[go: up one dir, main page]

JPS6046028B2 - thermal head - Google Patents

thermal head

Info

Publication number
JPS6046028B2
JPS6046028B2 JP53014282A JP1428278A JPS6046028B2 JP S6046028 B2 JPS6046028 B2 JP S6046028B2 JP 53014282 A JP53014282 A JP 53014282A JP 1428278 A JP1428278 A JP 1428278A JP S6046028 B2 JPS6046028 B2 JP S6046028B2
Authority
JP
Japan
Prior art keywords
vanadium
boride
thermal head
heating resistor
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53014282A
Other languages
Japanese (ja)
Other versions
JPS54107349A (en
Inventor
晄 新見
利民 原
昌久 福井
義章 白戸
芳興 櫨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP53014282A priority Critical patent/JPS6046028B2/en
Publication of JPS54107349A publication Critical patent/JPS54107349A/en
Publication of JPS6046028B2 publication Critical patent/JPS6046028B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Landscapes

  • Electronic Switches (AREA)
  • Resistance Heating (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 本発明は、サーマルヘッドの発熱抵抗体と、該発熱抵
抗体に電力を供給する電気導体との密着性の良いサーマ
ルヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal head that has good adhesion between a heating resistor of the thermal head and an electric conductor that supplies power to the heating resistor.

熱印字記録に用いられるサーマルヘッドは、例えばガ
ラスのような電気的な絶縁性と平滑面とを有する基板上
に複数個の発熱抵抗体と、この発熱抵抗体に電力を供給
するための電気導体とを設け、記録すべき情報に従つて
必要な熱パターンが一得られるように、対応する発熱抵
抗体に電気導体を介して電流を流して発熱させ、記録媒
体に接触することにより記録を行うものである。
A thermal head used for thermal print recording includes a plurality of heating resistors on a substrate having electrical insulation and a smooth surface, such as glass, and an electric conductor for supplying power to the heating resistors. Recording is performed by passing a current through the corresponding heat generating resistor through an electric conductor to generate heat and contacting the recording medium so as to obtain the necessary thermal pattern according to the information to be recorded. It is something.

そこに用いられる発熱抵抗体としては、従来窒化タンタ
ー れ−、をケ。仕ピロlkマιj」−レ゛1よ上L
An−一 、、 ・ ム等を用いた厚膜発熱抵抗体、シ
リコン半導体を用いた半導体発熱抵抗体がある。このう
ち薄膜発熱抵抗体を用いたサーマルヘッドは厚膜発熱抵
抗体、半導体発熱抵抗体等と比較して熱応答性がよく耐
熱性、耐熱衝撃性に優れ、寿命が長く、信頼性が高い等
の特徴を有している。この薄膜発熱抵抗体としては、従
来、窒化タンタルが比較的耐熱性に優れ、信頼性も高く
、又、固有抵抗値も250〜300μΩαと比較的高い
値で製造の制御性もよ・いため、特に多く用いられてい
る。しかるに窒化タンタルは約000゜C以上の高温に
対しては急激に酸化されその抵抗値が急激に増加し、記
録紙に印字する場合、印字濃度を劣化させる欠点がある
。一般にはこの欠点を補うために酸化シリコン(SIO
0)の耐酸化保護層を設け更にその上に酸化タンタル(
Ta2O5)の耐摩耗層を設けてサーマルヘッドとして
使用しているが、サーマルヘッドを長時間駆動させた時
の抵抗変化は少くなく、なお十分満足できるものではな
かつた。特に近年高速サーマルヘッドの要求が増加しつ
つあるためヘッドの通電パルス巾を短かくして感熱紙を
発色させる必要があり、従つて電力は従来より増加する
ことになり、発熱抵抗体はさらに高温になるから寿命は
より短かくなる。そのため、さらに耐熱性のある発熱抵
抗体が要求されている。本発明者等は、上記欠点を改善
するために種々検討した結果、金属硼化物を主成分とす
る発熱抵抗体が非常に満足すべきものであることを見い
出した。
The heat generating resistor used in this case is conventionally nitride tantalum. Shipiro lkma ιj''-Ray 1 yo top L
There are thick film heating resistors using An-1, . . . , and semiconductor heating resistors using silicon semiconductors. Among these, thermal heads using thin film heating resistors have better thermal response, superior heat resistance and thermal shock resistance, longer lifespan, and higher reliability than thick film heating resistors, semiconductor heating resistors, etc. It has the following characteristics. Conventionally, tantalum nitride has been used as a thin film heating resistor because it has relatively excellent heat resistance and high reliability, and also has a relatively high specific resistance value of 250 to 300 μΩα and good manufacturing controllability. It is often used. However, tantalum nitride is rapidly oxidized at high temperatures of about 000° C. or higher, resulting in a rapid increase in its resistance value, which has the drawback of deteriorating print density when printing on recording paper. Generally, silicon oxide (SIO) is used to compensate for this drawback.
An oxidation-resistant protective layer of 0) is provided on top of which tantalum oxide (
Although a wear-resistant layer of Ta2O5) was provided and used as a thermal head, the resistance change was not small when the thermal head was driven for a long time, and the result was still not fully satisfactory. In particular, as the demand for high-speed thermal heads has increased in recent years, it is necessary to shorten the energizing pulse width of the head to color the thermal paper, which means that the electric power is higher than before, and the heating resistor becomes even hotter. lifespan becomes shorter. Therefore, there is a demand for a heating resistor with even higher heat resistance. The inventors of the present invention have made various studies to improve the above-mentioned drawbacks, and have found that a heating resistor containing metal boride as a main component is very satisfactory.

この金属硼化物を主成分とする発熱抵抗体は約500′
Cの耐熱性を有していて酸化されにくく、抵抗値が安定
で、比抵抗を高い値まで選択できものである。さらにそ
の製造方法は、従来の窒化タンタル薄膜発熱抵抗体が反
応スパッタリングでしか製造できないのに対して、電子
ビーム蒸着、スパッタリング、反応スパッタリングのい
ずれでも製造することができる。しかしながら本発明者
等が種々検討した結果、前記硼化物薄膜発熱抵抗体に電
力を供給するための電気導体を蒸着したときに、その密
着性に問題があることが明らかになつた。
This heating resistor whose main component is metal boride is approximately 500'
It has the heat resistance of C, is not easily oxidized, has a stable resistance value, and can have a high specific resistance. Further, as for the manufacturing method thereof, while the conventional tantalum nitride thin film heating resistor can only be manufactured by reactive sputtering, it can be manufactured by any of electron beam evaporation, sputtering, and reactive sputtering. However, as a result of various studies conducted by the present inventors, it has become clear that when an electric conductor for supplying power to the boride thin film heating resistor is deposited, there is a problem in its adhesion.

すなわち、サーマルヘッドの電気導体としては一般に、
一定の膜厚に対してその固有抵抗値が低くて、化学的、
熱的に安定性のある金、銀、銅、アルミニウム等の電気
良導体及びそれらの合金が用いられていた。
In other words, the electrical conductor of the thermal head is generally
Its specific resistance value is low for a certain film thickness, and chemical,
Thermally stable electrical conductors such as gold, silver, copper, and aluminum, as well as their alloys, were used.

これらの電気良導体のうち、銅、アルミニウム及びそれ
らの合金は一般に強固な密着力をもつているが、金、銀
については密着性が悪いため、下引層としてクロムまた
はニクロム等の薄膜を設けることにより密着力を向上さ
せていた。しかしながら、金属硼化物を主成分とする発
熱抵抗体に対しては前記の下引層も効果が十分でないこ
とが判つた。本発明は、抵抗値が安定で比抵抗を高い値
まで選択でき、さらに安定性と信頼性に優れ、経時的に
安定した優れた画像を与えるサーマルヘッドを提供する
ことを目的とし、その特徴とするところは、金属硼化物
を主成分とする発熱抵抗体と電力供給用の電気導体との
間にバナジウムを主成分とする合金層を設けたことにあ
る。
Among these electrically conductive materials, copper, aluminum, and their alloys generally have strong adhesion, but gold and silver have poor adhesion, so a thin film of chromium or nichrome must be provided as an undercoat layer. This improved adhesion. However, it has been found that the above-mentioned undercoat layer is not sufficiently effective for heating resistors whose main component is metal boride. An object of the present invention is to provide a thermal head that has a stable resistance value, allows the specific resistance to be selected up to a high value, has excellent stability and reliability, and provides excellent images that are stable over time. The reason for this is that an alloy layer containing vanadium as a main component is provided between a heating resistor containing a metal boride as a main component and an electric conductor for power supply.

本発明に適用する金属硼化物には、硼化ジルコニウム、
硼化ハフニウム、硼化ランタン、硼化クロム、硼化チタ
ン、硼化タンタル、硼化ニオブ、硼化タングステン、硼
化モリブデン、硼化バナジウム等がある。
Metal borides applicable to the present invention include zirconium boride,
Examples include hafnium boride, lanthanum boride, chromium boride, titanium boride, tantalum boride, niobium boride, tungsten boride, molybdenum boride, and vanadium boride.

薄膜発熱抵抗体としてこれらの金属硼化物を単独あるい
は2種以上混合したりする。さらに酸素、炭素、窒素を
発熱抵抗体中の金属総量に対して原子比で0.005〜
1.0程度含有させても良い。あるいは、金属硼化物に
Si..GelTi..Zr..Hf..V,.Nb.
.Ta,.Cr,.MO..W,.CulAg.sAu
.sLa,sGa..SmlMn..Fe..CO..
NilPt..Rh..PdlOs..Ir..Ruな
どの金属を0.5m01%〜50rr101%加えても
よい。また、金属硼化物にMOSl2、WSl2、VS
l2、NbSi2、TaSi2、Crsi2、Zrsl
2、TiSi2、Cr3Sj.sFe3Siなどの導電
性硅化物を1m01%〜40rT101%加えてもよい
。バナジウム層またはバナジウムを主成分とする合金層
の厚さは余り薄くなると密着性の効果が十分でなく、一
方余り厚くしても密着性の効果が飽和してしまうので、
好ましくは5A〜1000Aがよく、より好ましくは1
0〜500Aさらに好ましくは20〜300Aがよい。
ここでバナジウムとの合金を作る金属としてはA1、A
u..Cu.,Ag..Zr.HflNb..Ti..
Ta,.Cr..MOl■、Kg等が適用される。これ
らのバナジウム層またはバナジウムを主成分とする合金
層は抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリン
グ法等により作成することができる。上述のようにして
構成したサーマルヘッドは比抵抗を高い値まで選択でき
、印字の高速化の為に短いパルス内で大きな電流を流す
ことも耐えられる。
These metal borides may be used alone or as a mixture of two or more of these metal borides as a thin film heating resistor. Furthermore, oxygen, carbon, and nitrogen are added in an atomic ratio of 0.005 to 0.005 to the total amount of metal in the heating resistor.
The content may be about 1.0. Alternatively, Si. .. GelTi. .. Zr. .. Hf. .. V,. Nb.
.. Ta... Cr,. M.O. .. W,. CulAg. sAu
.. sLa, sGa. .. SmlMn. .. Fe. .. C.O. ..
NilPt. .. Rh. .. PdlOs. .. Ir. .. A metal such as Ru may be added in an amount of 0.5m01% to 50rr101%. In addition, metal borides include MOSl2, WSl2, VS
l2, NbSi2, TaSi2, Crsi2, Zrsl
2, TiSi2, Cr3Sj. A conductive silicide such as sFe3Si may be added in an amount of 1m01% to 40rT101%. If the thickness of the vanadium layer or the alloy layer whose main component is vanadium is too thin, the adhesion effect will not be sufficient, while if it is too thick, the adhesion effect will be saturated.
Preferably 5A to 1000A, more preferably 1
0 to 500A, more preferably 20 to 300A.
Here, the metals that form an alloy with vanadium are A1 and A.
u. .. Cu. , Ag. .. Zr. HflNb. .. Ti. ..
Ta... Cr. .. MOl■, Kg, etc. are applied. These vanadium layers or alloy layers containing vanadium as a main component can be formed by a resistance heating evaporation method, an electron beam evaporation method, a sputtering method, or the like. The thermal head configured as described above can select a specific resistance up to a high value, and can withstand the flow of a large current within a short pulse in order to speed up printing.

また、ヘッド部、配線部の密着性が良いので耐熱性に優
れ、また、繰り返しパルスの印加に対しても長時間安定
である。その製造方法も、特殊なものに限定する必要が
なく、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリ
ング法などいずれでも適用することができる。さらに、
このサーマルヘッドを用いて印字したときには経時的に
も安定した画像を提供することができる。次に実施例に
ついて説明する。
In addition, since the adhesion between the head portion and the wiring portion is good, it has excellent heat resistance and is stable for a long time even when repeated pulses are applied. There is no need to limit the manufacturing method to a special method, and any method such as resistance heating evaporation method, electron beam evaporation method, sputtering method, etc. can be applied. moreover,
When printing using this thermal head, it is possible to provide an image that is stable over time. Next, an example will be described.

実施例1 十分に洗浄した、グレーズド・セラミックス基板上に硼
化チタン(TiB2)、硼化ジルコニウム(ZrB2)
、硼化ハフニウム(HfB2)、硼化バナジウム(V八
)、硼化ニオブ(NbB2)、硼化タンタル(TaB2
)、硼化クロム(CrB2)、硼化モリブデン(MOB
)、硼化タングステン(WBとWB2の混合物)、硼化
ランタン(LlB6)をターゲットとして2×10−2
T0rrのアルゴン分圧でスパッターにて、それぞれ1
000Aの膜厚をつけた。
Example 1 Titanium boride (TiB2), zirconium boride (ZrB2) on a thoroughly cleaned glazed ceramic substrate
, hafnium boride (HfB2), vanadium boride (V8), niobium boride (NbB2), tantalum boride (TaB2)
), chromium boride (CrB2), molybdenum boride (MOB
), tungsten boride (mixture of WB and WB2), and lanthanum boride (LlB6) at 2×10−2
1 each by sputtering with an argon partial pressure of T0rr.
A film thickness of 000A was applied.

これらの金属硼化物薄膜と電気導体(金、銀、銅、アル
ミニウムの4種類)との密着性を測定する為に、両者の
間に下引層を設けた場合と設けない場合との試料を作成
した。下引層としては100A〜200A厚のクロム層
、ニクロム層、バナジウム層の三種類をそれぞれ5×1
0−6T0rrの真空度で電子ビーム蒸着法で層形成し
た。これらの各々について金、銀、銅、アルミニウムの
電気導体層を5000Aの厚さに電子ビーム蒸着法によ
り積層した。上記試料を密着性のテストとしてイソプロ
ピルアルコール中で1紛間超音波洗浄テストを行いその
時の電気良導体のはがれを調べた。
In order to measure the adhesion between these metal boride thin films and electrical conductors (gold, silver, copper, and aluminum), samples were prepared with and without an undercoat layer between them. Created. As the undercoat layer, three types of chromium layer, nichrome layer, and vanadium layer with a thickness of 100A to 200A are each used at 5×1.
The layer was formed by electron beam evaporation at a vacuum degree of 0-6T0rr. For each of these, electrical conductor layers of gold, silver, copper, and aluminum were laminated to a thickness of 5000 Å by electron beam evaporation. As a test for adhesion, the sample was subjected to a one-part ultrasonic cleaning test in isopropyl alcohol, and peeling of the electrically conductive material was examined.

その結果を表1に示す硼化物に金、銀を直接蒸着した試
料は金、銀が完全にはがれてしまい、銅、アルミニウム
の場合には極部的にはがれがみられた。密着性を向上さ
せるためのクロム、ニクロム、パ゛ナジウムを、蒸着さ
せた試料についてはクロム、ニクロムについては金、銀
の電気良導体が一部はがれたいた。表1の結果から明ら
かなようにクロム、ニクロム、バナジウムを設けること
により密着性は向上するが特にバナジウムについてはそ
の密着性は非常に改善されることが明らかである。
The results are shown in Table 1. In the samples in which gold and silver were directly deposited on boride, the gold and silver were completely peeled off, and in the case of copper and aluminum, peeling was observed in some areas. Some of the good electrical conductors of chromium, nichrome, and gold and silver were peeled off for samples in which chromium, nichrome, and panadium were vapor-deposited to improve adhesion. As is clear from the results in Table 1, the adhesion is improved by providing chromium, nichrome, and vanadium, and it is clear that the adhesion of vanadium in particular is greatly improved.

実施例2 実施例1で作製した試料と同じものを熱的安定性をテス
トするために450゜C×5時間熱処理を行ないその熱
処理前後の電気抵抗値を調べた。
Example 2 In order to test thermal stability, the same sample as prepared in Example 1 was heat treated at 450°C for 5 hours, and the electrical resistance values before and after the heat treatment were examined.

表■に熱処理前後の抵抗値の変化量を示す。ノ 表■、
から明らかなようにバナジウムは熱処理による抵抗変化
は、非常に少ない安定した、ものであることは明らかで
ある。
Table ■ shows the amount of change in resistance before and after heat treatment.ノ table ■,
As is clear from the above, it is clear that the resistance change of vanadium due to heat treatment is very small and stable.

金、銀については下引層がないと硼化物との密着性が悪
くなり、膜のはがれにより、接触不良となる。
For gold and silver, if there is no subbing layer, the adhesion with the boride will be poor, and the film will peel off, resulting in poor contact.

クロム、ニクロムは熱処理前後の観察結果、硼化物との
反応が激しくあり、硼化物薄膜と電気良導体との接触を
悪くするようである。実施例3実施例1、2のバナジウ
ム層に代えてバナジウ”ム合金層として(1)バナジウ
ムとアルミニウムの重量比で9:1の合金(2)バナジ
ウムと金の重量比で9:1の合金(3)バナジウムと銅
の重量比で9:1の合金(4)バナジウムと銀の重量比
で9:1の合金(5)バナジウムとジルコニウムの重量
比で8:2の合金(6)バナジウムとハフニウムの重量
比で8:2の合金(7)バナジウムとニオブの重量比で
8:2の合金(8)バナジウムとチタンの重量比で8:
2の合金(9)バナジウムとタンタルの重量比で8:2
の合金(10)バナジウムとクロムの重量比で8:2の
合金(11)バナジウムとモリブデンの重量比で8:2
の合金(12)バナジウムとタングステンの重量比で8
:2の合金(13)バナジウムとランタンの重量比で8
:2の合金をそれぞれ電子ビーム蒸着法で作成して同様
の測定をしたところ、ほぼ同様な結果が得られた。
Observations of chromium and nichrome before and after heat treatment indicate that they react violently with boride, which seems to impair the contact between the boride thin film and the electrically conductive material. Example 3 A vanadium alloy layer was used instead of the vanadium layer in Examples 1 and 2. (1) An alloy with a weight ratio of vanadium and aluminum of 9:1 (2) An alloy with a weight ratio of vanadium and gold of 9:1 (3) Alloy with vanadium and copper in weight ratio of 9:1 (4) Alloy with vanadium and silver in weight ratio of 9:1 (5) Alloy with vanadium and zirconium in weight ratio of 8:2 (6) Vanadium and Alloy with hafnium weight ratio of 8:2 (7) Alloy with vanadium to niobium weight ratio of 8:2 (8) Vanadium to titanium weight ratio of 8:
Alloy 2 (9) Weight ratio of vanadium and tantalum is 8:2
Alloy (10) The weight ratio of vanadium to chromium is 8:2 Alloy (11) The weight ratio of vanadium to molybdenum is 8:2
Alloy (12) with a weight ratio of vanadium and tungsten of 8
:2 alloy (13) Weight ratio of vanadium to lanthanum is 8
:2 alloys were prepared by electron beam evaporation and similar measurements were performed, and almost the same results were obtained.

Claims (1)

【特許請求の範囲】 1 基板と、該基板上に形成された発熱抵抗体と該発熱
抵抗体に電力を供給する電気導体とを有するサーマルヘ
ッドにおいて、前記発熱抵抗体が金属硼化物を主成分と
し、前記発熱抵抗体と電気導体との間にバナジウム層ま
たはバナジウムを主成分とする合金層を設けたことを特
徴とするサーマルヘッド。 2 バナジウム層またはバナジウムを主成分とする合金
層の厚さが5Å〜1000Åである特許請求の範囲第1
項記載のサーマルヘッド。
[Scope of Claims] 1. A thermal head having a substrate, a heating resistor formed on the substrate, and an electric conductor for supplying power to the heating resistor, wherein the heating resistor is mainly composed of a metal boride. A thermal head characterized in that a vanadium layer or an alloy layer containing vanadium as a main component is provided between the heating resistor and the electric conductor. 2. Claim 1, wherein the vanadium layer or the alloy layer containing vanadium as a main component has a thickness of 5 Å to 1000 Å.
Thermal head described in section.
JP53014282A 1978-02-10 1978-02-10 thermal head Expired JPS6046028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53014282A JPS6046028B2 (en) 1978-02-10 1978-02-10 thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53014282A JPS6046028B2 (en) 1978-02-10 1978-02-10 thermal head

Publications (2)

Publication Number Publication Date
JPS54107349A JPS54107349A (en) 1979-08-23
JPS6046028B2 true JPS6046028B2 (en) 1985-10-14

Family

ID=11856726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53014282A Expired JPS6046028B2 (en) 1978-02-10 1978-02-10 thermal head

Country Status (1)

Country Link
JP (1) JPS6046028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040261A (en) * 1983-06-01 1985-03-02 サンテツク・インコ−ポレイテツド Electrode structure of thermal head

Also Published As

Publication number Publication date
JPS54107349A (en) 1979-08-23

Similar Documents

Publication Publication Date Title
JPH07132628A (en) Thermal head and production thereof
JPS6046028B2 (en) thermal head
JPS6046029B2 (en) thermal head
JPH0312551B2 (en)
JPH0712689B2 (en) Thermal head
US4862195A (en) Overcoating layer for thermal printing head
JP2990719B2 (en) Thermal head
JPS63122574A (en) Thermal head
JPS63122573A (en) thermal head
JPS623968A (en) Abrasion-resistant thin film thermal head
JPS6145543B2 (en)
JPS60229B2 (en) thermal head
JPH0640525B2 (en) Thermal head
JPH05229153A (en) Thermal head
JPS6156111B2 (en)
JPS598233B2 (en) thermal head
JPS62202753A (en) Thin film type thermal head
JPS63303766A (en) Thermal head
JPH0640522B2 (en) Thin film resistor
JPS6367319B2 (en)
JPH067522B2 (en) Thermal head
JPS6249193B2 (en)
JPS62109301A (en) Heat sensitive recording head
JP2862606B2 (en) Manufacturing method of thermal head
JPH0239841B2 (en)