JPS6052578A - Formation of silicon nitride film - Google Patents
Formation of silicon nitride filmInfo
- Publication number
- JPS6052578A JPS6052578A JP16142483A JP16142483A JPS6052578A JP S6052578 A JPS6052578 A JP S6052578A JP 16142483 A JP16142483 A JP 16142483A JP 16142483 A JP16142483 A JP 16142483A JP S6052578 A JPS6052578 A JP S6052578A
- Authority
- JP
- Japan
- Prior art keywords
- gaseous
- gas
- silicon nitride
- plasma
- high frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はデバイスの保護膜・絶縁膜として有用な窒化
シリコン膜の形成法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a silicon nitride film useful as a protective film/insulating film for devices.
窒化シリコン膜はNaイオンに対しよいバリアとなり、
かつ耐湿性・絶縁性が良いため、デバイスの保護膜・絶
縁膜として有用である。従来、窒化シリコン膜の形成法
として熱穿化法が用いられていたが、熱窒化法では10
00℃以上もの高温が必要となるため、不純物プロファ
イルの変形などが生じるのが避は難く、高密度集積デバ
イスへの応用は困難であった。この対策として、プラズ
マを利用した反応によって窒化シリコン膜を比較的低温
(250〜400℃)で形成するようにしたプラズマC
VD技術かにわかに注目され、盛んに研究されるように
なってきた。The silicon nitride film acts as a good barrier against Na ions,
It also has good moisture resistance and insulation properties, making it useful as a protective film and insulating film for devices. Conventionally, a thermal perforation method has been used as a method for forming a silicon nitride film, but the thermal nitridation method
Since a high temperature of 00° C. or higher is required, deformation of the impurity profile is inevitable, making it difficult to apply it to high-density integrated devices. As a countermeasure to this problem, plasma C was developed to form a silicon nitride film at a relatively low temperature (250 to 400 degrees Celsius) through a reaction using plasma.
VD technology has suddenly attracted attention and is being actively researched.
プラズマCVD装置は、通常プラズマ発生部、ガス導入
部、真空排気糸、電源系および制御系などから構成され
る。プラズマの発生には、高周波放電5電子サイクロト
ロン共鳴、イオンビームなど種々の励起手段が用いられ
るが、量産性の点からガス圧0.1〜l ’l’orr
における高周波放電を利用するものが最も一般的である
。A plasma CVD apparatus usually includes a plasma generation section, a gas introduction section, a vacuum evacuation line, a power supply system, a control system, and the like. Various excitation means such as high-frequency discharge 5-electron cyclotron resonance and ion beam are used to generate plasma, but from the viewpoint of mass production, the gas pressure is set at 0.1 to 1'l'orr.
The most common method is to use high-frequency discharge.
従来、プラズマCVD技術による窒化シリコン膜におい
ては、反応系ガスとして、シランガスおよびアンモニア
ガスを含んだ混合ガスと、シランガスおよび窒素ガスを
含んだ混合ガスのいずれかの混合ガスが用いられていた
。シランガスはケイ素の水素化物の総称であるが、一般
にはモノシランSiH4を指すことが多い。しかし、シ
ランガスとして、ジシランSi2H6を用いることも試
みられている0
アンモニアガスNH3は窒素ガスN2よりもはるかに反
応性に富んでいるため、5IH4/NH8系混合ガスを
用いる方が、S i H4/Nt系混合ガスを用いるよ
りも堆積速度が大きく、量産性の点では優れている。し
かし、形成された堆積膜の膜質を赤外吸収法で調べてみ
ると、SiH+/7%糸で作られた膜ではN−H吸収が
殆んど見られないのに対し、SiH4/NH,系で作ら
れた膜ではN−Hの吸収が非常に強く観測され、膜中に
は10〜30%もの水素が多量に含有していることが判
明した。また、緻密性の評価として、緩衝フッ酸BHF
によるエッチ速度を比較してみると、SiH4/NH!
系で作られた膜のエッチ速度は2500X/順であり、
SiH,/N、糸で作られた膜のエッチ速度〜500A
/wRに比べて5倍程度も大きく、緻密性にも問題があ
ることが判明した。Conventionally, in a silicon nitride film formed by plasma CVD technology, a mixed gas containing either silane gas and ammonia gas or a mixed gas containing silane gas and nitrogen gas has been used as a reaction gas. Silane gas is a general term for silicon hydrides, but generally refers to monosilane SiH4. However, attempts have also been made to use disilane Si2H6 as the silane gas.Since ammonia gas NH3 is much more reactive than nitrogen gas N2, it is better to use a 5IH4/NH8-based mixed gas because SiH4/ The deposition rate is higher than when using an Nt-based mixed gas, and it is superior in terms of mass productivity. However, when examining the film quality of the deposited film formed using an infrared absorption method, it was found that almost no N-H absorption was observed in the film made of SiH+/7% yarn, whereas SiH4/NH Very strong N--H absorption was observed in the film made using this system, and it was found that the film contained a large amount of hydrogen, ranging from 10 to 30%. In addition, for evaluation of compactness, buffered hydrofluoric acid BHF
Comparing the etch speeds of SiH4/NH!
The etch rate of the film made with the system is 2500X/order,
Etch rate of film made of SiH,/N, thread ~500A
It was found that it was about five times larger than /wR, and there was also a problem in denseness.
したがってこの発明の目的はこれら従来の窒化シリコン
膜形成法の有する欠点を除去し、低温で量産性よく良質
の窒化シリコン膜を形成できる窒化シリコン膜の形成法
を提供することにある。Therefore, an object of the present invention is to provide a method for forming a silicon nitride film that eliminates the drawbacks of these conventional silicon nitride film forming methods and can form a silicon nitride film of high quality with good mass productivity at low temperatures.
この発明の方法は、窒素およびケイ素を元素として含ん
だ反応系ガスを励起して反応を生ぜしめ、基板上に窒化
シリコン膜を堆積させるようにした窒化シリコン膜の形
成法において、前記反応系ガスとして、シランガスおよ
びヒドラジンガスを含んだ混合ガスを用いることを特徴
としている。The method of the present invention is a method for forming a silicon nitride film in which a reaction gas containing nitrogen and silicon as elements is excited to cause a reaction, and a silicon nitride film is deposited on a substrate. It is characterized by using a mixed gas containing silane gas and hydrazine gas.
以下に、この発明について図面を参照して詳細に説明す
る。図はこの発明を具現するための装置の一構成例を示
すブロックダイヤグラムである。The present invention will be described in detail below with reference to the drawings. The figure is a block diagram showing an example of the configuration of a device for implementing the present invention.
図において、真空排気系1は油回転ポンプとメカニカル
ブースタポンプをタンデムに接続したもので、反応槽2
内のガス圧を0.1〜I Torr I/C減圧するの
に用いられている。真空排気系1の保護策として、ポン
プの損傷、劣化を防ぐため、真空排気系1内にはトラッ
プやバッフルなどが用いられている。In the figure, vacuum evacuation system 1 consists of an oil rotary pump and a mechanical booster pump connected in tandem, and reaction tank 2
It is used to reduce the internal gas pressure by 0.1 to I Torr I/C. As a protection measure for the evacuation system 1, traps, baffles, etc. are used in the evacuation system 1 to prevent damage and deterioration of the pump.
基板3は回転台4の上に載せられており、ヒーター5に
よって300〜350℃程度に加熱された状態で保温さ
れている。高周波電源6は13.56 MHzの高周波
を高周波電極7を介して反応槽2内に供給し、プラズマ
発生部8内で気体を電離しプラズマを発生させる。反応
ガスはガス導入部9を介して反応槽2内に供給され、プ
ラズマ発生部8内でプラズマ反応を生じる。ガス導入部
9にはモノシランガスSiH4,ヒドラジンガスN、H
4および窒素ガスN2が配管されており、これらの流量
および流量比は、フローメータ10および圧力センサ1
3の情報に基づき、コントローラ12よシ流量調整バル
ブ11を制御することによって最適な値に設定できる。The substrate 3 is placed on a rotary table 4, and is heated to about 300 to 350° C. by a heater 5 and kept warm. The high frequency power supply 6 supplies high frequency waves of 13.56 MHz into the reaction tank 2 via the high frequency electrode 7 to ionize gas in the plasma generating section 8 and generate plasma. The reaction gas is supplied into the reaction tank 2 through the gas introduction section 9, and a plasma reaction occurs within the plasma generation section 8. In the gas introduction part 9, monosilane gas SiH4, hydrazine gas N, H
4 and nitrogen gas N2 are piped, and their flow rates and flow rate ratios are determined by the flow meter 10 and the pressure sensor 1.
Based on the information in No. 3, the controller 12 controls the flow rate adjustment valve 11 to set the optimum value.
窒素ガスN、は反応槽を浄化するの忙用いられる。Nitrogen gas N is used to purify the reactor.
上記の構成において、作業圧力を0.5Torr 、放
電パワーを1腓、全体ガス量を2000secm 、モ
ノシランガスとヒドラジンガスとの混合比を1=2とし
たとき、約2000A/mの堆積速度で窒化シリコン膜
が形成でき、膜厚の均一性は5インチ径のウェハ10板
のとき、ウエノ・間で±5チ以内であった。In the above configuration, when the working pressure is 0.5 Torr, the discharge power is 1/2, the total gas amount is 2000 sec, and the mixing ratio of monosilane gas and hydrazine gas is 1=2, silicon nitride is deposited at a deposition rate of about 2000 A/m. A film was formed, and the uniformity of the film thickness was within ±5 inches between wafers when ten 5-inch diameter wafers were used.
この発明においては、従来の窒化シリコン膜の形成法と
異なり窒素元素の供給ガスとしてアンモニアガスNH,
の代りにヒドラジンガス(N、H,ガス)を用いている
ため、形成した薄膜中での水素の含有率は5係以下にで
き、従来に比べ大幅に膜質を向上することができた。こ
れは、ヒドラジンガスN、H,がアンモニアガスNH,
に比べ水素の組成含有率が少ないことが大きく起因して
いるものと思われる。In this invention, unlike the conventional method of forming a silicon nitride film, ammonia gas NH,
Since hydrazine gas (N, H, gas) is used instead of hydrazine gas, the hydrogen content in the formed thin film can be reduced to a factor of 5 or less, and the film quality can be significantly improved compared to the conventional method. This means that hydrazine gas N, H, ammonia gas NH,
This is thought to be largely due to the lower hydrogen content compared to .
なお、ヒドラジンガスはロケットの堆進用燃料 ゛とし
て用いられるほど酸化されやすくまた還元力の強いガス
であるので、モノシランSin、と同程度以上に大気の
混入を避けるよう、配管の気密性には充分配慮する必要
がある。In addition, since hydrazine gas is easily oxidized and has a strong reducing power so that it is used as rocket fuel, the airtightness of the piping must be maintained to avoid air contamination to the same extent as monosilane (Sin). It is necessary to give sufficient consideration.
本発明の実施例においては、容態・結合形(平行平板形
)プラズマCVD装置に適用した例を示したが、この代
りに誘導結合形プラズマCVD装置に適用してもよいし
、またこれら高周波放電プラズマCVD装置の代りに電
子サイクロトロン共鳴プラズマCVD装置光励起プラズ
マCVDなどに適用してもよいことはもちろんである。In the embodiments of the present invention, an example has been shown in which the present invention is applied to a coupled type (parallel plate type) plasma CVD apparatus, but the present invention may be applied to an inductively coupled type plasma CVD apparatus instead. It goes without saying that the present invention may be applied to an electron cyclotron resonance plasma CVD device, a light-excited plasma CVD device, or the like instead of a plasma CVD device.
なおシランガスとして、前記したようにモノシラン(S
in4)の代りにジシランSi2H6を用いることもで
きる。As the silane gas, monosilane (S
Disilane Si2H6 can also be used instead of in4).
以上述べたごとく、本発明によれば、低温で量産性よく
かつ良質の窒化シリコン膜を形成できる窒化シリコン膜
の形成法が得られる。As described above, according to the present invention, there is provided a method for forming a silicon nitride film that can be mass-produced at low temperatures, and can form a high-quality silicon nitride film.
図はこの発明を具現するための装置の一構成例を示すブ
ロックダイヤグラムである。図において、1・・・真空
排気系 2・・・反応槽
3・・・基 板 4・・・回転台
5・・・ヒーター 6・高周波電源
7・・・高周波電極 8・・・プラズマ発生部9・・・
ガス導入部 10・・・フローメータ11・・・流量調
整バルブ 12・・・コントローラ13・・・圧力セン
サ
である。
代理人弁理士 白眉 普The figure is a block diagram showing an example of the configuration of a device for implementing the present invention. In the figure, 1... Vacuum exhaust system 2... Reaction tank 3... Substrate 4... Rotating table 5... Heater 6... High frequency power source 7... High frequency electrode 8... Plasma generation part 9...
Gas introduction part 10... Flow meter 11... Flow rate adjustment valve 12... Controller 13... Pressure sensor. Representative Patent Attorney Fu Hakubi
Claims (1)
起・反応せしめて基板上に窒化シリコン膜を生成する窒
化シリコン膜の形成方法。A method for forming a silicon nitride film in which a mixed gas containing silane gas and hydrazine gas is excited and reacted to form a silicon nitride film on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16142483A JPS6052578A (en) | 1983-09-02 | 1983-09-02 | Formation of silicon nitride film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16142483A JPS6052578A (en) | 1983-09-02 | 1983-09-02 | Formation of silicon nitride film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6052578A true JPS6052578A (en) | 1985-03-25 |
Family
ID=15734838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16142483A Pending JPS6052578A (en) | 1983-09-02 | 1983-09-02 | Formation of silicon nitride film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6052578A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60114573A (en) * | 1983-11-22 | 1985-06-21 | Semiconductor Energy Lab Co Ltd | Manufacture of silicon nitride film |
WO1996014504A1 (en) * | 1994-11-02 | 1996-05-17 | Klaus Kunkel | Discus-shaped aerodynamic vehicle for use at extremely high velocities |
EP0989204A1 (en) * | 1998-09-25 | 2000-03-29 | Japan Pionics Co., Ltd. | Process for preparing nitride film |
KR100560654B1 (en) * | 2004-01-08 | 2006-03-16 | 삼성전자주식회사 | Nitrogen compound for forming silicon nitride film and method of forming silicon nitride film using same |
RU2629656C1 (en) * | 2016-05-30 | 2017-08-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method of producing silicon nitride |
-
1983
- 1983-09-02 JP JP16142483A patent/JPS6052578A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60114573A (en) * | 1983-11-22 | 1985-06-21 | Semiconductor Energy Lab Co Ltd | Manufacture of silicon nitride film |
JPH0421750B2 (en) * | 1983-11-22 | 1992-04-13 | Handotai Energy Kenkyusho | |
WO1996014504A1 (en) * | 1994-11-02 | 1996-05-17 | Klaus Kunkel | Discus-shaped aerodynamic vehicle for use at extremely high velocities |
US5836543A (en) * | 1994-11-02 | 1998-11-17 | Klaus Kunkel | Discus-shaped aerodyne vehicle for extremely high velocities |
EP0989204A1 (en) * | 1998-09-25 | 2000-03-29 | Japan Pionics Co., Ltd. | Process for preparing nitride film |
KR100560654B1 (en) * | 2004-01-08 | 2006-03-16 | 삼성전자주식회사 | Nitrogen compound for forming silicon nitride film and method of forming silicon nitride film using same |
RU2629656C1 (en) * | 2016-05-30 | 2017-08-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method of producing silicon nitride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1547138B1 (en) | Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition | |
US10026607B2 (en) | Substrate processing apparatus for forming film including at least two different elements | |
JP3265042B2 (en) | Film formation method | |
US5360646A (en) | Chemical vapor deposition method of silicon dioxide film | |
TW200302292A (en) | Method for depositing silicon nitride films and silicon oxynitride films by chemical vapor deposition | |
JPH0260210B2 (en) | ||
JPS6052578A (en) | Formation of silicon nitride film | |
WO2004092441A2 (en) | Methods for producing silicon nitride films by vapor-phase growth | |
US20060198958A1 (en) | Methods for producing silicon nitride films by vapor-phase growth | |
JPS60190564A (en) | Preparation of silicon nitride | |
JPS6262529A (en) | Forming method for silicon nitride film | |
JPH08100264A (en) | Formation of thin film and device therefor | |
JPH064915B2 (en) | Method for synthesizing cubic boron nitride | |
JPH1079386A (en) | Method of forming silicon dioxide film | |
JPS6052579A (en) | Optical nitride film forming device | |
JPH02194529A (en) | Formation of thin film and apparatus therefor | |
JPS6310892B2 (en) | ||
JPS6199677A (en) | Manufacture of silicon nitride |