[go: up one dir, main page]

JPS6051691A - Growing apparatus of single crystal semiconductor - Google Patents

Growing apparatus of single crystal semiconductor

Info

Publication number
JPS6051691A
JPS6051691A JP15927983A JP15927983A JPS6051691A JP S6051691 A JPS6051691 A JP S6051691A JP 15927983 A JP15927983 A JP 15927983A JP 15927983 A JP15927983 A JP 15927983A JP S6051691 A JPS6051691 A JP S6051691A
Authority
JP
Japan
Prior art keywords
chamber
magnetic
magnetic field
single crystal
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15927983A
Other languages
Japanese (ja)
Inventor
Shinzaburo Iwabuchi
岩淵 真三郎
Shinichiro Takasu
高須 新一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15927983A priority Critical patent/JPS6051691A/en
Publication of JPS6051691A publication Critical patent/JPS6051691A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a titled apparatus free from fear of a magnetic field leakage and with small consumption of energy by winding a couple of coils to the inner surface side of an outer magnetic body constituting a chamber to generate a magnetic field, and constituting an inner magnetic body capable of being cooled. CONSTITUTION:A crucible 16 is supported by a supporting rod 14 freely rotatably in a chamber 11 in a titled apparatus. A seed crystal 20 which is hung down by a chain 19 is immersed in a molten semiconductor material 24 obtained by heating with a heater 17, and then pulled up to grow a single crystal semiconductor 25. Said chamber 11 is formed of a nonmagnetic stainless steel body 12 equipped with a cooling waterway 21 and a magnetic stainless steel body 13 surrounding the outside. In addition a couple of coils 22 and 23 are wound around the inner surface side of said magnetic body 13 at the position of the side surface of the crucible 16 facing each other, and a magnetic field is impressed to the molten semiconductor material 24. The chamber 11 proper is used as a yoke in this way, and the leakage of the magnetic field is eliminated. The consumption of energy can be reduced because the whole body of the chamber 11 is easily cooled.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は屋結晶半導体育成装置の改良に関する。[Detailed description of the invention] [Technical field of invention] TECHNICAL FIELD The present invention relates to an improvement in an apparatus for growing a crystalline semiconductor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体装置の製造に用いられる蛍結晶半導体は主にチョ
クラルスキー法(C2法)により製造されている。この
方法は、単結晶シリコンを製造する場合を例にとれば、
以下のようなものである。すなわち、チャンバー内に石
英ルツボを回転自在に支持し、この石英ルツボ内にシリ
コン原料を入れて周囲に配設されたヒータにより溶融し
、この溶融シリコンにルッデ上方から回転自在に吊下さ
れた種結晶を浸し、この種結晶を引上げることにより単
結晶シリコンを育成するものである。
Fluorescent crystal semiconductors used for manufacturing semiconductor devices are mainly manufactured by the Czochralski method (C2 method). For example, when manufacturing single crystal silicon, this method
It is as follows. In other words, a quartz crucible is rotatably supported in a chamber, a silicon raw material is put into the quartz crucible and melted by a heater placed around the crucible, and a seed is suspended rotatably from above the molten silicon. Single-crystal silicon is grown by dipping the crystal and pulling up the seed crystal.

ところで、この方法では単結晶シリコンの育成中におい
て、溶融シリコン内で回転に伴う強制対流や熱対流が起
こるため、育成される単結晶シリコンの不純物濃度むら
(ストリエーション)が著しくなったシ、不純物濃度を
自由に制御することが困難になるという欠点がある。
By the way, in this method, during the growth of single crystal silicon, forced convection and thermal convection occur in the molten silicon due to rotation, so the impurity concentration unevenness (striation) in the grown single crystal silicon becomes significant. The disadvantage is that it is difficult to freely control the concentration.

そこで、巣結晶半導体のH酸中に溶融半導体原料に磁場
を印加する技術が知られている(例えば、特開昭56−
104791.特開昭56−104795 、特開昭5
6−121339゜特開昭57−] 49894等)。
Therefore, a technique is known in which a magnetic field is applied to the molten semiconductor raw material in the H-acid of the nested crystal semiconductor (for example,
104791. Unexamined Japanese Patent Publication No. 56-104795, Unexamined Japanese Patent Publication No. 5
6-121339° JP-A-57-] 49894, etc.).

これら従来の単結晶半導体育成装置の概略構成は第1図
あるいは第2図に示すようなものである。
The schematic structure of these conventional single crystal semiconductor growth apparatuses is as shown in FIG. 1 or 2.

すなわち、第1図図示の装置は、チャンバー1内にルツ
デ2が回転自在に支持され、チャンバー1の外側のルッ
?2の両側方に対応する位置に2藺の常電導マグネット
31*32が互いに極性の異なる極を対向させるように
配置されたものである。この装置では、常電導マグネッ
)J、、、?!によりルツ?2内の溶融半導体原料4に
水平方向の磁場(図中破線で図示)を印加しながら、溶
融半導体原料4に種結晶5を浸し、これを引上げること
により単結晶半導体6が育成される。
That is, the device shown in FIG. Two normal conducting magnets 31 * 32 are arranged at positions corresponding to both sides of the magnet 2 so that the poles of different polarities face each other. This device uses normal conducting magnets) J...? ! By Ruth? A single crystal semiconductor 6 is grown by immersing a seed crystal 5 in the molten semiconductor raw material 4 and pulling it up while applying a horizontal magnetic field (indicated by a broken line in the figure) to the molten semiconductor raw material 4 in the molten semiconductor raw material 2 .

また、第2図図示の装置は第1図図示の装置における2
個の常電導マグネットJ 1 * 32の代わりにチャ
ンバー1の外周にリング状の常電導あるいは超電導マグ
ネット7を配設したものである。この装置では常電導あ
るbは超電導マグネット7によりルッど2内の溶融半導
体原料4に鉛直方向の磁場(図中破線で図示)を印加し
ながら、溶融半導体原料4に種結晶を浸し、これを引上
げることにより単結晶半導体6が育成される。
The device shown in FIG. 2 is the same as the device shown in FIG.
In place of the individual normal conducting magnets J1*32, a ring-shaped normal conducting or superconducting magnet 7 is arranged around the outer periphery of the chamber 1. In this device, a normal conductor b is applied by applying a vertical magnetic field (indicated by a broken line in the figure) to the molten semiconductor raw material 4 in the Rud 2 using a superconducting magnet 7, and immerses a seed crystal in the molten semiconductor raw material 4. By pulling, a single crystal semiconductor 6 is grown.

これらの装置では、溶融半導体原料4内の対流を抑制す
ることができるので育成される単結晶半導体中のストリ
エーションの発生を少なくしたり、不純物濃度の高低を
制御することが容易になるという効果がある。
These devices can suppress convection within the molten semiconductor raw material 4, thereby reducing the occurrence of striations in the grown single crystal semiconductor and making it easier to control the level of impurity concentration. There is.

しかしながら、従来の装置には以下のような問題点があ
る。
However, conventional devices have the following problems.

(1)第1図図示の装置ではチャンバーの左右に2個の
常電導マグネットを配置しているため、装置全体が極め
て大型となる。また、チャンバーとマグネットで冷却が
別系統となるのでエネルギー消費が大きくなる。また、
第2図図示の装置では超電導マグネットを用−1マグネ
ツトの冷却用冷媒を閉回路とした場合、エネルギー消費
は小さいが、常電導マグネットを用いた場合には、第1
図図示の装置と同様にエネルギー消費が大きい。
(1) In the apparatus shown in FIG. 1, two normal conducting magnets are arranged on the left and right sides of the chamber, so the entire apparatus becomes extremely large. In addition, the cooling system for the chamber and the magnet are separate systems, which increases energy consumption. Also,
In the device shown in Figure 2, when a superconducting magnet is used and the refrigerant for cooling the first magnet is used as a closed circuit, the energy consumption is small, but when a normal conducting magnet is used, the energy consumption is small.
Like the device shown in the figure, energy consumption is large.

(11) 育成装置にはコンピュータ制御を実行するた
めの各種センサが設置されている。しかし、第1図及び
第2図図示の装置ではいずれも溶融半導体原料から遠く
離れた位置にも磁場が作用するため、こうした漏洩磁場
によりセンサが誤動作を起こしたり、TVセンサの画像
歪曲等の現象が発生し、例えば直径制御が不能となる場
合がある。したがって、センサをよシ遠い位置に設置す
るか、もしくはセンサごとに遮蔽体を設けなければなら
ないという欠点がある。
(11) Various sensors for executing computer control are installed in the breeding device. However, in both the apparatuses shown in Figures 1 and 2, the magnetic field acts even at a location far away from the molten semiconductor raw material, so such leakage magnetic fields can cause sensor malfunctions and phenomena such as image distortion of the TV sensor. For example, diameter control may become impossible. Therefore, there is a drawback that the sensor must be installed at a very distant location or a shield must be provided for each sensor.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであり、制御用
の各種センサに悪影響を及ばずことなく、しかも少ない
エネルギー消費で高品質の昆結晶半導体を育成し得る拒
結晶半導体育成装置’(i=4%供しようとするもので
ある。
The present invention has been made in view of the above circumstances, and provides an apparatus for growing high-quality quartz crystalline semiconductors without adversely affecting various control sensors and with low energy consumption. = 4%.

〔発明の概要〕[Summary of the invention]

本発明の単結晶半導体育成装置は、チャンバーを非磁性
体とその外側を囲む磁性体とで形成し、前記磁性体のル
ッデ側面の互いに対向する位置に極性の異なる極が発生
するように前記磁性体の内面側に一対のコイルを巻回し
て溶融半導体原料に磁場を印加するとともに、前記非磁
性体内又は非磁性体と磁性体との間に冷媒を流すことを
特徴とするものである。
In the single-crystal semiconductor growth apparatus of the present invention, the chamber is formed of a non-magnetic material and a magnetic material surrounding the outside thereof, and the magnetic material is arranged such that poles with different polarities are generated at mutually opposing positions on the Ludde side surface of the magnetic material. A pair of coils are wound around the inner surface of the body to apply a magnetic field to the molten semiconductor raw material, and a coolant is caused to flow within the non-magnetic body or between the non-magnetic body and the magnetic body.

このような装置によれば、チャンバー自体がヨークとな
るので、磁場漏洩のおそれがなく、制御用の各種センサ
に悪影響を及ぼすことがない。また、非磁性体内又は非
磁性体と磁性体との間に冷媒を流すことにより、チャン
バー全体を冷却することができ、ヒータ及びコイルによ
る温度上昇を同時に防止することができるので、エネル
ギー消費が少ない。
According to such a device, since the chamber itself serves as a yoke, there is no fear of magnetic field leakage and there is no adverse effect on various sensors for control. In addition, by flowing a refrigerant inside the non-magnetic material or between the non-magnetic material and the magnetic material, the entire chamber can be cooled, and the temperature rise caused by the heater and coil can be prevented at the same time, resulting in low energy consumption. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図及び第4図を参照して説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4.

第3図中11は内径6]0+aの非磁性体ステンレスス
チール12とその外側を囲む厚さ15調以上の磁性体ス
テンレススチール13とからなり、上部と下部が開口し
たチャンバーである。
Reference numeral 11 in FIG. 3 is a chamber with an open top and bottom, consisting of a non-magnetic stainless steel 12 with an inner diameter of 6]0+a and a magnetic stainless steel 13 with a thickness of 15 or more surrounding the non-magnetic stainless steel 12.

このチャンバー11の下部開口からは支持棒14が回転
自在に挿入されて黒鉛製保護体15を支持しており、こ
の保護体15は内部の直径12インチ(304,8m+
)の石英ルツ?16を保護している。前記保護体15の
外周にはヒータ17及び保温筒18が順次配設されてい
る。また、前記チャンバー11の上部開口からは例えば
チェーン19が吊下されており、種結晶20ケ保持して
いる。
A support rod 14 is rotatably inserted into the lower opening of the chamber 11 to support a graphite protector 15, which has an internal diameter of 12 inches (304,8 m+
) of quartz rutz? 16 is protected. A heater 17 and a heat retaining tube 18 are sequentially arranged around the outer periphery of the protector 15. For example, a chain 19 is suspended from the upper opening of the chamber 11, and holds 20 seed crystals.

また、前記チャンバー11を構成する非磁性体ステンレ
ススチール12の内部には冷却水流路2ノが設けられ冷
却水が流れるようになっている。更に、チャンバー11
を構成する磁性体ステンレススチール13の内面側ニは
ルツビ16側面の互込に対向する位置に極性の異なる核
が発生するように巻線溝に1対のコイル22゜23が巻
回されている。これらコイル22゜23にけ20A以上
の直流電流を通電することができるようになっている。
Further, a cooling water passage 2 is provided inside the non-magnetic stainless steel 12 constituting the chamber 11, so that cooling water flows therethrough. Furthermore, chamber 11
A pair of coils 22 and 23 are wound around the winding groove on the inner surface of the magnetic stainless steel 13 constituting the magnetic stainless steel 13 so that nuclei of different polarities are generated at positions opposite to the recesses on the side surface of the ruby 16. . A direct current of 20 A or more can be passed through these coils 22 and 23.

上記装置を用いた単結晶半導体の育成は以下のようにし
て行なわれる。捷ず、ルッゲ16内に例えばシリコン原
料を入れ、例えばアルゴンガス雰囲気中でヒータ17に
より溶融する。この溶融シリコン24に第4図に示すよ
うにコイル22.23による水平方向の磁場(図中敏腕
で示す)を印加し、非磁性体ステンレススチール12内
に冷却水を流す。こうした状態で、溶融シリコン24に
種結晶2oを浸し、ルッピ16と種結晶20とを逆方向
に回転しながら種結晶20を引上げることにより単結晶
シリコン25を育成する。
Growth of a single crystal semiconductor using the above apparatus is performed as follows. For example, a silicon raw material is put into the Rugge 16 without being separated, and is melted by the heater 17 in, for example, an argon gas atmosphere. As shown in FIG. 4, a horizontal magnetic field (indicated by strong arms in the figure) is applied to this molten silicon 24 by coils 22 and 23 as shown in FIG. 4, and cooling water is caused to flow into the non-magnetic stainless steel 12. In this state, the seed crystal 2o is immersed in the molten silicon 24, and the single crystal silicon 25 is grown by pulling up the seed crystal 20 while rotating the Luppi 16 and the seed crystal 20 in opposite directions.

しかして、上記装置によれば、チャンバー11を構成す
る磁性体ステンレススチール13にコイル22.23f
巻回し、磁性体ステンレススチール13自体がヨークと
なり、その内部を磁場の閉回路として使用できるので、
外部への磁場漏洩のおそれがない。このため、制御用の
各種センサに悪影f#を及ぼすことがな(、例えば直径
制御を良好に行なうことができる。また、チャンバー1
1を構成する非磁性体ステンレススチール12内部に冷
却水を流しているので、チャンバ−11全体を冷却する
ことができる。このため、ヒータ17による@度上昇と
コイル22.23による温度上昇を同時に防止すること
ができるのでエネルギー消費が少ない。
According to the above device, the magnetic stainless steel 13 constituting the chamber 11 has the coils 22 and 23f.
The magnetic stainless steel 13 itself becomes a yoke, and its interior can be used as a closed circuit for the magnetic field.
There is no risk of magnetic field leakage to the outside. Therefore, there is no adverse effect f# on various sensors for control (for example, diameter control can be performed well. Also, the chamber 1
Since cooling water is flowing inside the non-magnetic stainless steel 12 constituting the chamber 1, the entire chamber 11 can be cooled. Therefore, it is possible to simultaneously prevent temperature rise due to the heater 17 and temperature rise due to the coils 22, 23, resulting in less energy consumption.

また、磁場を印加することにより、溶融シリコン24中
の対流を抑制して単結晶シリコン25の品質を向上する
ことができる。
Moreover, by applying a magnetic field, convection in the molten silicon 24 can be suppressed and the quality of the single crystal silicon 25 can be improved.

事実、上記装置を用い、ルツデ16内に20ゆの高純度
シリコン原料をチャージし、ダッシュ法による通常の無
転位短結晶育成法でコイル22 、23により1500
ガウスの磁場を印加しながら、直径103±1閣、比抵
抗率1〜3Ω・cm + N型、結晶方位(100)を
目標として単結晶シリコンを育成したところ下記第1表
のような結果が得られた。なお、下記第1表中参照例は
磁場を印加しない通常のC2法によるものである。
In fact, using the above-mentioned apparatus, 20 yen of high purity silicon raw material was charged into the Luzde 16, and 1500 yu of high-purity silicon material was charged into the Luzde 16 using the normal dislocation-free short crystal growth method using the dash method using the coils 22 and 23.
While applying a Gaussian magnetic field, single-crystal silicon was grown with the goal of having a diameter of 103±1 cm, a specific resistivity of 1 to 3 Ω・cm + N type, and a crystal orientation of (100), and the results shown in Table 1 below were obtained. Obtained. Note that the reference examples in Table 1 below are based on the normal C2 method in which no magnetic field is applied.

上記第1表から比抵抗率のばらつき、微小比抵抗率分布
が改善されてbることがわかる。
From Table 1 above, it can be seen that the variations in specific resistivity and minute specific resistivity distribution are improved.

また、第1図に示した従来の装置(比較例)と装置寸法
、漏洩磁場、冷却経費を比較したところ下記第2表のよ
うな結果が得られた。
Further, when comparing the device dimensions, leakage magnetic field, and cooling cost with the conventional device (comparative example) shown in FIG. 1, the results shown in Table 2 below were obtained.

上記第2表から本発明の単結晶半導体育成装置は従来の
装置と比較して装置寸法がコンパクトであり、漏洩磁場
、冷却経費の点ではるかに優れていることがわかる。
From Table 2 above, it can be seen that the single crystal semiconductor growth apparatus of the present invention is compact in size and far superior in terms of leakage magnetic field and cooling costs compared to conventional apparatuses.

なお、上記実施例ではチャンバーを構成する非磁性体ス
テンレススチールの内部に冷却水を流したが、これに限
らず非磁性体ステンレススチールと磁性体ステンレスス
チールの間に冷却水を流してもよい。また、これらに加
えて磁性体ステンレススチールの内部にも冷却水を流し
て主にコイルによる温習上昇を防止してもよい。
In the above embodiment, the cooling water was flowed inside the non-magnetic stainless steel that constitutes the chamber, but the cooling water is not limited to this and may be flowed between the non-magnetic stainless steel and the magnetic stainless steel. Additionally, in addition to these, cooling water may also be allowed to flow inside the magnetic stainless steel to mainly prevent temperature increase due to the coil.

更に、以上の説明では単結晶シリコンを育成する場合に
ついて述べたが、これに限らすGaAs等他の単結晶半
導体の育成にも本発明の装置を用いることができること
は勿論である。
Furthermore, although the above description has been made regarding the case of growing single-crystal silicon, it goes without saying that the apparatus of the present invention can also be used to grow other single-crystal semiconductors such as GaAs.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の凰結晶半導体育成装置によ
れば、制御用の各種センサに悪影響を及ぼすことなく、
シかも少ないエネルギー消費で高品質の単結晶半導体を
育成し得る等顕著な効果を奏するものである。
As detailed above, according to the phoenix crystal semiconductor growth apparatus of the present invention, there is no adverse effect on various sensors for control.
This method has remarkable effects such as being able to grow high quality single crystal semiconductors with less energy consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来の単結晶半導体育成装
置の概略構成図、第3図は本発明の実施例における単結
晶半導体育成装置の断面図、第4図は同装置における磁
場の状態を示す説明図である。 1ノ・・・チャンバ s12・・・非磁性体ステンレス
スチール、13・・・磁性体ステンレススチール、14
・・・支持棒、15・・・保饅体、16・・・ルツデ、
17・・・ヒータ、18・・・保温筒、19・・・チェ
ーン、20・・・種結晶、2ノ・・・冷却水流路、22
 、23・・・コイル、24・・・溶融シリコン、25
・・・単結晶シリコン。 出願人代理人 弁理士 鈴 江 武 彦第21iil 第 3 図
Figures 1 and 2 are schematic diagrams of conventional single crystal semiconductor growth equipment, respectively, Figure 3 is a sectional view of a single crystal semiconductor growth equipment in an embodiment of the present invention, and Figure 4 is the state of the magnetic field in the equipment. FIG. 1 No... Chamber s12... Non-magnetic stainless steel, 13... Magnetic stainless steel, 14
...Support rod, 15...Homan body, 16...Rusude,
17... Heater, 18... Heat insulation cylinder, 19... Chain, 20... Seed crystal, 2... Cooling water channel, 22
, 23... Coil, 24... Molten silicon, 25
...Single crystal silicon. Applicant's agent Patent attorney Takehiko Suzue No. 21iii Figure 3

Claims (1)

【特許請求の範囲】[Claims] チャンバー内にルッゲを回転自在に支持し、該ルツボ内
の溶融半導体原料にルッぎ上方から回転自在に吊下され
た種結晶を浸して核種結晶を引上げることにょシ単結晶
半導体を育成する装置において、前記チャンバーを非磁
性体とその外側を囲む磁性体とで形成し、前記磁性体の
ルツ?側面の互いに対向する位置に極性の異なる極が発
生するように前記磁性体の内面側に一対のコイルを巻回
して溶融半導体原料に磁場を印加するとともに、前記非
磁性体内又は非磁性体と磁性体との間に冷媒を流すこと
を特徴とする単結晶半導体育成装置。
A device for growing a single crystal semiconductor by rotatably supporting a Rugge in a chamber, and pulling up a nuclide crystal by dipping a seed crystal rotatably suspended from above the Rugge into the molten semiconductor raw material in the crucible. In the method, the chamber is formed of a non-magnetic material and a magnetic material surrounding the outside thereof, A pair of coils are wound around the inner surface of the magnetic material so that poles with different polarities are generated at mutually opposing positions on the side surface, and a magnetic field is applied to the molten semiconductor raw material. A single crystal semiconductor growth device characterized by flowing a coolant between the body and the body.
JP15927983A 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor Pending JPS6051691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15927983A JPS6051691A (en) 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15927983A JPS6051691A (en) 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor

Publications (1)

Publication Number Publication Date
JPS6051691A true JPS6051691A (en) 1985-03-23

Family

ID=15690313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15927983A Pending JPS6051691A (en) 1983-08-31 1983-08-31 Growing apparatus of single crystal semiconductor

Country Status (1)

Country Link
JP (1) JPS6051691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal
EP0936290A1 (en) * 1998-02-17 1999-08-18 Kabushiki Kaisha Toshiba Superconducting magnet device for crystal pulling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal
EP0936290A1 (en) * 1998-02-17 1999-08-18 Kabushiki Kaisha Toshiba Superconducting magnet device for crystal pulling device
CN1320172C (en) * 1998-02-17 2007-06-06 东芝株式会社 Super-conductive magnet device for crystal pulling device

Similar Documents

Publication Publication Date Title
US20210123155A1 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
US9127377B2 (en) Generating a homogeneous magnetic field while pulling a single crystal from molten semiconductor material
JPH0212920B2 (en)
JPS62256787A (en) Method and device for growing single crystal
JPS61222984A (en) Unit for single crystal production
JPS6051691A (en) Growing apparatus of single crystal semiconductor
JPS5850953B2 (en) crystal growth method
JPS6051692A (en) Growing apparatus of single crystal semiconductor
JP5240905B2 (en) Magnetic field applied silicon crystal growth method and apparatus
TWI751726B (en) A semiconductor crystal growth apparatus
JPS6033294A (en) Pulling device for single crystal semiconductor
JPS59121183A (en) Crystal growth method
JPS6036392A (en) Apparatus for pulling single crystal
JP3585731B2 (en) Magnetic field application type single crystal manufacturing equipment
CA2432396A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPS6270286A (en) Apparatus for producting single crystal
TWI282379B (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
JPH10120485A (en) Single crystal production apparatus
JP2021080112A (en) Apparatus and method for pulling single crystal
JPS6033296A (en) Pulling device for single crystal semiconductor
JPS623091A (en) Single crystal pulling up apparatus
JPS63215587A (en) Single crystal manufacturing method
JPS62256791A (en) Device for growing single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
JPH0234915B2 (en)