[go: up one dir, main page]

JPS6051692A - Growing apparatus of single crystal semiconductor - Google Patents

Growing apparatus of single crystal semiconductor

Info

Publication number
JPS6051692A
JPS6051692A JP15928083A JP15928083A JPS6051692A JP S6051692 A JPS6051692 A JP S6051692A JP 15928083 A JP15928083 A JP 15928083A JP 15928083 A JP15928083 A JP 15928083A JP S6051692 A JPS6051692 A JP S6051692A
Authority
JP
Japan
Prior art keywords
chamber
single crystal
crucible
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15928083A
Other languages
Japanese (ja)
Inventor
Shinzaburo Iwabuchi
岩淵 真三郎
Shinichiro Takasu
高須 新一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15928083A priority Critical patent/JPS6051692A/en
Publication of JPS6051692A publication Critical patent/JPS6051692A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a titled apparatus free from fear of a magnetic field leakage and with small consumption of energy by winding a coil at a position symmetrical to the center of a magnetic crucible in a chamber, and constituting the chamber proper capable of being cooled. CONSTITUTION:In titled apparatus, a seed crystal 20 which is hung freely rotatably by a chain 19 is immersed in a molten semiconductor material 24 in a crucible 16 which is supported freely rotatably by a supporting rod 14 in a chamber 11, and pulled up slowly to grow a single crystal 25. Said chamber 11 is formed of a nonmagnetic body 12 equipped with a cooling waterway 21 and a magnetic body 13 surrounding the outside thereof. In addition a couple of coils 211 and 212 generating respectively a pole having a different polarity and/or the other couple of coils 231 and 232 are wound at a position symmetrical to the center of the crucible 16 in said magnetic body 13. A magnetic field is then impressed to the molten semiconductor material 24 to restrain the heat convection. An unfavorable influence is not exerted upon various kinds of sensors for controlling in this way, and a high-quality single crystal semiconductor can be obtained with small consumption of energy.

Description

【発明の詳細な説明】 〔発明の技術分野] 本9G明は単結晶半導体育成装置の改良に関する。[Detailed description of the invention] [Technical field of invention] This article 9G relates to improvements in single crystal semiconductor growth equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体装置の製造に用いられる単結晶半導体は主にチョ
クラルスキー法(CZ法)にょシ製造されている。この
方法は、単結晶シリコンを製造する場合を例にとれば、
以下のようなものである。すなわち、チャンバー内に石
英ルッピを回転自在に支持し、この石英ルツボ内にシリ
コン原料を入れて周囲に配設されたヒーターによシ痔融
し、この溶融シリコンにルツボ上方から回転自在に吊下
された種結晶ヲ浸し、この種結晶を引上けることによシ
単結晶シリコンを育成するものである。
Single crystal semiconductors used for manufacturing semiconductor devices are mainly manufactured by the Czochralski method (CZ method). For example, when manufacturing single crystal silicon, this method
It is as follows. In other words, a quartz crucible is rotatably supported in a chamber, a silicon raw material is put into this quartz crucible, it is melted by a heater placed around the quartz crucible, and the molten silicon is suspended from above the crucible so as to be rotatable. Single-crystal silicon is grown by dipping the seed crystal and pulling it up.

ところで、この方法では単結晶シリコンの育成中におい
て、溶融シリコン内で回転に伴う強制対流や熱対流が起
こるため、育成される単結晶シリコンの不純物濃度むら
(ストリエーション)が著しくなったシ、不純物濃度を
自由にHil制御することが困難になるという欠点があ
る。
By the way, in this method, during the growth of single crystal silicon, forced convection and thermal convection occur in the molten silicon due to rotation, so the impurity concentration unevenness (striation) in the grown single crystal silicon becomes significant. There is a drawback that it becomes difficult to freely control the concentration.

そこで、単結晶半導体の育成中に溶融半導体原料に磁場
を印加する技術が知られている(例えば、特開昭56−
104791、特開昭56−104795、特開昭56
−121339、特開昭57−149894等)。
Therefore, a technique is known in which a magnetic field is applied to the molten semiconductor raw material during the growth of a single crystal semiconductor (for example,
104791, JP-A-56-104795, JP-A-56
-121339, JP-A-57-149894, etc.).

これら従来の単結晶半導体育成装置の概略構成は第1図
あるいは第2図に示すようなものである。
The schematic structure of these conventional single crystal semiconductor growth apparatuses is as shown in FIG. 1 or 2.

すなわち、第1図図示の装置は、チャンバー1内にルツ
ボ2が回転自在に支持され、チャンバー1の外側のルツ
ボ2の両側方に対応する位置に2個の常電導マグネッ)
J11J2が互いに極性の異なる極を対向させるように
配置されたものである。この装置では、常電導マグネッ
ト31r32によりルツだ2内のM本手導体原料4に水
平方向の出湯(図中破線で図示)を印加しながら、溶融
半導体原料4に種結晶5を浸し、これを引上けることに
よシ単結晶半尋体6が育成される。
That is, in the apparatus shown in FIG. 1, a crucible 2 is rotatably supported in a chamber 1, and two normal conducting magnets are placed outside the chamber 1 at positions corresponding to both sides of the crucible 2.
J11J2 are arranged so that the poles having different polarities face each other. In this device, a seed crystal 5 is immersed in the molten semiconductor raw material 4 while applying horizontal tap water (indicated by a broken line in the figure) to the M-strand conductor raw material 4 in the root 2 by a normal conducting magnet 31r32. By pulling it up, a single crystal half body 6 is grown.

また、第2図図示の装置は第1図図示の装置における2
飼の常電導マグネット31132の代わりにチ、Yンバ
ー1の外周にリング状の常電導あるいは超電等マグネッ
ト7を配設したものである。この装置では常電導あるい
は超電導マグネット7によシルツ?2内の溶融半導体原
料4に鉛直方向の磁場(図中破線で図示)を印加しなが
ら、溶融半導体原料4に種結晶を浸し、これを引上げる
ことによシ単結晶半尋体6が育成される。
The device shown in FIG. 2 is the same as the device shown in FIG.
In place of the normal conductive magnet 31132 in the cage, a ring-shaped normal conductive or superconducting magnet 7 is arranged around the outer periphery of the Y member 1. In this device, is the normal conducting or superconducting magnet 7 used? While applying a vertical magnetic field (indicated by a broken line in the figure) to the molten semiconductor raw material 4 in the molten semiconductor raw material 2, a seed crystal is immersed in the molten semiconductor raw material 4 and pulled up, thereby growing a single crystal semicircular body 6. be done.

これらの装置では、溶融半導体原料4内の対流を抑制す
ることができるので育成される単結晶半導体中のストリ
エーションの発生ヲ少なくしたシ、不純物濃度の高低を
制御することが容易になるという効果がある。
These devices can suppress convection within the molten semiconductor raw material 4, thereby reducing the occurrence of striations in the grown single crystal semiconductor, and making it easier to control the level of impurity concentration. There is.

しかしながら、従来の装置には以下のような間粗点があ
る。
However, conventional devices have the following shortcomings.

(1)第1図図示の装置ではチャンバーの左右に2個の
常電導マグネツトを配置しているため、装置全体が極め
て大型となる。また、チャンバーとマグネットで冷却が
別系統となるのでエネルギー消費が大きくなる。また、
第2図図示の装置では超電導マグネットを用い、マグネ
ットの冷却用冷媒を閉回路とした場合、エネルギー消費
は小さいが、常電導マグネ、/)を用いた場合には、第
1図図示の装置と同様にエネルギー消費が太きい。
(1) In the apparatus shown in FIG. 1, two normal conducting magnets are arranged on the left and right sides of the chamber, so the entire apparatus becomes extremely large. In addition, the cooling system for the chamber and the magnet are separate systems, which increases energy consumption. Also,
In the device shown in Figure 2, when a superconducting magnet is used and the refrigerant for cooling the magnet is a closed circuit, the energy consumption is small, but when a normal conducting magnet is used, the energy consumption is small compared to the device shown in Figure 1. Similarly, energy consumption is high.

(11) 育成装置にはコンピュータ制御を実行するた
めの各種センサが設置されている。しかし、第1図及び
第2図1示の装置ではいずれも溶融半導体原料から遠く
離れた位置にも磁場が作用するため、こうした漏洩磁場
によシセンサが誤動作を起こしたり、TV七センの画像
歪曲等の現象が発生し、例えば直径制御が不能となる場
合がある。したがって、センサをより遠い位置に設置す
るか、もしくはセンサごとに遮蔽体を設けなければなら
ないという欠点がある。
(11) Various sensors for executing computer control are installed in the breeding device. However, in both the apparatuses shown in FIGS. 1 and 2, the magnetic field acts at a location far away from the molten semiconductor raw material, so such leakage magnetic fields can cause sensor malfunctions and distort the image of the TV screen. For example, diameter control may become impossible. Therefore, there is a drawback that the sensor must be installed at a farther position or a shield must be provided for each sensor.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであり1制御用
の各拙センサに悪影/#を及はすことなく、しかも少な
いエネルギー消費で高品質の単結晶半導体を肯成し得る
単結晶半導体育成装置5f提供しようとするものである
The present invention has been made in view of the above circumstances, and is a single crystal semiconductor capable of realizing high quality single crystal semiconductors with less energy consumption and without affecting the various sensors used for control. This is intended to provide a semiconductor growth apparatus 5f.

〔発明の概要〕[Summary of the invention]

本発明の単結晶半導体育、成装置は、チャンバーを非磁
性体とその外側を囲む磁性体とで形成し、磁性体のルツ
が中心に対してt”z )!上下対称の位置に極性の異
なる極が発生するように磁性体の内面側に少なくとも一
対のコイルを巻回して溶融半導体原料に磁場を印加する
とともに、前記非磁性体内又は非磁性体と磁性体との間
に冷媒を流すことを特徴とするものである。
The single-crystal semiconductor growth device of the present invention has a chamber made of a non-magnetic material and a magnetic material surrounding the outside thereof, and the roots of the magnetic material are located at vertically symmetrical positions with respect to the center. Applying a magnetic field to the molten semiconductor raw material by winding at least one pair of coils around the inner surface of the magnetic material so as to generate different poles, and flowing a coolant within the non-magnetic material or between the non-magnetic material and the magnetic material. It is characterized by:

このような装置によれば、チャンバー自体がヨークとな
るので、磁場漏洩のおそれがなく、制御用の各種センサ
に悪影響を及はすことがない。また、非磁性体内又は非
磁性体と両性体との間に冷媒を流すことによシ、チャン
バー全体を冷却することができ、ヒータ及びコイルによ
る温度上昇を同時に防止することができるので、エネル
ギー消費が少ない。
According to such a device, since the chamber itself serves as a yoke, there is no fear of magnetic field leakage and no adverse effects on various control sensors. In addition, by flowing a refrigerant inside the non-magnetic body or between the non-magnetic body and the amphoteric body, the entire chamber can be cooled, and the temperature rise caused by the heater and coil can be prevented at the same time, reducing energy consumption. Less is.

〔発明の実施例J 以下、本発明の実施例を第3図及び第4図を診照して説
明する。
[Embodiment J of the Invention Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 3 and 4.

第3図中11は内径610鴎の非磁性体ステンレススチ
ール12とその外側を囲む厚さ15鰭以上の磁性体ステ
ンレススチール13とからなり、上部と下部が開口した
チャンバーである。
Reference numeral 11 in FIG. 3 is a chamber consisting of a non-magnetic stainless steel 12 with an inner diameter of 610 mm and a magnetic stainless steel 13 surrounding the outside with a thickness of 15 fins or more, with an open top and bottom.

このチャンバー11の下部開口からは支持棒ノ4が回軸
自在に挿入されて黒鉛製保護体15を支持しておシ、こ
の保磯体15は内部の直径12インチ(304,8調)
の石英ルツボ16を保護している。前記保曖体ノ5の外
周にはヒータ17及び保温筒18が1諭次配設されてい
る。また、前記チャンバー11の上部開口からはNOえ
ばチェーン19が吊下されており、種結晶20を保持し
ている。
A support rod 4 is rotatably inserted into the lower opening of the chamber 11 to support the graphite protector 15, and the protector 15 has an internal diameter of 12 inches (304,8 scale).
The quartz crucible 16 is protected. A heater 17 and a heat insulating tube 18 are disposed on the outer periphery of the insulating body 5. Further, a chain 19 is suspended from the upper opening of the chamber 11, and holds a seed crystal 20.

また、前記チャンバー11を構成する非磁性体ステンレ
ススチール12の内部には冷却水流路2ノが設けられ冷
却水が流れるようになっている。更に1チヤンバー11
を構成する磁性体ステンレススチール13の上下の内面
側にはルツボ16の中心に対してほぼ上下対称の位置に
それぞれ極性の異なる極が発生するように巻線溝に2対
のコイル221 g 222 r 231 + 2 J
″2が巻回されている。これらコイル221 + 22
x +231.23.には20A以上の直流電流を通電
することができるようになっている。
Further, a cooling water passage 2 is provided inside the non-magnetic stainless steel 12 constituting the chamber 11, so that cooling water flows therethrough. 1 more chamber 11
On the upper and lower inner surfaces of the magnetic stainless steel 13 constituting the crucible 16, two pairs of coils 221 g 222 r are installed in the winding grooves so that poles of different polarity are generated at positions that are approximately vertically symmetrical with respect to the center of the crucible 16. 231 + 2 J
″2 are wound.These coils 221 + 22
x +231.23. A direct current of 20 A or more can be applied to the tube.

上記装置を用いた単結晶半導体の育成は以下のようにし
て行なわれる。まず、ルツボ16内に例えばシリコン原
料を入れ、例えばアルゴンガス算囲気中でヒータ17に
より溶融する。この溶融シリコン24に第4図に示すよ
うにコイル221,22.及びコイル231,232に
よる磁場(図中破線で示す、合成された磁場はほぼ鉛直
方向に働く)を印加し、非磁性体ステンレススチール1
2内に冷却水を流す。こうした状態で、溶融シリコン2
4に種結晶20f:浸し、ルツボ16と種結晶20と1
1方向に回転しながら種結晶20を引上けることにより
単結晶シリコン25を育成する。
Growth of a single crystal semiconductor using the above apparatus is performed as follows. First, a silicon raw material, for example, is placed in the crucible 16 and melted by the heater 17 in an atmosphere of, for example, argon gas. As shown in FIG. 4, coils 221, 22. and coils 231 and 232 (shown by broken lines in the figure, the combined magnetic field acts almost vertically) is applied to the non-magnetic stainless steel 1.
2. Pour cooling water into the tank. In this state, molten silicon 2
Seed crystal 20f in 4: soaked, crucible 16 and seed crystal 20 and 1
Single crystal silicon 25 is grown by pulling up seed crystal 20 while rotating in one direction.

しかして、上記装置によれば、チャンバーIノを構成す
る磁性体ステンレススチール13にコイル221 r 
22* 1231 + 232を巻回し、磁性体ステン
レススグー−ル13自体がヨークとなり、その内部を磁
場の閉回路として使用できるので、外部へ磁場が漏洩す
ることはない。このため、制御用の各種センサの悪影響
を及#1すことがなく、例えば直径制御を良好に行なう
ことができる。また、チャンバー11を構成する非磁性
体ステンレススチール12内部に冷却水を流しているの
で、チャンバ−11全体を冷却することができる。この
ため、ヒータ17による温度上昇とコイルJ 21 y
 222 r 2JJ 1232による温度上昇を同時
に防止することができるのでエネルギー消費が少ない。
According to the above device, the coil 221 r is attached to the magnetic stainless steel 13 constituting the chamber I.
22*1231 + 232 is wound, and the magnetic stainless steel spool 13 itself becomes a yoke, and the inside thereof can be used as a closed circuit for the magnetic field, so that the magnetic field does not leak to the outside. Therefore, there is no adverse influence of various sensors for control, and for example, diameter control can be performed satisfactorily. Further, since cooling water is flowing inside the non-magnetic stainless steel 12 that constitutes the chamber 11, the entire chamber 11 can be cooled. Therefore, the temperature rise due to the heater 17 and the coil J 21 y
222 r 2JJ 1232 can be prevented at the same time, resulting in less energy consumption.

また、磁場を印加することによシ、溶融シリコン24中
の対流を抑制して単結晶シリコン25の品質を向上する
ことができる。
Furthermore, by applying a magnetic field, convection in the molten silicon 24 can be suppressed and the quality of the single crystal silicon 25 can be improved.

事実、上記装置を用い、ルツボ16内に20kgの高純
度シリコン原料をチャージし、ダッシュ法による通常の
無転位単結晶育成法でコイル221 H222r 23
s + 23*によ#)30oガウスの磁場を印加しな
がら、直径103±1篩、比抵抗率1〜3Ω・儒、N型
、結晶方位(100)を目標として単結晶シリコンを育
成したところ、下記第1表のような結果が得らizた。
In fact, using the above device, 20 kg of high-purity silicon raw material was charged into the crucible 16, and the coil 221 H222r 23 was grown using the normal dislocation-free single crystal growth method using the dash method.
Single crystal silicon was grown with a diameter of 103±1 sieve, specific resistivity of 1 to 3 Ω・F, N-type, and crystal orientation (100) while applying a magnetic field of 30o Gauss according to s + 23 * , the results shown in Table 1 below were obtained.

なお、下記第1表中参照例は磁場を印加しない通常のC
Z法によるものである。
In addition, the reference examples in Table 1 below are normal C without applying a magnetic field.
This is based on the Z method.

第1辰 上記第1表から比抵抗率のほらつき、微小比抵抗率分布
が数秒されていることがわかる。
From Table 1 above, it can be seen that the specific resistivity fluctuates and the minute specific resistivity distribution lasts for several seconds.

また、第1図に示した従来の装置(比較例)と装置寸法
、漏洩磁場、冷却経費を比較したところ下記第2表のよ
うな結果が得られた。
Further, when comparing the device dimensions, leakage magnetic field, and cooling cost with the conventional device (comparative example) shown in FIG. 1, the results shown in Table 2 below were obtained.

第2表 上記第2表から本発明の単結晶半導体育成装置は従来の
装置と比較して装置寸法がコン・やクトであυ、漏洩1
場、冷却経費の点ではるかに優れていることがわかる。
Table 2 From Table 2 above, the single crystal semiconductor growth device of the present invention has compact device dimensions compared to conventional devices, and leakage 1
It can be seen that it is much better in terms of field and cooling costs.

なお、上記実施例ではチャンバーを構成する磁性体ステ
ンレススチールの上下の内面側に2対のコイルを巻回し
たが、これに限らず第5図に示す如く、1対のコイル2
21,22.だけを用い浴融シリコン24に斜め方向の
磁場を印加してもよい。
In the above embodiment, two pairs of coils are wound on the upper and lower inner surfaces of the magnetic stainless steel that constitutes the chamber, but the present invention is not limited to this, and as shown in FIG.
21, 22. Alternatively, a diagonal magnetic field may be applied to the bath-molten silicon 24 using only a magnetic field.

寸だ、上記実施例ではチャンバーを構成する非磁性体ス
テンレススチールの内部に冷却水をθlシシたが、これ
に限らず非磁性体ステンレススチールと磁性体ステンレ
ススチールとの間に冷却水を流してもよい。また、これ
らに加えて磁性体ステンレススチールの内部にも冷却水
を流して主にコイルによる温度上昇を防止してもよい。
In the above example, the cooling water was poured into the non-magnetic stainless steel that makes up the chamber, but the cooling water is not limited to this, and the cooling water can be flowed between the non-magnetic stainless steel and the magnetic stainless steel. Good too. Additionally, in addition to these, cooling water may also be allowed to flow inside the magnetic stainless steel to mainly prevent temperature rise due to the coil.

更に、以上の説明で社単結晶シリコンを育成する場合に
ついて述べたが、これに限らすGaAs等の他の単結晶
半導体の育成にも本発明の装置を用いることができるこ
とは勿論である。
Furthermore, although the above description has been made regarding the case of growing single crystal silicon, it goes without saying that the apparatus of the present invention can also be used to grow other single crystal semiconductors such as GaAs.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の単結晶半導体育成装置によ
れは、制御用の各−センサに恐影管を及はすことなく、
シかも少ないエネルギー消費で高品質の単結晶半導体を
■成し得る等顕著な効果を奏するものである。
As described in detail above, the single crystal semiconductor growth apparatus of the present invention does not require a shadow tube to touch each sensor for control.
This method has remarkable effects such as being able to produce high quality single crystal semiconductors with low energy consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来の単結°晶半導体肯成
装置の概略構成図、第3図は本発明の実施例における単
結晶半導体育成装置の断面図、第4図は同装置における
Fli場の状態を示す説明図、第5図は本発明の他の実
施例における単結晶半導体育成装置の断面図である。 11・・・チャンバー、12・・・非磁性体ステン・ス
スチール、13・・・磁性体ステンレススチール、14
・・・支す棒、15・・・保護体、16・・・ルツ鱈?
、17・・・ヒータ、18・・・保温筒、19・・・チ
ェーン、20・・・種結晶、2ノ・・・冷却水流路、2
21 +22z r231 + 2 Jz・・・コイル
、24・・・浴融シリコン、25・・・単結4昂シリコ
ン。 出願人代理人 弁理士 鈴 江 武 彦第3図 @4図 第5図
1 and 2 are schematic configuration diagrams of a conventional single crystal semiconductor growth apparatus, respectively, FIG. 3 is a sectional view of a single crystal semiconductor growth apparatus according to an embodiment of the present invention, and FIG. 4 is a schematic diagram of a conventional single crystal semiconductor growth apparatus. FIG. 5, which is an explanatory diagram showing the state of the Fli field, is a sectional view of a single crystal semiconductor growth apparatus in another embodiment of the present invention. 11... Chamber, 12... Non-magnetic stainless steel, 13... Magnetic stainless steel, 14
...Supporting rod, 15...Protection body, 16...Rutsu cod?
, 17... Heater, 18... Heat insulation cylinder, 19... Chain, 20... Seed crystal, 2... Cooling water flow path, 2
21 +22z r231 + 2 Jz...Coil, 24...Bath melt silicone, 25...Single bond 4-layer silicone. Applicant's representative Patent attorney Takehiko Suzue Figure 3 @ Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] チャンバー内にルツデを回転自在に支持し、該ルツボ内
の溶融半導体原料にルツボ上方から回転自在に吊下され
た種結晶を浸して、該種結晶を引上げることによシ単結
晶半導体を育成する装置において、前記チャンバーを非
磁性体とその外側を囲む磁性体とで形成し、前記磁性体
のルツボ中心に対してほぼ上下対称の位置に極性の異な
る極が発生するように前記磁性体の内面1jlllに少
なくとも一対のコイルを巻回して溶融半導体原料に磁場
を印加するとともに、前記非磁1生体内又は非磁性体と
磁性体との間に冷媒を流すことを特徴とする単結晶半導
体育成装置。
A single crystal semiconductor is grown by rotatably supporting a crucible in a chamber, dipping a seed crystal rotatably suspended from above the crucible into the molten semiconductor raw material in the crucible, and pulling up the seed crystal. In the apparatus, the chamber is formed of a non-magnetic material and a magnetic material surrounding the outside thereof, and the magnetic material is arranged such that poles of different polarity are generated at positions that are approximately vertically symmetrical with respect to the center of the crucible of the magnetic material. Single-crystal semiconductor growth characterized by applying a magnetic field to the molten semiconductor raw material by winding at least a pair of coils around the inner surface 1, and flowing a coolant in the non-magnetic body 1 or between the non-magnetic material and the magnetic material. Device.
JP15928083A 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor Pending JPS6051692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15928083A JPS6051692A (en) 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15928083A JPS6051692A (en) 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor

Publications (1)

Publication Number Publication Date
JPS6051692A true JPS6051692A (en) 1985-03-23

Family

ID=15690338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15928083A Pending JPS6051692A (en) 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor

Country Status (1)

Country Link
JP (1) JPS6051692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936290A1 (en) * 1998-02-17 1999-08-18 Kabushiki Kaisha Toshiba Superconducting magnet device for crystal pulling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936290A1 (en) * 1998-02-17 1999-08-18 Kabushiki Kaisha Toshiba Superconducting magnet device for crystal pulling device

Similar Documents

Publication Publication Date Title
US20210123155A1 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
JPH0212920B2 (en)
JPS62256787A (en) Method and device for growing single crystal
JPS6051692A (en) Growing apparatus of single crystal semiconductor
JPS6051691A (en) Growing apparatus of single crystal semiconductor
JP5240905B2 (en) Magnetic field applied silicon crystal growth method and apparatus
JPS59121183A (en) Crystal growth method
US6669776B2 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPS6033294A (en) Pulling device for single crystal semiconductor
JP2019196289A (en) Production method of single crystal, and draw-up device of single crystal
JPS6027684A (en) Single crystal manufacturing equipment
JP3585731B2 (en) Magnetic field application type single crystal manufacturing equipment
JPH0142916B2 (en)
JPS6033296A (en) Pulling device for single crystal semiconductor
AU2002246865A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JP2021080112A (en) Apparatus and method for pulling single crystal
JPS6270286A (en) Apparatus for producting single crystal
JPS62256791A (en) Device for growing single crystal
JPS61251594A (en) Apparatus for producing single crystal
JP2623465B2 (en) Single crystal pulling device
JPS61222985A (en) Production unit for single crystal
KR101455922B1 (en) Apparatus and Method for growing single crystal ingot using CUSP magnetic field
JPS6033290A (en) Preparation of single crystal semiconductor
KR20090039248A (en) Magnetic field magnets for magnetic field-applied Czochralski crystal growth apparatus
JPS6033293A (en) Pulling device for single crystal semiconductor