[go: up one dir, main page]

JP3602162B2 - Method for producing 3-hydroxybutyrate dehydrogenase - Google Patents

Method for producing 3-hydroxybutyrate dehydrogenase Download PDF

Info

Publication number
JP3602162B2
JP3602162B2 JP18104794A JP18104794A JP3602162B2 JP 3602162 B2 JP3602162 B2 JP 3602162B2 JP 18104794 A JP18104794 A JP 18104794A JP 18104794 A JP18104794 A JP 18104794A JP 3602162 B2 JP3602162 B2 JP 3602162B2
Authority
JP
Japan
Prior art keywords
hydroxybutyrate dehydrogenase
producing
enzyme
culture
hydroxybutyrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18104794A
Other languages
Japanese (ja)
Other versions
JPH0838169A (en
Inventor
晋治 古賀
守 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Pharma Corp
Original Assignee
Asahi Kasei Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Pharma Corp filed Critical Asahi Kasei Pharma Corp
Priority to JP18104794A priority Critical patent/JP3602162B2/en
Publication of JPH0838169A publication Critical patent/JPH0838169A/en
Application granted granted Critical
Publication of JP3602162B2 publication Critical patent/JP3602162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明はアルカリゲネス(Alcaligenes)属に属する3−ヒドロキシ酪酸脱水素酵素(3−hydroxybutyrate dehydrogenase)生産菌を培養し、その培養物から3−ヒドロキシ酪酸脱水素酵素を採取してなる3−ヒドロキシ酪酸脱水素酵素の製造法に関する。
【0002】
【従来技術及び課題】
3−ヒドロキシ酪酸脱水素酵素(EC.1.1.1.30)は、NADの存在下3ーヒドロキシ酪酸に作用して1モルのNADを消費し、1モルのアセト酢酸及び、1モルの還元型NADに変換する触媒作用を示す酵素として知られている。
【0003】
これまで3−ヒドロキシ酪酸脱水素酵素について、動物由来のものとしては例えばラット脳(Biochem.Cell Biol.,68,980−983(1990))、ラット肝臓(Biochem.Cell Biol.,68,1225−1230(1990))、ウシ心臓(Arch.Biochem.Biophys.,262,85−98(1988))が報告されている。
【0004】
また、微生物由来のものとしてはロードスピリラム・ルブラム(Rhodospirillum rubrum)(J.Biol.Chem.237,603−607(1962))、シュードモナス・レモイグネイ(Pseudomonas lemoignei)(J.Biol.Chem.240,4023−4029(1965))、マイコバクテリウム・フレイ(Mycobacterium phlei)(J.Gen.Microbiol.104,123−126(1978))、パラコッカス・デニトリフィカンス(Paracoccusdenitrificans)(Biochim.Biophys.Acta839,300−307(1985))、ズーグロエア・ラミゲラ(Zoogloea ramigera)(J.Biochem.89,625−635(1981))、ロードシュードモナス・スフェロイデス(Rhodopseudomonas spheroides)(Biochem.J.241,297−300(1987))、アゾスピリルム・ブラジレンズ(Azospirillum brasilense)(J.Gen.Microbiol.136,645−649(1990))等が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの菌株以外の3−ヒドロキシ酪酸脱水素酵素生産能を有する菌株による該酵素の製造法の開発が望まれていた。
【0006】
【課題を解決するための手段】
本発明者らは、3−ヒドロキシ酪酸脱水素酵素の工業的生産の可能な製造法を求めて鋭意研究を重ねた結果、奈良県五条市のジャガイモ畑の土壌から単離したアルカリゲネス属菌NO.981菌株が3−ヒドロキシ酪酸脱水素酵素生産能を有することを初めて見いだし、本発明を完成した。
【0007】
本発明は上記の知見に基づいて完成されたもので、アルカリゲネス属に属する3−ヒドロキシ酪酸脱水素酵素生産菌を培養し、その培養物から3−ヒドロキシ酪酸脱水素酵素を採取することを特徴とする3−ヒドロキシ酪酸脱水素酵素の製造法である。
以下に本発明について詳細に説明する。
【0008】
まず、本発明の3−ヒドロキシ酪酸脱水素酵素生産菌について、アルカリゲネス属に属する3−ヒドロキシ酪酸脱水素酵素を生産する能力を有する微生物であれば何ら限定されるものではなく、3−ヒドロキシ酪酸脱水素酵素生産能を有する変種や変異株であってもよく、好ましくはアルカリゲネス属に属するNO.981株が挙げられ、本菌株は工業技術院技術研究所(現;工業技術院生命工学技術研究所)に寄託番号微工研条寄第2570号(FERM BP−2570)として寄託したものである。なお本菌株の菌学的性質、同定及び命名については特開平3−127985号公報、米国特許第5173416明細書に詳細に記載されている。
【0009】
本発明を実施するにあたり、その培養形態としては液体培養、個体培養いずれも可能であるが工業的には通気撹拌培養を行うのが有利である。また使用する培養源としては一般に微生物培養に用いられる炭素源、窒素源、無機塩及びその他の微量栄養源の他、アルカリゲネス属に属する微生物の利用できる栄養源であればすべて使用できる。
【0010】
炭素源としてはグルコース、フルクトース、サッカロース、キシロース、マルトース、グリセロール、デキストリン、でんぷん、アミノ酸等の他、脂肪酸、油脂、有機酸などが単独でまたは組み合わせて用いられる。窒素源としては無機窒素源、有機窒素源のいずれも使用可能であり、無機栄養源としては硫酸アンモニウム、硝酸アンモニウム、尿素、硝酸ソーダ、塩化アンモニウム等が挙げられる。また有機窒素源としては大豆、米、トウモロコシ、小麦等の粉、コーンスティープリカー、ペプトン、肉エキス、カゼイン、アミノ酸、酵母エキス等が挙げられる。無機塩及び微量栄養素としてはリン酸、マグネシュウム、カリウム、鉄、カルシウム、亜鉛等の塩類の他ビタミン、非イオン性界面活性剤、消泡剤等の菌の生育や3−ヒドロキシ酪酸脱水素酵素の生産を促進するものであれば必要に応じて使用できる。
【0011】
培養は好気的条件で、培養温度は菌が発育し、3−ヒドロキシ酪酸脱水素酵素が産生する範囲であればよく、通常15℃〜37℃、好ましくは25゜C〜35゜Cである。培養時間は条件により異なるが3−ヒドロキシ酪酸脱水素酵素が最も産生される時間まで培養すればよく、通常24〜100時間程度である。
3−ヒドロキシ酪酸脱水素酵素は主としてその菌体内に含有、蓄積されており、その菌体内から抽出すればよい。3−ヒドロキシ酪酸脱水素酵素の抽出法を例示すればまず培養物を固液分離し、得られた湿潤菌体をリン酸緩衝液やトリス−塩酸緩衝液などの溶液に分散し、リゾチーム処理、超音波処理、フレンチプレス処理、ダイノミル処理などの種種の菌体処理手段を適宜選択組み合わせて、粗製の3−ヒドロキシ酪酸脱水素酵素含有液を得る。
【0012】
粗製の3−ヒドロキシ酪酸脱水素酵素含有液から公知のタンパク質や酵素などの単離、精製手段を用いて精製3−ヒドロキシ酪酸脱水素酵素を得る。例えば、粗製の3−ヒドロキシ酪酸脱水素酵素含有液にアセトン、メタノール、エタノールなどの有機溶媒による分別沈澱法、硫安、食塩などによる塩析法などを適用して3−ヒドロキシ酪酸脱水素酵素を沈澱させ、回収する。さらに、この沈澱物を必要に応じ透析、等電点沈澱を行った後、電気泳動法などで単一の帯を示すまで、イオン交換体、ゲル濾過剤、吸着体などを用いるカラムクロマトグラフィーなどにより精製する。また、これらの方法を適当に組み合わせることにより3−ヒドロキシ酪酸脱水素酵素の精製度が上がる場合は適宜組み合わせて行うことができる。
【0013】
これらの方法によって得られる酵素は安定化剤として、各種の塩類、糖類、タンパク質、脂質、界面活性剤などを加えあるいは加える事なく、限外濾過濃縮、凍結乾燥の方法により、液状または固形の3−ヒドロキシ酪酸脱水素酵素を得ることができ、また、適宜凍結乾燥を行ってもよく、この場合安定化剤としてサッカロース、マンニトール、食塩、アルブミンなどを0.5〜10%程度添加してもよい。
【0014】
つぎに本発明で得られる3−ヒドロキシ酪酸脱水素酵素の理化学的性質及び酵素活性測定法を述べる。
3−ヒドロキシ酪酸脱水素酵素の活性測定法
0.2Mのトリス−塩酸緩衝液(pH8.5)0.2ml、50mMの3−ヒドロキシ酪酸0.1ml、10mMのNAD0.1ml、100U/mlのジアホラーゼ0.05ml、0.25%のNTB(ニトロテトラゾニウムブルー)0.02ml、10%のトリトンX−100を0.01ml、及び蒸留水0.52mlよりなる反応液1mlを37゜Cで1分間予備加温した後、20μlの酵素液を添加して10分間反応させる。反応後、0.1Nの塩酸を添加して反応を停止させ、5分以内に層長1.0cmセルを用いて波長550nmにおける吸光度を測定する(As)。また盲検として酵素液のかわりに蒸留水20μlを用いて同一の操作を行って吸光度を測定する(Ab)、この酵素使用の吸光度(As)と盲検の吸光度(Ab)の吸光度差(As−Ab)より酵素活性を求める。酵素活性1単位は37゜Cで1分間に1μモルの還元型NADを生成させる酵素量とし、計算式は下記の通りである。
【0015】
【数1】

Figure 0003602162
【0016】
理化学的性質
(1)酵素作用:基質として3−ヒドロキシ酪酸を用いた酵素作用を以下に示す。
【0017】
【化1】
Figure 0003602162
【0018】
(2)基質特異性:3−ヒドロキシ酪酸に基質特異性を示す。各種基質に対する特異性は表1の通りである。
【0019】
【表1】
Figure 0003602162
【0020】
(3)Km 値:1.6±0.5(mM)(3−ヒドロキシ酪酸に対して)
0.12±0.02(mM)(NADに対して)
4)等電点:5.0±0.2(キャリアー−アンホラインを用いた電気泳動法にて)
(5)分子量:60000±5000(TSK G−3000SWによるゲル濾過法にて)、30000±5000(SDSポリアクリルアミドゲル電気泳動法にて)
(6)至適pH
前記酵素活性測定法にしたがって至適pHを求めたもので、その結果を図1に示した。pH5.0〜6.0の範囲は100mM酢酸緩衝液、pH6.0〜7.5の範囲は100mMリン酸緩衝液、pH7.5〜9.0の範囲は100mMトリス−塩酸緩衝液、pH9.0〜11.0の範囲は100mMグリシン−水酸化ナトリウム緩衝液を使用した場合の活性値を示すもので、至適pHは8〜9にあった。
(7)pH安定性
100mM各種緩衝液(3−ヒドロキシ酪酸脱水素酵素1U/ml)を37゜C、60分間処理し、その残存活性を前記酵素活性測定法に従って測定した。その結果を図2に示す。pH4.0〜5.0は100mMクエン酸緩衝液、pH5.0〜6.0は100mM酢酸緩衝液、pH6.0〜7.5は100mMリン酸緩衝液、pH7.5〜9.0は100mMトリス−塩酸緩衝液、pH9.0〜11.0は100mMグリシン−水酸化ナトリウム緩衝液を使用した。pH7.5〜11の範囲で最も良好な安定性を示した。
(8)至適温度
前記酵素活性測定法に従って、温度を25゜C〜60゜Cの範囲で変化させて至適温度を求めた結果は図3に示すとおりであり、本酵素の至適温度は45〜50゜Cであった。
(9)熱安定性
100mMトリス−塩酸緩衝液(pH 8.5)(3−ヒドロキシ酪酸脱水素酵素1U/ml)を各温度で10分間加熱処理した後の残存活性を前記酵素活性測定法に従って測定した。その結果、図4に示すとおり少なくとも37゜Cまで安定であった。
(10)金属イオンの影響
各種金属イオン(1mM)の本酵素活性への影響について調べた結果は表2に示すとおりで、銅イオンによる強い阻害がみられた。
【0021】
【表2】
Figure 0003602162
【0022】
【実施例】
ついで、本発明の実施例を詳しく述べるが、本発明はなんらこれにより限定されるものではない。
【0023】
【実施例1】
アルカリゲネス・エスピーNO.981株をグルタミン酸2%、酵母エキス5.0%からなる培地(pH7.0)100mlに接種し、28゜C、48時間培養し、得られた種培養液を上記と同一組成培地に消泡剤を加えた培地(pH7.0)20lに添加し、28゜Cで48時間培養した。培養終了後、培養物を4500rpmで30分間、遠心し、菌体560gを回収した。
【0024】
この菌体に10mMEDTA、50mMトリス−塩酸緩衝液(pH7.5)を含む0.1%リゾチーム溶液2lを加え、37゜C、30分間反応させて、可溶化を行った。その後、これを4500rpmで30分間遠心分離して不溶物を除去して、その上清1870ml(41100U)を得た。
ついでこの上清に5%硫酸プロタミン18.7mlを加えて沈でん物を遠心除去し、その上清を20mMトリス−塩酸緩衝液(pH8.5)にて一夜透析し、DEAE−セファロース(2.7×30cm)(ファルマシア社製)イオン交換クロマトグラフィーを行った。溶出は塩化カリウムの0〜1Mのリニアグラジエントにより行い、0.20.3MKClの溶出画分(31700U)を回収した。この酵素溶液に4M濃度となるようにNaClを溶解し、フェニルセファロース(2.6×19.5cm)(ファルマシア社製)の疎水クロマトグラフィーを行った。溶出は4M〜0MのNaCl直線濃度勾配により行い、1M〜0.5MのNaClの溶出画分(2080U)を回収した。
【0025】
ついで、この酵素液を10mMのトリス−塩酸緩衝液(pH8.5)にて一夜透析し、Q−セファロース(2.6×19.5cm)(ファルマシア社製)のイオン交換クロマトグラフィーを行った。溶出は0〜0.4MのNaClのリニアグラジエントにより行い、0.2〜0.25MのNaClの溶出画分(20000U)を回収した。更に、この酵素液を10mMトリス−塩酸緩衝液(pH7.5)にて一夜透析し、ハイドロキシアパタイト(1.6×26.5cm)(ペンタックス社製)クロマトグラフィーを行った。溶出は0〜0.3Mリン酸緩衝液による直線グラジエントにより行い、0.06〜0.1Mのリン酸緩衝液の溶出画分(16000U)を回収し、凍結乾燥して精製3−ヒドロキシ酪酸脱水素酵素(213U/mg、75mg)を得た。
【0026】
【発明の効果】
本発明により、アルカリゲネス属に属する微生物による新規な製造法を提供できるものであり、本酵素を用いるケトン体の1つの3−ヒドロキシ酪酸の測定用酵素をして提供できた。
【図面の簡単な説明】
【図1】図1は本発明の3−ヒドロキシ酪酸脱水素酵素の至適pH曲線を示す。
【図2】図2は本発明の3−ヒドロキシ酪酸脱水素酵素のpH安定曲線を示す。
【図3】図3は本発明の3−ヒドロキシ酪酸脱水素酵素の至適温度曲線を示す。
【図4】図4は本発明の3−ヒドロキシ酪酸脱水素酵素の熱安定曲線を示す。[0001]
[Industrial applications]
The present invention provides 3-hydroxybutyrate dehydrogenase dehydration by culturing 3-hydroxybutyrate dehydrogenase-producing bacteria belonging to the genus Alcaligenes and collecting 3-hydroxybutyrate dehydrogenase from the culture. The present invention relates to a method for producing an enzyme.
[0002]
[Prior art and problems]
3-Hydroxybutyrate dehydrogenase (EC 1.1.1.130) acts on 3-hydroxybutyrate in the presence of NAD to consume 1 mole of NAD, 1 mole of acetoacetic acid and 1 mole of reduction It is known as an enzyme having a catalytic action of converting to type NAD.
[0003]
So far, 3-hydroxybutyrate dehydrogenase has been derived from animals such as rat brain (Biochem. Cell Biol., 68, 980-983 (1990)) and rat liver (Biochem. Cell Biol., 68, 1225). 1230 (1990)) and bovine heart (Arch. Biochem. Biophys., 262, 85-98 (1988)).
[0004]
In addition, as those derived from microorganisms, Rhodospirillum rubrum (J. Biol. Chem. 237, 603-607 (1962)), Pseudomonas lemoignei (J. Biol. C. 240, J. Biol. 4023-4029 (1965)), Mycobacterium Frey (Mycobacterium phlei) (J.Gen.Microbiol.104,123-126 (1978 )), Paracoccus denitrificans (Paracoccusdenitrificans) (Biochim.Biophys.Acta839, 300-307 (1985)), Zoogloea ramigera ( Zoogloea ramiger) a) (J.Biochem.89,625-635 (1981)) , load Pseudomonas sphaeroides (Rhodopseudomonas spheroides) (Biochem.J.241,297-300 (1987 )), Azospirillum, Brazil lens (Azospirillum brasilense) (J Gen. Microbiol. 136, 645-649 (1990)).
[0005]
[Problems to be solved by the invention]
However, it has been desired to develop a method for producing a 3-hydroxybutyrate dehydrogenase using a strain other than these strains having the ability to produce 3-hydroxybutyrate dehydrogenase.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in search of a production method capable of industrial production of 3-hydroxybutyrate dehydrogenase, and as a result, the genus Alcaligenes genus NO. Isolated from the soil of a potato field in Gojo City, Nara Prefecture, Japan. It has been found for the first time that 981 strain has the ability to produce 3-hydroxybutyrate dehydrogenase, and the present invention has been completed.
[0007]
The present invention has been completed on the basis of the above findings, and is characterized by culturing a 3-hydroxybutyrate dehydrogenase producing bacterium belonging to the genus Alcaligenes, and collecting 3-hydroxybutyrate dehydrogenase from the culture. This is a method for producing 3-hydroxybutyrate dehydrogenase.
Hereinafter, the present invention will be described in detail.
[0008]
First, the 3-hydroxybutyrate dehydrogenase-producing bacterium of the present invention is not particularly limited as long as it is a microorganism capable of producing 3-hydroxybutyrate dehydrogenase belonging to the genus Alcaligenes. It may be a variant or a mutant having an enzyme-producing ability, and is preferably a NO. 981 strain, and this strain was deposited at the National Institute of Advanced Industrial Science and Technology (currently, the National Institute of Bioscience and Biotechnology) under the deposit number No. 2570 (FERM BP-2570). . The mycological properties, identification and nomenclature of this strain are described in detail in JP-A-3-127895 and US Pat. No. 5,173,416.
[0009]
In practicing the present invention, the culture form may be either liquid culture or solid culture, but industrially, it is advantageous to carry out aeration-agitation culture. As a culture source to be used, in addition to carbon sources, nitrogen sources, inorganic salts and other trace nutrients generally used for microorganism culture, any nutrient sources that can be used by microorganisms belonging to the genus Alcaligenes can be used.
[0010]
As a carbon source, glucose, fructose, saccharose, xylose, maltose, glycerol, dextrin, starch, amino acids and the like, as well as fatty acids, oils and fats, organic acids and the like are used alone or in combination. Either an inorganic nitrogen source or an organic nitrogen source can be used as the nitrogen source, and examples of the inorganic nutrient sources include ammonium sulfate, ammonium nitrate, urea, sodium nitrate, and ammonium chloride. Examples of the organic nitrogen source include flours such as soybean, rice, corn, and wheat, corn steep liquor, peptone, meat extract, casein, amino acids, and yeast extract. Inorganic salts and micronutrients include phosphoric acid, magnesium, potassium, iron, calcium, zinc and other salts, as well as the growth of bacteria such as vitamins, nonionic surfactants, and antifoaming agents, and the use of 3-hydroxybutyrate dehydrogenase. Anything that promotes production can be used as needed.
[0011]
The cultivation is performed under aerobic conditions, and the culturing temperature may be within a range in which the bacteria grow and 3-hydroxybutyrate dehydrogenase is produced, and is usually 15 ° C to 37 ° C, preferably 25 ° C to 35 ° C. . The cultivation time varies depending on the conditions, but the cultivation may be performed up to the time when 3-hydroxybutyrate dehydrogenase is most produced, and is usually about 24 to 100 hours.
3-Hydroxybutyrate dehydrogenase is mainly contained and accumulated in the cells, and may be extracted from the cells. To illustrate the method for extracting 3-hydroxybutyrate dehydrogenase, first, a culture is separated into a solid and a liquid, and the obtained wet cells are dispersed in a solution such as a phosphate buffer or a tris-hydrochloride buffer, and treated with lysozyme. Various kinds of cell treatment means such as ultrasonic treatment, French press treatment, and dynomill treatment are appropriately selected and combined to obtain a crude 3-hydroxybutyrate dehydrogenase-containing solution.
[0012]
A purified 3-hydroxybutyrate dehydrogenase is obtained from the crude 3-hydroxybutyrate dehydrogenase-containing solution by means of isolation and purification of known proteins and enzymes. For example, a 3-hydroxybutyrate dehydrogenase is precipitated on a crude 3-hydroxybutyrate dehydrogenase-containing liquid by applying a fractional precipitation method using an organic solvent such as acetone, methanol, ethanol, or the like, or a salting-out method using ammonium sulfate, sodium chloride, or the like. Allow to collect. Further, after dialysis and isoelectric focusing of the precipitate as necessary, column chromatography using an ion exchanger, a gel filtration agent, an adsorbent, etc. until a single band is shown by electrophoresis or the like. To purify. In addition, when the purification degree of 3-hydroxybutyrate dehydrogenase is increased by appropriately combining these methods, they can be appropriately combined.
[0013]
The enzyme obtained by these methods can be used as a stabilizer by adding or removing various salts, saccharides, proteins, lipids, surfactants, etc., by ultrafiltration and lyophilization to obtain a liquid or solid solution. -Hydroxybutyrate dehydrogenase can be obtained, and lyophilization may be appropriately performed. In this case, about 0.5 to 10% of saccharose, mannitol, salt, albumin, etc. may be added as a stabilizer. .
[0014]
Next, the physicochemical properties of 3-hydroxybutyrate dehydrogenase obtained by the present invention and a method for measuring enzyme activity will be described.
Method for measuring the activity of 3-hydroxybutyrate dehydrogenase 0.2 ml of 0.2 M Tris-HCl buffer (pH 8.5), 0.1 ml of 50 mM 3-hydroxybutyric acid, 0.1 ml of 10 mM NAD, 100 U / ml of diaphorase 1 ml of a reaction solution containing 0.05 ml, 0.02 ml of 0.25% NTB (nitrotetrazonium blue), 0.01 ml of 10% triton X-100 and 0.52 ml of distilled water at 37 ° C. After preheating for 20 minutes, 20 μl of the enzyme solution is added and reacted for 10 minutes. After the reaction, the reaction is stopped by adding 0.1N hydrochloric acid, and the absorbance at a wavelength of 550 nm is measured within 5 minutes using a 1.0 cm layer cell (As). As a blind test, the same operation is performed using 20 μl of distilled water instead of the enzyme solution, and the absorbance is measured (Ab). The absorbance difference (As) between the absorbance of the enzyme (As) and the absorbance of the blind test (Ab) is measured. -Determine the enzyme activity from Ab). One unit of the enzyme activity is the amount of the enzyme that produces 1 μmol of reduced NAD per minute at 37 ° C., and the calculation formula is as follows.
[0015]
(Equation 1)
Figure 0003602162
[0016]
Physicochemical properties (1) Enzymatic action: Enzymatic action using 3-hydroxybutyric acid as a substrate is shown below.
[0017]
Embedded image
Figure 0003602162
[0018]
(2) Substrate specificity: 3-hydroxybutyric acid shows substrate specificity. Table 1 shows the specificity for various substrates.
[0019]
[Table 1]
Figure 0003602162
[0020]
(3) Km value: 1.6 ± 0.5 (mM) (based on 3-hydroxybutyric acid)
0.12 ± 0.02 (mM) (relative to NAD)
4) Isoelectric point: 5.0 ± 0.2 (by electrophoresis using carrier-ampholine)
(5) Molecular weight: 60000 ± 5000 (by gel filtration method using TSK G-3000SW), 30,000 ± 5000 (by SDS polyacrylamide gel electrophoresis method)
(6) Optimum pH
The optimum pH was determined according to the enzyme activity measurement method, and the results are shown in FIG. The range of pH 5.0 to 6.0 is 100 mM acetate buffer, the range of pH 6.0 to 7.5 is 100 mM phosphate buffer, the range of pH 7.5 to 9.0 is 100 mM Tris-HCl buffer, pH 9.0. The range of 0 to 11.0 indicates the activity value when a 100 mM glycine-sodium hydroxide buffer was used, and the optimum pH was 8 to 9.
(7) pH Stability A 100 mM buffer solution (3-hydroxybutyrate dehydrogenase 1 U / ml) was treated at 37 ° C. for 60 minutes, and the remaining activity was measured according to the enzyme activity measurement method. The result is shown in FIG. pH 4.0 to 5.0 is 100 mM citrate buffer, pH 5.0 to 6.0 is 100 mM acetate buffer, pH 6.0 to 7.5 is 100 mM phosphate buffer, pH 7.5 to 9.0 is 100 mM. For Tris-HCl buffer, pH 9.0 to 11.0, 100 mM glycine-sodium hydroxide buffer was used. It exhibited the best stability in the pH range of 7.5 to 11.
(8) Optimal temperature According to the enzyme activity measurement method, the temperature was changed in the range of 25 ° C. to 60 ° C. to determine the optimal temperature. The result is shown in FIG. Was 45-50 ° C.
(9) Thermostability 100 mM Tris-HCl buffer (pH 8.5) (3-hydroxybutyrate dehydrogenase 1 U / ml) was subjected to heat treatment at each temperature for 10 minutes. It was measured. As a result, it was stable up to at least 37 ° C. as shown in FIG.
(10) Influence of metal ions The results of investigating the effects of various metal ions (1 mM) on the activity of this enzyme are shown in Table 2, and strong inhibition by copper ions was observed.
[0021]
[Table 2]
Figure 0003602162
[0022]
【Example】
Next, examples of the present invention will be described in detail, but the present invention is not limited thereto.
[0023]
Embodiment 1
Alkaligenes SP NO. The 981 strain was inoculated into 100 ml of a medium (pH 7.0) containing 2% of glutamic acid and 5.0% of yeast extract, and cultured at 28 ° C. for 48 hours. The obtained seed culture was defoamed to a medium having the same composition as above. The solution was added to 20 l of a medium (pH 7.0) to which the agent was added, and cultured at 28 ° C for 48 hours. After the completion of the culture, the culture was centrifuged at 4500 rpm for 30 minutes to recover 560 g of cells.
[0024]
Two liters of a 0.1% lysozyme solution containing 10 mM EDTA and 50 mM Tris-HCl buffer (pH 7.5) was added to the cells, and reacted at 37 ° C. for 30 minutes to solubilize the cells. Thereafter, this was centrifuged at 4500 rpm for 30 minutes to remove insolubles, and 1870 ml (41100 U) of the supernatant was obtained.
Then, 18.7 ml of 5% protamine sulfate was added to the supernatant, and the precipitate was removed by centrifugation. The supernatant was dialyzed overnight against a 20 mM Tris-HCl buffer (pH 8.5) to give DEAE-Sepharose (2.7). × 30 cm) (manufactured by Pharmacia) was subjected to ion exchange chromatography. Elution was performed with a linear gradient of 0 to 1 M of potassium chloride, and an eluted fraction (31700 U) of 0.20.3 M KCl was collected. NaCl was dissolved in the enzyme solution to a concentration of 4 M, and phenyl sepharose (2.6 × 19.5 cm) (manufactured by Pharmacia) was subjected to hydrophobic chromatography. Elution was performed by a linear concentration gradient of 4M to 0M NaCl, and an eluted fraction (2080U) of 1M to 0.5M NaCl was collected.
[0025]
Then, the enzyme solution was dialyzed overnight against a 10 mM Tris-HCl buffer (pH 8.5), and subjected to ion-exchange chromatography on Q-Sepharose (2.6 × 19.5 cm) (Pharmacia). Elution was performed with a linear gradient of 0 to 0.4 M NaCl, and an eluted fraction (20,000 U) of 0.2 to 0.25 M NaCl was collected. Further, the enzyme solution was dialyzed overnight against a 10 mM Tris-HCl buffer (pH 7.5), and subjected to hydroxyapatite (1.6 × 26.5 cm) (Pentax) chromatography. Elution was performed with a linear gradient using a 0 to 0.3 M phosphate buffer, and an eluted fraction (16000 U) of a 0.06 to 0.1 M phosphate buffer was collected, freeze-dried, and purified 3-hydroxybutyric acid dehydrated. An enzymatic enzyme (213 U / mg, 75 mg) was obtained.
[0026]
【The invention's effect】
According to the present invention, a novel production method using a microorganism belonging to the genus Alcaligenes can be provided, and an enzyme for measurement of one 3-hydroxybutyric acid in a ketone body using the present enzyme can be provided.
[Brief description of the drawings]
FIG. 1 shows an optimal pH curve of the 3-hydroxybutyrate dehydrogenase of the present invention.
FIG. 2 shows a pH stability curve of the 3-hydroxybutyrate dehydrogenase of the present invention.
FIG. 3 shows an optimal temperature curve of the 3-hydroxybutyrate dehydrogenase of the present invention.
FIG. 4 shows a thermostability curve of the 3-hydroxybutyrate dehydrogenase of the present invention.

Claims (2)

アルカリゲネス属に属する3−ヒドロキシ酪酸脱水素酵素生産菌を培地に培養し、その培養物から3−ヒドロキシ酪酸脱水素酵素を採取することを特徴とする3−ヒドロキシ酪酸脱水素酵素の製造法。但し、該3−ヒドロキシ酪酸脱水素酵素の理化学的性質は以下の通りである。
(1)酵素作用
NADの存在下に3−ヒドロキシ酪酸に作用して、アセト酢酸、NADH及びH を生成する作用を有する。
(2)基質特異性
3−ヒドロキシ酪酸に基質特異性を示す。
(3)分子量
60000±5000(ゲル濾過法にて)
(4)至適pH
8〜9
(5)至適温度
45〜50℃
(6)pH安定性
pH7.5〜11の範囲で最も良好な安定性を示す。
A method for producing 3-hydroxybutyrate dehydrogenase, comprising culturing 3-hydroxybutyrate dehydrogenase-producing bacteria belonging to the genus Alcaligenes in a medium, and collecting 3-hydroxybutyrate dehydrogenase from the culture. However, the physicochemical properties of the 3-hydroxybutyrate dehydrogenase are as follows.
(1) acting on the 3-hydroxybutyric acid in the presence of enzymatic NAD +, it has the effect of producing acetoacetic acid, NADH and H +.
(2) Substrate specificity 3-hydroxybutyric acid shows substrate specificity.
(3) Molecular weight 60000 ± 5000 (by gel filtration method)
(4) Optimum pH
8-9
(5) Optimal temperature 45-50 ° C
(6) pH stability The best stability is exhibited in the pH range of 7.5 to 11.
アルカリゲネス属に属する3−ヒドロキシ酪酸脱水素酵素生産菌が、アルカリゲネス・エスピーNo.981(微工研条寄第2570号)株である請求項1記載の3−ヒドロキシ酪酸脱水素酵素の製造法。A 3-hydroxybutyrate dehydrogenase-producing bacterium belonging to the genus Alcaligenes is obtained from Alcaligenes sp. 2. The method for producing 3-hydroxybutyrate dehydrogenase according to claim 1, wherein the strain is 981 (Fujikken Kenjiro No. 2570) strain.
JP18104794A 1994-08-02 1994-08-02 Method for producing 3-hydroxybutyrate dehydrogenase Expired - Fee Related JP3602162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18104794A JP3602162B2 (en) 1994-08-02 1994-08-02 Method for producing 3-hydroxybutyrate dehydrogenase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18104794A JP3602162B2 (en) 1994-08-02 1994-08-02 Method for producing 3-hydroxybutyrate dehydrogenase

Publications (2)

Publication Number Publication Date
JPH0838169A JPH0838169A (en) 1996-02-13
JP3602162B2 true JP3602162B2 (en) 2004-12-15

Family

ID=16093849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18104794A Expired - Fee Related JP3602162B2 (en) 1994-08-02 1994-08-02 Method for producing 3-hydroxybutyrate dehydrogenase

Country Status (1)

Country Link
JP (1) JP3602162B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304453C (en) * 2004-09-27 2007-03-14 江苏南天集团股份有限公司 Preparation method of polyester poly 3-hydroxy butyrate capable of fully biodegradable
JP6945469B2 (en) * 2018-02-20 2021-10-06 大阪瓦斯株式会社 Method for producing acetoacetic acid

Also Published As

Publication number Publication date
JPH0838169A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
JP3602162B2 (en) Method for producing 3-hydroxybutyrate dehydrogenase
US4420562A (en) Method for producing creatinase
CA1285896C (en) .alpha.-1, 6-GLUCOSIDASE AND PROCESS FOR PRODUCING THE SAME
JP5022044B2 (en) Method for producing new uricase
JP3029915B2 (en) Thermostable adenosine-5'-phosphosulfate kinase and method for producing the same
US4463095A (en) Process for producing α-glycerophosphate oxidase
JP3093039B2 (en) Novel esterase A and method for producing the same
JP2876645B2 (en) Alkaline phosphatase and method for producing the same
JP3649765B2 (en) Novel glycerol kinase and process for producing the same
JP5010291B2 (en) Method for producing new uricase
JP4160417B2 (en) Secondary alcohol dehydrogenase and production method thereof
JP3602169B2 (en) Method for producing sorbitol-6-phosphate dehydrogenase
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JP4051579B2 (en) Novel glycerol kinase and process for producing the same
JPH07108219B2 (en) Method for producing NADH oxidase
JP3917723B2 (en) Lactone hydrolase and process for producing the same
JP2919530B2 (en) Novel nucleoside oxidase and its production
JPH0661278B2 (en) Sensitive method for quantitative determination of myo-inositol and composition for quantitative determination
JP2000004879A (en) Stable 6-phosphogluconolactonase and its production
JP3251689B2 (en) Method for producing 3α-hydroxysteroid dehydrogenase and microorganism used for the same
JP2801694B2 (en) New enzyme
JPH0429349B2 (en)
JPS6012027B2 (en) Novel glycerol dehydrogenase and its production method
JPH0659216B2 (en) Novel urease and method for producing the same
JPH1156358A (en) Method for producing gallic acid decarboxylase and pyrogallol

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees