[go: up one dir, main page]

JPS6057830B2 - Method for producing glycerol dehydrogenase - Google Patents

Method for producing glycerol dehydrogenase

Info

Publication number
JPS6057830B2
JPS6057830B2 JP54084130A JP8413079A JPS6057830B2 JP S6057830 B2 JPS6057830 B2 JP S6057830B2 JP 54084130 A JP54084130 A JP 54084130A JP 8413079 A JP8413079 A JP 8413079A JP S6057830 B2 JPS6057830 B2 JP S6057830B2
Authority
JP
Japan
Prior art keywords
enzyme
gdh
glycerol dehydrogenase
activity
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54084130A
Other languages
Japanese (ja)
Other versions
JPS568685A (en
Inventor
秀明 山田
吉樹 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54084130A priority Critical patent/JPS6057830B2/en
Publication of JPS568685A publication Critical patent/JPS568685A/en
Publication of JPS6057830B2 publication Critical patent/JPS6057830B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、グリセロール脱水素酵素生産能を有する菌株
を用いて、グリセロール脱水素酵素を効率良く製造する
方法に関し、更に詳しくは、アスペルギルス属、ペニシ
リウム属、ノイロスポーラ属、フザリウム属に属する糸
状菌類又はスタフイロコツカス属、ミクロコッカス属、
アエロモナス属、コリネバクテリウム属に属する細菌の
生産するグリセロール脱水素酵素の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently producing glycerol dehydrogenase using a bacterial strain capable of producing glycerol dehydrogenase. Filamentous fungi belonging to the genus Staphylococcus, Micrococcus,
The present invention relates to a method for producing glycerol dehydrogenase produced by bacteria belonging to the genus Aeromonas and Corynebacterium.

従来、グリセロール脱水素酵素〔1.1.1.6〕(以
下GDHと略する)は、アエロバクター・アエロゲネス
、エシエリヒア・コリ、バチルス・ズブチリス等の菌体
に所在することが古くから知られている。
Glycerol dehydrogenase [1.1.1.6] (hereinafter abbreviated as GDH) has been known for a long time to be present in bacterial cells such as Aerobacter aerogenes, Escherichia coli, and Bacillus subtilis. There is.

またその他の微生物起源のものとしては、プロテウス属
、エルビニア属、セラチア属に属する微生物(特公昭5
0−21553)、あるいはアクロモバクタ属、アルス
ロバクタ属、プレビバクテリウム属、シュードモナス属
に属する微生物によるもの(特開昭58−12788)
が知られている。近年、酵素の性質、特に高い特異性が
注目され、臨床検査分野では酵素法を利用する検査薬が
、その簡便さと相俟つて多大の関心を集めている。GD
Hもリポプロテイン・リパーゼとの共役により、体液中
のトリグリセラードの定量に、あるいはグリセロリン酸
を基質とするホスフアターゼの活性測定用等に利用でき
ることが知られており、GDHを安価に工業的に製造す
る方法を提供することが強く望まれている。本発明者は
かかる展望に応えるべく、該酵素活性を広く微生物界に
検索した結果、アスペルギルス属、ペニシリウム属、ノ
イロスポーラ属、フザリウム属に属する糸状菌又はスタ
フイロコツカス属、ミクロコッカス属、アエロモナス属
、コリネバクテリウム属に属する細菌類に著しいGDH
生産能が存在することを見出し、本発明を完成させるに
到つた。
In addition, other microorganisms belonging to the genus Proteus, Erwinia, and Serratia (Special Public Interest
0-21553), or caused by microorganisms belonging to the genus Achromobacter, Arthrobacter, Previbacterium, and Pseudomonas (Japanese Patent Application Laid-Open No. 12788-1988)
It has been known. In recent years, the properties of enzymes, particularly their high specificity, have attracted attention, and in the field of clinical testing, test reagents that utilize enzyme methods are attracting a great deal of interest due to their simplicity and simplicity. G.D.
It is known that H can also be used for quantifying triglycerides in body fluids by conjugating with lipoprotein lipase, or for measuring the activity of phosphatase that uses glycerophosphate as a substrate. It is strongly desired to provide a method to do so. In order to respond to such prospects, the present inventor conducted a wide search for the enzyme activity in the microbial world, and found that filamentous fungi belonging to the genus Aspergillus, Penicillium, Neurospora, and Fusarium, or the genus Staphylococcus, Micrococcus, and Aeromonas , marked GDH in bacteria belonging to the genus Corynebacterium
It was discovered that production capacity exists, and the present invention was completed.

本発明において使用可能な菌株は例えばアスペルギルス
●オリゼー(AspergillusOryzae)I
FO4l77、アスペルギルス●ソーヤ(AspsOj
ae)IF′04386、ペニシリウム●ノターツム(
PennicllllumrlOtatum)IF′0
4640、ペニシリウム エクスパンサム(Pen.e
xpanslOn)IF′06096、ノイロスポーラ
クロッサ(NeLlr″0sp0racrassa)
IFO6O68、フザリウム●クルモラム(Fusar
iunlculmOrum)IFO59O2等の糸状菌
及びスタフイロコツカス●アウレウス(Staphyl
OcOccueaueus)IFO3O36、ミクロコ
ッカス●バリアンス(MicrOcOccusvari
ans)IFO3765、アエロモナス・ハイドロフイ
ラ、(AerOmOnashydOrOphlla)1
F01297&ミクロコッカス ルテウス(MicrO
cOccusluteus)FOl27O8、コリネバ
クテリウム●フアシアンス(COryrlebacte
riumfasciarls)IFOl2O77などが
挙げられるが、これらの菌の他、アスペルギルス属、ペ
ニシリウム属、ノイロスポーラ属、フザリウム属等の糸
状菌及びスタフイロコツカス属、ミクロコッカス属、ア
エロモナス属、コリネバクテリウム属等の細菌に属し、
GDHを生産する菌は、すべて本発明方法において使用
することができる。
Bacterial strains that can be used in the present invention include, for example, Aspergillus Oryzae I
FO4l77, Aspergillus Sawyer (AspsOj
ae) IF'04386, Penicillium Notatum (
PenniclllumrlOtatum)IF'0
4640, Penicillium expansum (Pen.e
xpanslOn) IF'06096, Neurospora crossa (NeLlr″0sp0racrassa)
IFO6O68, Fusarium Crumorum (Fusar
iunlculmOrum) IFO59O2 and other filamentous fungi such as Staphylococcus aureus
IFO3O36, Micrococcus Variance (MicrOcOccusvariance)
ans) IFO3765, Aeromonas hydrophila, (AerOmOnashydOrOphlla) 1
F01297 & Micrococcus luteus (MicrO
cOccusluteus) FOl27O8, Corynebacterium
In addition to these bacteria, filamentous fungi such as Aspergillus, Penicillium, Neurospora, and Fusarium, and Staphylococcus, Micrococcus, Aeromonas, and Corynebacterium, etc. belongs to bacteria,
Any bacteria that produces GDH can be used in the method of the present invention.

本発明によれば、アスペルギルス属、ペニーシリウム属
、ノイロスポーラ属、フザリウム属に属する糸状菌及び
スタフイロコツカス属、ミクロコッカス属、アエロモナ
ス属、コリネバクテリウム属に属する細菌類を、栄養培
地で培養することにより、GDHが菌体中に生産蓄積さ
れるので、公知の方法及び今後開発されるであろう改良
方法で抽出、精製、乾燥することによつて酵素粉末を得
ることができる。更に具体的に説明すると、前記各属の
GDH生産菌を適当な栄養培地、例えば適当な糖質、窒
素源、無機塩類を含む培地又はGDHが誘導酵素の場合
には、酵素生産能を高めるためにグリセロールおよび有
機促進物質を含む培地で培養し、GDHを菌体中に蓄積
せしめるのであるが、ここで糖質にはグルコース、ガラ
クトース、マンノース、フラクトース、シユクロース、
ラクトース、マルトース、廃糖密、デンプン加水分解物
などの糖類、更にはグリセロール、ソルビトール、マン
ニトールなどの糖アルコール類・などが使用できる。窒
素源としては、酵母工キズ、ペプトン、肉工キズ、コー
ンスチープリカー、力ティン加水分解物、脱脂大豆、ア
ンモニウム塩などが使用される。無機塩類としては、ナ
トリウム、マンガン、マグネシウム、カルシウム、コバ
ルト、ニッケル、亜鉛などの金属塩類や硫酸、リン酸、
塩酸、硝酸などの塩類が使用できる。有機促進物質とし
ては酵母工キズやペプトン、肉工キズ、コーンスチープ
リカーなどが良い。かくして得られたGDHを含む菌体
をろ過または遠心分離によつて分別し、適当な緩衝液に
懸濁、磨砕、超音波処理、機械的圧縮または自己消化な
どの公知の方法で破砕して酵素を抽出する。
According to the present invention, filamentous fungi belonging to the genera Aspergillus, Pencilium, Neurospora, and Fusarium and bacteria belonging to the genera Staphylococcus, Micrococcus, Aeromonas, and Corynebacterium are cultured in a nutrient medium. As a result, GDH is produced and accumulated in the bacterial cells, and enzyme powder can be obtained by extraction, purification, and drying using known methods and improved methods that will be developed in the future. More specifically, the GDH-producing bacteria of each of the above genera are grown in an appropriate nutrient medium, such as a medium containing appropriate carbohydrates, nitrogen sources, and inorganic salts, or in the case where GDH is an inducible enzyme, in order to increase the enzyme production ability. The cells are cultured in a medium containing glycerol and organic promoters to accumulate GDH in the cells, and the carbohydrates include glucose, galactose, mannose, fructose, sucrose,
Sugars such as lactose, maltose, waste molasses, and starch hydrolysates, and sugar alcohols such as glycerol, sorbitol, and mannitol can be used. As the nitrogen source, yeast-processed scratches, peptone, meat-processed scratches, corn steep liquor, chilitin hydrolyzate, defatted soybeans, ammonium salts, and the like are used. Inorganic salts include metal salts such as sodium, manganese, magnesium, calcium, cobalt, nickel, and zinc, as well as sulfuric acid, phosphoric acid,
Salts such as hydrochloric acid and nitric acid can be used. Good organic accelerators include yeast, peptone, meat, and corn steep liquor. The bacterial cells containing GDH thus obtained are separated by filtration or centrifugation, suspended in an appropriate buffer, crushed by known methods such as grinding, sonication, mechanical compression, or autolysis. Extract the enzyme.

その抽出液から不溶物をろ過または遠心分離によつて分
別した後、得られる戸液または上清から硫酸アンモニウ
ム、芒硝などによる塩析あるいはアセトン、アルコール
等を用いる溶媒沈殿などの公知の方法で酵素製品を得る
。さらに高度に精製された酵素標品を得るには、イオン
交換を応用した吸着溶出法およびゲル淵過法などを用い
れば良い。細菌類の生産するGDHの活性はグリセロー
ルとN.ADを基質として反応した場合、生成するN,
ADHf)340r1mにおける吸着度の増加を分光光
度計で測定することによつて算出する。
After separating insoluble matter from the extract by filtration or centrifugation, enzyme products are prepared from the resulting solution or supernatant by salting out with ammonium sulfate, Glauber's salt, etc., or solvent precipitation using acetone, alcohol, etc. get. In order to obtain a more highly purified enzyme preparation, an adsorption/elution method using ion exchange, a gel filtration method, or the like may be used. The activity of GDH produced by bacteria is dependent on glycerol and N. When reacting with AD as a substrate, the generated N,
ADHf) Calculated by measuring the increase in adsorption degree at 340r1m with a spectrophotometer.

すなわち、グリセロール800μモル、N,ADO.5
μモル、炭酸緩衝液(PH9.O)30μモルを含む反
応混液2.buLに酵素液0.1m1を混合し、25℃
で反応させ、反応開始から4分間340r1mの波長に
おける紫外部吸の増加を測定し、その直線部分から1分
間当りの吸光度の増加を算出する。
That is, 800 μmol of glycerol, N, ADO. 5
Reaction mixture containing 30 μmol of carbonate buffer (PH9.O)2. Mix 0.1ml of enzyme solution with buL and heat at 25°C.
The increase in ultraviolet absorption at a wavelength of 340 rpm was measured for 4 minutes from the start of the reaction, and the increase in absorbance per minute was calculated from the linear part.

すなわち対照としては上記組成でグリセロールの代りに
水を用いて同様の操作を行ない、試験液の340r1m
の吸光度の増加から対照のそれを差し引く。NADHの
340r1mにおける分子吸光係数として(ε=6.2
2×103)を用い、差し引いた吸光度値から生成する
N,ADH量を求め、これをもとにして試料中の酵素力
価を算出する。但し糸状菌の生産するGDHの場合は、
NADPを補酵素にするため、糸状菌類のGDHを測定
するときには、NADの代りにNADPを使用する外は
、前述の測定法と全く同様に行う。酵素力価の表示は上
記条件下で1分間に1μモルのNADH及びNADPH
を生成せしめる酵素量を1単位として行なう。
That is, as a control, the same operation was performed with the above composition using water instead of glycerol, and 340r1m of the test solution was used.
Subtract that of the control from the increase in absorbance of . As the molecular extinction coefficient of NADH at 340r1m (ε=6.2
2 x 103), the amount of N and ADH produced is determined from the subtracted absorbance value, and based on this, the enzyme titer in the sample is calculated. However, in the case of GDH produced by filamentous fungi,
Since NADP is used as a coenzyme, GDH of filamentous fungi is measured in exactly the same manner as the above-mentioned measurement method except that NADP is used instead of NAD. The enzyme titer is expressed as 1 μmol NADH and NADPH per minute under the above conditions.
The amount of enzyme that produces 1 unit is used.

本発明の予備試験のための糸状菌類及び細菌類の生産す
るGDHの培養力価と比活性は表8に示す。
Table 8 shows the culture titer and specific activity of GDH produced by filamentous fungi and bacteria for preliminary testing of the present invention.

なお、この予備試験のための菌類の培組成は表1、力価
の検定法は表2のとおりである。本発明によつて得られ
るGDHの理化学的性質をスタフイロコツカス●アウレ
ウスIF′0306喝源のもの(後記の実施例1で得ら
れた比活性100単位/M9の精製酵素)を代表例とし
て示す。(1)作用本酵素はNADの共存下にグリセロ
ールを脱水素し、ジヒドロキシアセトンとNADHを生
成する反応を触媒する(2)基質特異性 本酵素はグリセロール以外にも、1,2−プロパンジオ
ール、2,3−ブタンジオール、グリセロ−ルーd−モ
ノクロロヒドリン等にも作用しうるが、メタノール、エ
タノール、プロパノール等のアルコール類は脱水素でき
なかつた(表4参照)。
The fungal culture composition for this preliminary test is shown in Table 1, and the titer assay method is shown in Table 2. The physicochemical properties of GDH obtained by the present invention are shown using Staphylococcus aureus IF'0306 source (purified enzyme with a specific activity of 100 units/M9 obtained in Example 1 described later) as a representative example. show. (1) Action This enzyme dehydrogenates glycerol in the presence of NAD and catalyzes the reaction that produces dihydroxyacetone and NADH. (2) Substrate specificity In addition to glycerol, this enzyme dehydrogenates glycerol and catalyzes the reaction to produce dihydroxyacetone and NADH. It can also act on 2,3-butanediol, glycero-d-monochlorohydrin, etc., but alcohols such as methanol, ethanol, propanol, etc. cannot be dehydrogenated (see Table 4).

また補酵素としてN,ADPを用いた場合はN,ADに
比べて、活性は全く無かつた。
Furthermore, when N,ADP was used as a coenzyme, there was no activity at all compared to N,AD.

またグリセロール、NADに対するKTrl,値は夫々
1.09×10−2Mおよび8.93×10−5Mであ
つた。(3)至適PHおよび安定PH範囲本酵素の至適
PHは9.附近にある(逆反応の至適PHは6.附近で
ある)。
Further, the KTrl values for glycerol and NAD were 1.09 x 10-2M and 8.93 x 10-5M, respectively. (3) Optimal PH and stable PH range The optimal PH of this enzyme is 9. (The optimum pH for the reverse reaction is around 6.).

本酵素の安定PH域は30℃、1時間処理でPH6.O
〜10.0の範囲にある。更に最も安定なPHは7.0
ft近で、該PHでは55℃、1紛間処理でも100%
の活性が残存する。(4)作用過程の範囲 本酵素の作用最適温度は前記の活性測定条件下において
45〜50℃付近にある。
The stable pH range of this enzyme is 6. O
~10.0. Furthermore, the most stable pH is 7.0
ft, 100% at 55℃ and 1 dust treatment at the same pH.
activity remains. (4) Range of action process The optimum temperature for action of this enzyme is around 45 to 50°C under the activity measurement conditions described above.

(5)PHl温度などによる失格条件 本酵素はPH7.へ1紛間の処理の場合、60℃まで安
定、75℃では完全に失活する。
(5) Disqualification conditions due to PHL temperature, etc. This enzyme has a pH of 7. In the case of a powder treatment, it is stable up to 60°C and is completely inactivated at 75°C.

(6)種々薬剤の影響 本酵素活性は表5に示す如くCu2+イオン、Zn2+
イオン、Cd2+イオンによつて顕著に阻害される。
(6) Effects of various drugs This enzyme activity is affected by Cu2+ ion, Zn2+ ion, and Zn2+ as shown in Table 5.
ion, Cd2+ ion.

他方、表6に示す如くK+、Rb+、NH4+によつて
顕著な活性化が認められた。EDTAのような金属キレ
ート剤では阻害されないが、O−フエナンスロリンのよ
うな金属レート剤では顕著な阻害が認められた。またP
CMBのようなSH阻害剤によつて活性が顕著に阻害さ
れることから、本酵素の活性発現にはSH基が関与して
いるものと推察される。
On the other hand, as shown in Table 6, significant activation was observed by K+, Rb+, and NH4+. No inhibition was observed with metal chelating agents such as EDTA, but significant inhibition was observed with metal chelating agents such as O-phenanthroline. Also P
Since the activity is markedly inhibited by SH inhibitors such as CMB, it is inferred that the SH group is involved in the expression of the activity of this enzyme.

(7)分子量 セフアロース戊のろ過法により、本酵素の分子量は約3
90000と算出され、またSDSを用いた電気泳動法
では約42000と算出される。
(7) Molecular weight The molecular weight of this enzyme was approximately 3
It is calculated to be 90,000, and by electrophoresis using SDS, it is calculated to be about 42,000.

これらから、本酵素はw個のサブユニットからなるもの
と推察される。次に本発明を実施例により説明する。
From these, it is inferred that this enzyme consists of w subunits. Next, the present invention will be explained by examples.

実施例1 グリセロール1.0%(重量%、以下同じ)、ポリペプ
トン1.5%、リン酸2カリウム0.3%、塩化ナトリ
ウム0.2%、硫酸マグネシウム(7H20)0.02
%、酵母エキストラクト0.1%(PH7.O〜7.2
)の混合物20eを30e容のジヤーフアメンターに仕
込み120′Cで3紛間蒸気滅菌して培地を得た。
Example 1 Glycerol 1.0% (wt%, same below), polypeptone 1.5%, dipotassium phosphate 0.3%, sodium chloride 0.2%, magnesium sulfate (7H20) 0.02
%, yeast extract 0.1% (PH7.O~7.2
) mixture 20e was placed in a 30e capacity jar fermenter and sterilized with steam at 120'C for three times to obtain a culture medium.

他方同組成培地を用いた28℃、4満間、振とう培養し
ておいたスタフイロコツカス属・アウレウスIFO3O
6Oの培養物250nLを前記培地に無菌的に植菌し、
28℃で2鋳間、通気培養する。
On the other hand, Staphylococcus aureus IFO3O was cultured with shaking at 28°C for 4 hours using the same composition medium.
Aseptically inoculating 250 nL of a 6O culture into the medium,
Culture with aeration at 28°C for 2 incubations.

培養液40eを連続遠心分離機にて処理し、菌体を集め
、この菌体を0.1Mリン酸緩衝液(PH7.O)5e
に懸濁する。この懸濁液を超音波破砕機にかけ菌体を破
砕する。破砕した後、遠心分離によつて不容物の除去を
行ない、得られた上清に1%になる様にストレプトマイ
シン流酸塩を添加し、生じる不溶物を遠心分離で除去す
る。得られた上清にまず40%飽和に硫酸アンモニウム
を加え、不溶物を遠心分離で沈殿として除去した後、そ
の上清に更に終末60%飽和になる様に硫酸アンモニウ
ムを加えGDHを沈殿として回収する。この沈殿として
の活性回収率は90%で比活性は7市倍に上昇している
。得られた沈殿を600m1の0.1Mリン酸緩衝液(
PH7.O)に溶解し、セロファンチューブに入れ、0
.01Mリン酸カリ緩衝液で1時間透析する。得られた
脱塩酵素液を、予め0.01Mリン酸緩衝液(PH”7
.0)で平衡化しておいたDEAE−セルロース(ブラ
ウン社製)を充填したカラムに流し、GDHを吸着する
。更に樹脂の平衡化に使用した緩衝液で不純物を洗い流
した後、0.25r!4の食塩を溶解した同緩衝液と0
.4Mの食塩を溶解した同緩衝液とで濃度勾配をつくり
、徐々に食塩濃度を上げながらGDHを溶出させた。溶
出されたGDH活性区分を集め、硫酸アンモニウムの4
5〜56%飽和で前記と同様に塩析分画を行なう。55
%飽和の硫酸アンモニウムで沈殿するGDHを遠心分離
で集め、少・量の0.1Mリン酸緩衝液(PH7.O)
に溶解後、同緩衝液で緩衝化したセフアデツクスG−2
5で分子篩脱塩を行ない、得られる脱脱液を凍結乾燥す
る。
The culture solution 40e is treated with a continuous centrifuge, the bacterial cells are collected, and the bacterial cells are dissolved in 0.1M phosphate buffer (PH7.O) 5e.
Suspend in This suspension is subjected to an ultrasonic crusher to crush the bacterial cells. After crushing, impurities are removed by centrifugation, streptomycin sulfate is added to the resulting supernatant at a concentration of 1%, and the resulting insoluble substances are removed by centrifugation. First, ammonium sulfate is added to the resulting supernatant to achieve a 40% saturation, and insoluble matter is removed as a precipitate by centrifugation. Ammonium sulfate is further added to the supernatant to achieve a final saturation of 60%, and GDH is recovered as a precipitate. The activity recovery rate as a precipitate was 90%, and the specific activity had increased by 7 times. The obtained precipitate was added to 600ml of 0.1M phosphate buffer (
PH7. Dissolve in O), put in a cellophane tube,
.. Dialyze for 1 hour against 01M potassium phosphate buffer. The obtained desalted enzyme solution was preliminarily diluted with 0.01M phosphate buffer (PH”7).
.. 0) to adsorb GDH. Furthermore, after washing away impurities with the buffer solution used for equilibration of the resin, 0.25r! The same buffer solution containing salt in No. 4 and 0
.. A concentration gradient was created with the same buffer in which 4M salt was dissolved, and GDH was eluted while gradually increasing the salt concentration. The eluted GDH active fraction was collected and treated with ammonium sulfate.
Salting out fractionation is carried out as above at 5-56% saturation. 55
GDH precipitated with saturated ammonium sulfate was collected by centrifugation and added to a small amount of 0.1M phosphate buffer (PH7.O).
Sephadex G-2 buffered with the same buffer after dissolving in
Molecular sieve desalting is performed in Step 5, and the resulting desalted solution is freeze-dried.

かくして比活性2&7単位/M9のGDH約1.44y
が得られる。阻抽出液からの活性回収率は59%であり
、比活性の上昇は18皓に達した。実施例2 使用菌株にミクロコッカス、バリアンス IF′C3765を用い、培地としてグルコース1%、
ポリペプトン1.5%、リン酸2カリウム0.3%、塩
化kナトリウム0.2%、硫酸マグネシウム(7H20
)0.02%、酵母工キズ0.1%(PH7.O〜7.
2)からなる溶液20eを30e容のジヤーフアーメン
ターに仕込み、実施例1と同様の条件で減菌し、予め同
組成の培地で2(代)、4m間振とう培養しておいたミ
ク口コッカス・パリアンスIFO3765の培養物25
0wLιを無菌的に植菌し、2肛、2四間通気攪拌培養
する。
Thus about 1.44y of GDH with specific activity 2 & 7 units/M9
is obtained. The activity recovery rate from the sterile extract was 59%, and the increase in specific activity reached 18%. Example 2 Micrococcus and Variance IF'C3765 were used as the bacterial strain, and glucose 1% was used as the medium.
Polypeptone 1.5%, dipotassium phosphate 0.3%, potassium sodium chloride 0.2%, magnesium sulfate (7H20
) 0.02%, yeast scratches 0.1% (PH7.O~7.
A solution 20e consisting of 2) was placed in a 30e capacity jar fermenter, sterilized under the same conditions as in Example 1, and cultured with shaking for 2 generations in a medium of the same composition in advance for 4 m. Culture of Stococcus palliances IFO3765 25
0wLι was inoculated aseptically and cultured with aeration for 2 hours for 24 days.

得られた培養液401を実施例1と同様な方法で集菌し
、懸濁させた後、DYNO−MILL(ウイリー.工ー
.ブツコーフエン社製、スイス)で菌体を破砕する。
The obtained culture solution 401 is collected and suspended in the same manner as in Example 1, and then the bacterial cells are disrupted using a DYNO-MILL (manufactured by Wiley.K.Butskofen, Switzerland).

磨砕した後、遠心分離によつて不溶物を除去し、得られ
た上清に1%になる様にストレプトマイシン硫酸塩を加
え、不純物を遠心分離し沈殿として除去した後、その上
清に終末35%飽和になるように硫酸アンモニウムを加
え、更に不純物を遠心分離し沈殿として除去した後、そ
の上清に終末65%飽和になる様に硫酸アンモニウムを
加え、GDHを沈殿として回収する。この沈殿の活性回
収率は85%で比活性は7倍に上昇した。得られた沈殿
を実施例1と同様な方法で透析、イオン交換体処理をし
、比活性25.0$位/WIgの凍結乾燥GDH約1.
2yを得た。実施例3 使用菌株としてフエロモナス・ハイドロフイラIFOl
2978、ミクロコッカス・ルテウスIFOl27O8
、コリネバクテリウム.フアシアンスIFOl2O77
を用い、実施例1と同様に培養、精製を行ない次の様な
比活性の凍結乾燥GDHを得た。
After grinding, insoluble matter is removed by centrifugation, streptomycin sulfate is added to the resulting supernatant to a concentration of 1%, impurities are removed as a precipitate by centrifugation, and the supernatant is Ammonium sulfate is added to give a final saturation of 35%, impurities are removed as a precipitate by centrifugation, and ammonium sulfate is added to the supernatant to give a final saturation of 65%, and GDH is recovered as a precipitate. The activity recovery rate of this precipitate was 85%, and the specific activity increased 7 times. The obtained precipitate was dialyzed and treated with an ion exchanger in the same manner as in Example 1, and freeze-dried GDH with a specific activity of about 25.0 $/WIg was about 1.
Got 2y. Example 3 Pheromonas hydrophila IFOl as the strain used
2978, Micrococcus luteus IFOl27O8
, Corynebacterium. Faciance IFOl2O77
Culture and purification were carried out in the same manner as in Example 1 to obtain lyophilized GDH with the following specific activity.

実施例4 使用菌株に、アスペルギルス.オリゼーIFO4l77
、アスペルギルス・ソーヤIFO488臥ペニシリウム
.ノターツムIFO464O)ノイロスポーラ・クラツ
サIFO6OB)フザリウム・クルモラムIFO59O
2を実施例1と同様に培養、精製を行ない次の様な比活
性の凍結乾燥GDHを得た。
Example 4 The bacterial strain used was Aspergillus. Orysee IFO4l77
, Aspergillus sojae IFO488 Penicillium. Notatum IFO464O) Neurospora cratusa IFO6OB) Fusarium culmorum IFO59O
2 was cultured and purified in the same manner as in Example 1 to obtain lyophilized GDH with the following specific activity.

Claims (1)

【特許請求の範囲】[Claims] 1 アスペルギルス属、ペニシリウム属、ノイロスポー
ラ属、フザリウム属、スタフイロコツカス属、ミクロコ
ッカス属、アエロモナス属、コリネバクテリウム属に属
するグリセロール脱水素酵素生産菌を栄養培地に培養し
、該培養物中からグリセロール脱水素酵素を採取するこ
とを特徴とするグリセロール脱水素酵素の製造法。
1 Glycerol dehydrogenase-producing bacteria belonging to the genus Aspergillus, Penicillium, Neurospora, Fusarium, Staphylococcus, Micrococcus, Aeromonas, and Corynebacterium are cultured in a nutrient medium, and from the culture A method for producing glycerol dehydrogenase, which comprises collecting glycerol dehydrogenase.
JP54084130A 1979-07-02 1979-07-02 Method for producing glycerol dehydrogenase Expired JPS6057830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54084130A JPS6057830B2 (en) 1979-07-02 1979-07-02 Method for producing glycerol dehydrogenase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54084130A JPS6057830B2 (en) 1979-07-02 1979-07-02 Method for producing glycerol dehydrogenase

Publications (2)

Publication Number Publication Date
JPS568685A JPS568685A (en) 1981-01-29
JPS6057830B2 true JPS6057830B2 (en) 1985-12-17

Family

ID=13821917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54084130A Expired JPS6057830B2 (en) 1979-07-02 1979-07-02 Method for producing glycerol dehydrogenase

Country Status (1)

Country Link
JP (1) JPS6057830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442601U (en) * 1990-08-07 1992-04-10
CN105112335B (en) * 2015-09-06 2018-09-25 中国农业科学院烟草研究所 The staphylococcus CGMCC No.10671 of enduring high-concentration glucose and its application

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917980A (en) * 1982-06-28 1984-01-30 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Microbial cell and use thereof for producing oxidation product
DE3311027A1 (en) * 1983-03-25 1984-09-27 Boehringer Mannheim Gmbh, 6800 Mannheim NAD (P) INDEPENDENT GLYCERINE DEHYDROGENASE, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF FOR DETERMINING GLYCERINE AND TRIGLYCERIDES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442601U (en) * 1990-08-07 1992-04-10
CN105112335B (en) * 2015-09-06 2018-09-25 中国农业科学院烟草研究所 The staphylococcus CGMCC No.10671 of enduring high-concentration glucose and its application

Also Published As

Publication number Publication date
JPS568685A (en) 1981-01-29

Similar Documents

Publication Publication Date Title
JPS6057830B2 (en) Method for producing glycerol dehydrogenase
JP3076856B2 (en) Degradation method of alginic acid by bacteria
US4463095A (en) Process for producing α-glycerophosphate oxidase
JP3122990B2 (en) Process for producing O-methyl-L-tyrosine and L-3- (1-naphthyl) alanine
JP3093039B2 (en) Novel esterase A and method for producing the same
JP3602162B2 (en) Method for producing 3-hydroxybutyrate dehydrogenase
JPH09224660A (en) Aldehyde dehydrogenase
JPS5840467B2 (en) Method for producing glycerol dehydrogenase
JPS6012028B2 (en) Method for producing glycerol dehydrogenase
JP4139502B2 (en) Method for producing pyrrole-2-carboxylic acid
JP3065175B2 (en) Method for producing 3-cyclohexyl-L-alanine
JPH07108219B2 (en) Method for producing NADH oxidase
JPS59156281A (en) N-acetylhexosamine oxidase and its preparation
JP3820617B2 (en) ε-Poly-L-lysine-degrading enzyme and method for producing ε-poly-L-lysine with low polymerization degree using the same
JPH0657148B2 (en) Method for producing creatine amidino-lolase
JP2959777B2 (en) Novel endodextranase, method for producing the same, and method for producing isomaltooligosaccharide using the enzyme
JPH0358273B2 (en)
JPS6121073B2 (en)
JPS6016233B2 (en) Method for producing glycerolkinase
JPS6121074B2 (en)
JPS5840470B2 (en) Method for producing sarcosine oxidase
JP3917723B2 (en) Lactone hydrolase and process for producing the same
JPS584551B2 (en) Method for producing choline oxidase
JPH0675505B2 (en) Method for producing D-threonine aldolase
JPH05236961A (en) Production of argininosuccinate lyase