2 (en) Edge emitting diode and method of manufacturing the same
JPS6342867B2 (en)
JP3239996B2 (en) Semiconductor laser device