JPS6038881A - Semiconductor nonvolatile memory - Google Patents
Semiconductor nonvolatile memoryInfo
- Publication number
- JPS6038881A JPS6038881A JP58147106A JP14710683A JPS6038881A JP S6038881 A JPS6038881 A JP S6038881A JP 58147106 A JP58147106 A JP 58147106A JP 14710683 A JP14710683 A JP 14710683A JP S6038881 A JPS6038881 A JP S6038881A
- Authority
- JP
- Japan
- Prior art keywords
- region
- semiconductor
- gate electrode
- potential
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 33
- 238000002347 injection Methods 0.000 claims description 38
- 239000007924 injection Substances 0.000 claims description 38
- 238000007667 floating Methods 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims 1
- 239000000969 carrier Substances 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 101100340610 Mus musculus Igdcc3 gene Proteins 0.000 description 1
- 241000860832 Yoda Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/681—Floating-gate IGFETs having only two programming levels
- H10D30/684—Floating-gate IGFETs having only two programming levels programmed by hot carrier injection
- H10D30/685—Floating-gate IGFETs having only two programming levels programmed by hot carrier injection from the channel
Landscapes
- Static Random-Access Memory (AREA)
- Read Only Memory (AREA)
- Non-Volatile Memory (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
我々は従来、低プログラム電圧高集積不揮発注メモリと
してPuncb−Through注入型メモリを提案し
た。第1図にそのPunCh−Through注入型メ
モリの代表的な実施例の断面図を示す。N型メモリの場
合、P型半導体基板1の表面に互い分離して各々N+型
のキャリア供給領域であるソース領域2とキャリア吸収
領域であるドレイン領域3を設け、ソース領域2とドレ
イン領域3との間のチャネル領域に第1チヤネル領域と
第2チヤネル領域を設け、第1チヤネル領域上に選択ゲ
ーム酸化膜7を介して選択ゲート電極5を設け、第2チ
ヤネル領域上にはゲート酸化膜6を介して浮遊ゲート電
極4を設けた構造である。浮遊ゲート電極4は、ゲート
酸化膜6ft介してドレイン領域3と強い容量結合をし
ており、浮遊ゲート電極4の電位は主にドレイン領域3
の電位によって制御されている。DETAILED DESCRIPTION OF THE INVENTION We have heretofore proposed a Puncb-Through injection type memory as a low program voltage, highly integrated, non-volatile ordered memory. FIG. 1 shows a cross-sectional view of a typical example of the PunCh-Through injection type memory. In the case of an N-type memory, a source region 2 which is an N+ type carrier supply region and a drain region 3 which is a carrier absorption region are provided separately on the surface of a P-type semiconductor substrate 1, and the source region 2 and the drain region 3 are separated from each other. A first channel region and a second channel region are provided in the channel region between them, a selection gate electrode 5 is provided on the first channel region via a selection game oxide film 7, and a gate oxide film 6 is provided on the second channel region. This is a structure in which a floating gate electrode 4 is provided via a. The floating gate electrode 4 has strong capacitive coupling with the drain region 3 via the gate oxide film 6ft, and the potential of the floating gate electrode 4 is mainly connected to the drain region 3.
is controlled by the potential of
浮遊ゲート電極4の中の電子密度に依存してソース・ド
レイン領域間のチャネル領域のコンダクタンスが変化す
ることから情報を読み出す。Information is read from the fact that the conductance of the channel region between the source and drain regions changes depending on the electron density in the floating gate electrode 4.
情報の書込み、即ち、電子を浮遊ゲート電極4の中へ注
入するには、次に説明するPunch−Through
注入方法を用いる。To write information, that is, to inject electrons into the floating gate electrode 4, Punch-Through, which will be explained next, is used.
Use the injection method.
第1図の示したソース領域2と浮遊ゲート電極4との間
の距離1pをある程度短くすると、ドレイン領域3に逆
バイアスを印加した場合、ソース領域2と基板1との間
の空乏層2aと、第2チヤネル領域の表面空乏層3aと
が交わり、第1チヤネル領域付近に空間電荷領域を形成
する。この空間電荷領域の電位がドレイン領域3に印加
された逆バイアスの増加とともに低下し、キャリア供給
領域であるソース領域2からキャリア吸収領域であるド
レイン領域3へと電子が流れる。いわゆるPunch−
Though現象が行る。第2チヤネル領域の表面ポテ
ンシャルが空間電荷領域のポテンシャルに比べ約五2θ
V(半導体基板1とゲート酸化膜6と)間トポテンシャ
ルバリア障壁の1直)以上低くなると、ソース領域2か
らpunch−’rbrougb 現象で流出した電子
の一部は浮遊ゲート電極4へ入ることができる。例えば
、!p=1μm1基板濃度NA がNA = 1016
atoms ・tyn−”第2チヤネル領域の表面ポテ
ンシャルが基板1に対して7v低くなるとPunch
ThrOugh注入が起る。If the distance 1p between the source region 2 and the floating gate electrode 4 shown in FIG. , and the surface depletion layer 3a of the second channel region intersect, forming a space charge region near the first channel region. The potential of this space charge region decreases as the reverse bias applied to the drain region 3 increases, and electrons flow from the source region 2, which is a carrier supply region, to the drain region 3, which is a carrier absorption region. So-called Punch-
The Tough phenomenon takes place. The surface potential of the second channel region is approximately 52θ compared to the potential of the space charge region.
When the potential barrier between the semiconductor substrate 1 and the gate oxide film 6 becomes lower than V (one voltage of the potential barrier between the semiconductor substrate 1 and the gate oxide film 6), some of the electrons flowing out from the source region 2 due to the punch-'rbrougb phenomenon may enter the floating gate electrode 4. can. for example,! p = 1 μm 1 substrate concentration NA = 1016
atoms ・tyn-” Punch when the surface potential of the second channel region is 7V lower than that of the substrate 1.
ThrOf injection occurs.
上記のように我々が提案した構造のPunch Tbv
−ough注入型メモリは、注入が浮遊ゲート電極4の
ソース領域側の先端で主に行なわれること、さらに、P
unch Througb方向と注入方向が異なること
により電子注入効率が低くプログラム電圧の低電圧化を
リミットしていた。Punch Tbv of our proposed structure as above
-ough injection memory is characterized in that the implantation is mainly performed at the tip of the floating gate electrode 4 on the source region side;
Since the injection direction is different from the unch throughb direction, the electron injection efficiency is low, which limits the reduction of the programming voltage.
本発明は、上記のような従来のPunch Throu
gh注入型メモリの欠点を克服したものであり、注入効
率の高いPunch Through注入型の半導体不
揮発性メモリを提供するものである。The present invention can be applied to the conventional Punch Thru as described above.
This invention overcomes the drawbacks of the gh injection type memory and provides a punch through injection type semiconductor nonvolatile memory with high injection efficiency.
本発明のpunch Througb注入型メモリにつ
いて第2図から第5図を用いて詳細に説明する。The punch through injection type memory of the present invention will be explained in detail with reference to FIGS. 2 to 5.
第2図に、本発明の半導体不揮発性メモリの第1の実施
例の断面図である。1ず構造について説明する。N型半
導体不揮発性メモリの場合について説明する。段差が形
成されているP型半導体基板11Vc、段差領域を介し
てキャリア供給領域であるソース領域12と、キャリア
吸収領域ヤあるドレイン領域13を設け、段差領域とド
レイン領域15にまたがって酸化膜16を介して浮遊ゲ
ート電極14を設ける。第2図の本発明第1の実施例の
場合、浮遊ゲート電極14の電位にドレイン領域13の
電圧で制御できるように浮遊ゲート電極14とドレイン
領域13と強い容量結合を形成している。FIG. 2 is a sectional view of a first embodiment of the semiconductor nonvolatile memory of the present invention. First, the structure will be explained. The case of an N-type semiconductor nonvolatile memory will be explained. A P-type semiconductor substrate 11Vc having a step formed therein, a source region 12 serving as a carrier supply region and a drain region 13 serving as a carrier absorption region are provided via the step region, and an oxide film 16 is formed across the step region and the drain region 15. A floating gate electrode 14 is provided through the gate electrode. In the case of the first embodiment of the present invention shown in FIG. 2, a strong capacitive coupling is formed between the floating gate electrode 14 and the drain region 13 so that the potential of the floating gate electrode 14 can be controlled by the voltage of the drain region 13.
第1の実施例の情報の読み出しに、浮遊ゲート電極14
の中の電子密度によって、ソース・ドレイン領域間のパ
ンチスルー電圧が異なることにより読み出される。For reading information in the first embodiment, the floating gate electrode 14
The punch-through voltage between the source and drain regions differs depending on the electron density in the region, which is read out.
次に情報の書込み、即ち、浮遊ゲート電極14への電子
注入は、ソース・ドレイン領域間でPuncb Thr
oughをおこすことによジ行う。PunchThro
ugh注入のおこる電圧をドレイン領域13に印加する
必要がある。ドレイン領域13に逆バイアスを印加する
ことによジ浮遊ゲート′或極14[接した注入領域に空
乏層13aが形成される。ソース領域12の空乏j@
12 a、と注入領域の空乏層13aが重なると、ソー
ス領域12と注入領域との間の空間電荷形成領域に空間
電荷領域力(形成されPunch Throughが起
こる。Next, information is written, that is, electron injection into the floating gate electrode 14 is performed by Puncb Thr between the source and drain regions.
It is done by raising ough. Punch Thro
It is necessary to apply a voltage to the drain region 13 at which the ugh injection occurs. By applying a reverse bias to the drain region 13, a depletion layer 13a is formed in the implanted region adjacent to the floating gate' or pole 14. Depletion in source region 12 @
12a and the depletion layer 13a of the injection region overlap, a space charge region force is formed in the space charge formation region between the source region 12 and the injection region, and punch through occurs.
’punch Through注入の起こる条件は、ソ
ース領域12と基板11との間に)(イ了スが印加され
ていない場合、次のように表わすことができる。The conditions for ``punch through injection'' (when no erase voltage is applied between the source region 12 and the substrate 11) can be expressed as follows.
ここで、VA;ソース領域12のポテンシャルと注入領
域の表面ポテンシャル
との間の電位差
lp;ソース領域12から段差表面ま
での距離
Wp;ソース領域12と基板11との
間の空乏層幅
△ψ;注入領域の電位による空間電荷
fb tM 領域のポテンシャルの低下2φf;φfU
基板11のフェルミレベルである。P匿基板11が反転
す
るには△φとして2φfの値が必
要である。Here, VA; potential difference lp between the potential of the source region 12 and the surface potential of the injection region; distance Wp from the source region 12 to the stepped surface; width of the depletion layer Δψ between the source region 12 and the substrate 11; Space charge due to potential of injection region fb tM Decrease in potential of region 2φf; φfU
This is the Fermi level of the substrate 11. In order for the P-hidden substrate 11 to be reversed, a value of 2φf is required as Δφ.
(1)式より、j!p=1 prn、、 NA=1[1
”atDmB°/1n−’。From equation (1), j! p=1 prn,, NA=1[1
"atDmB°/1n-'.
Vh = 77にすれば第2図に示す矢印Bの如くPu
ncb−Througb注入が起る。If Vh = 77, Pu as shown by arrow B in Figure 2
ncb-Throughb injection occurs.
本発明の構造を用いれば、′n遊ゲート電極14への電
子注入が第2チヤネル・領域の広い領域にわたって行な
われるため、非常に高注入効率のPuncb Thro
ugh注入型メモリになる。If the structure of the present invention is used, electron injection into the free gate electrode 14 is performed over a wide area of the second channel region, so that PuncB Thro with extremely high injection efficiency can be achieved.
It becomes ugh injection type memory.
本発明の基板の段差を設け、段差領域に注入領域を設け
たPunch Through注入型メモリの場合、空
間電荷形成領域のポテンシャルに注入領域のポテンシャ
ルだけでなく、空間電荷形成領域の半導体表面外部の電
位によジ影#ばれることが考え1られる。In the case of the Punch Through injection memory in which the substrate of the present invention has a step and an injection region is provided in the step region, the potential of the space charge formation region includes not only the potential of the injection region but also the potential outside the semiconductor surface of the space charge formation region. There is a possibility that the person's shadow may be revealed.
第2図に示した本発明第1の実施例は、そのような不安
定性を除くために、半導体表面にP型の菌濃度領域19
7に設けである。高#度領域19力l空間電荷形成懺域
の半導体基板表面上に設けであるため、 Punch
Througb現象は基板11の内部で起こる。従って
、Punch Tbrougb現象げ半導体外部電位に
影響されずに起こすことができる。第6図は、Punc
h Through現象がソース・ドレイン領域間に起
こり、浮遊ゲート電極14へ電子が注入される様子をバ
ンド図で表わしたものである。空間電荷形成領域のポテ
ンシャルが△φユ2φf下がるとpunch ThrO
ugllが起こる。In the first embodiment of the present invention shown in FIG. 2, in order to eliminate such instability, a P-type bacteria concentration region 19 is formed on the semiconductor surface.
It is set in 7. Punch
The Throughb phenomenon occurs inside the substrate 11. Therefore, the Punch Tbrougb phenomenon can occur without being influenced by the external potential of the semiconductor. Figure 6 shows Punc.
This is a band diagram showing how the hThrough phenomenon occurs between the source and drain regions and electrons are injected into the floating gate electrode 14. When the potential of the space charge formation region decreases by △φyu2φf, punch ThrO
ugll happens.
次に、第4図に本発明第2の実施例の断面図を示す。Next, FIG. 4 shows a sectional view of a second embodiment of the present invention.
第2の実施例は、第1の実施例をさらに改良したもので
、空間電荷形成領域のポテンシャルを制御する選択ゲー
ト電極25t−設けたメモリである。The second embodiment is a further improvement of the first embodiment, and is a memory provided with a selection gate electrode 25t for controlling the potential of the space charge forming region.
メモリの情報を読み出す場合には、本発明第1の実施例
の方法の他に、選択ゲート電極25の下のチャネル領域
を反転することにより、ソース・ドレイン領域間のコン
ダクタンスを検出することによっても行うことができる
。また、書込み状態においては、空間電荷形成領域の半
導体基板表面が反転しないように選択ゲート電極25v
c電圧を印加する。Punch Tbrough現象は
、大部分半導体基板内部で起こる。When reading information from a memory, in addition to the method of the first embodiment of the present invention, it is also possible to detect the conductance between the source and drain regions by inverting the channel region under the selection gate electrode 25. It can be carried out. In addition, in the write state, the selection gate electrode 25v is set so that the surface of the semiconductor substrate in the space charge formation region is not inverted.
c Apply voltage. The Punch Tbrough phenomenon mostly occurs inside the semiconductor substrate.
次に、第5図に、本発明第3の実施例の断面図を示す。Next, FIG. 5 shows a sectional view of a third embodiment of the present invention.
ml及び第2実施例のメモリは、浮遊ゲート電極の電位
がドレイン領域の電位によって制御されるものであった
。第5図の第3の実施例のメモリに、浮遊ゲート電極3
4の電位を制御するために、浮遊ゲート電極54の上に
に2縁膜68を介して制御電極59′fc新fc、に設
け/こ構造である。ml and the memory of the second embodiment, the potential of the floating gate electrode was controlled by the potential of the drain region. In the memory of the third embodiment shown in FIG.
In order to control the potential of 4, a control electrode 59'fc is provided on the floating gate electrode 54 via a two-layer film 68.
ドレイン領域33と浮遊ゲート電極34とに弱い容量結
合するように形成されている。The drain region 33 and the floating gate electrode 34 are formed to have weak capacitive coupling.
本発明第3の実施例のメモリにおいては、注入領域のポ
テンシャルはドレイン領域53の電位と制御ゲート電極
69の電位によって変化する。メモリの読み出しは、選
択ゲート電極35と制御ゲート電$i39に一定電圧を
印加したときのソース・ドレイン領域間のコンダクタン
スを検出することにより行なわれる。浮遊グー1:栃6
4に電子が入るとコンダクタンスは低下する。次に、メ
モリの書込みは、選択ゲート電極55に、空間電荷形底
領域の半導体表面が反転しないような電圧を印加し、ド
レイン領域33及び制御ゲート電極39に大きなプログ
ラム電圧を印加し、ソース領域ろ2と注入領域との間に
空間電荷領域を形成することによりPunch Thr
ough注入を行う。ソース領域32がら空間電荷領域
のポテンシャルの山を越えて段差領域の注入領域に入り
、注入領域の空乏層内で加速され浮遊ゲートに入る。In the memory according to the third embodiment of the present invention, the potential of the implanted region changes depending on the potential of the drain region 53 and the potential of the control gate electrode 69. Reading from the memory is performed by detecting the conductance between the source and drain regions when a constant voltage is applied to the selection gate electrode 35 and the control gate voltage $i39. Floating goo 1: Tochi 6
When electrons enter 4, the conductance decreases. Next, memory writing is performed by applying a voltage to the selection gate electrode 55 that does not invert the semiconductor surface of the space charge type bottom region, applying a large programming voltage to the drain region 33 and the control gate electrode 39, and applying a large programming voltage to the source region. Punch Thr by forming a space charge region between the filter 2 and the injection region.
Perform a deep injection. The source region 32 crosses the potential peak of the space charge region, enters the injection region of the step region, is accelerated within the depletion layer of the injection region, and enters the floating gate.
以上本発明のPunch Through注入型半導体
注入型半導体不揮発性メモリ面の段差領域に注入領域を
形成することにより、浮遊ゲート電極への電子注入を面
状に注入することを可能にした。従って、本発明の半導
体不揮発性メモリニ、従来のPunQbThrough
注入型メモリに比べ、注入効率が高く、高集積低プログ
ラム電圧半導体不揮発性メモリとなる。As described above, by forming an injection region in the stepped region of the surface of the Punch Through injection type semiconductor nonvolatile memory of the present invention, it has become possible to inject electrons into the floating gate electrode in a planar manner. Therefore, the semiconductor non-volatile memory of the present invention, the conventional PunQbThrough
Compared to injection type memory, injection efficiency is higher, resulting in highly integrated, low program voltage semiconductor non-volatile memory.
本発明の説明に、N型メモリトランジスタを用いたが、
P型メモリトランジスタにおいても適用できる。また、
半導体基板は、請求範囲の半導体領域のことであり1絶
縁膜上に設けられた半導体層の場合も含んでいる。Although an N-type memory transistor is used in the explanation of the present invention,
It can also be applied to P-type memory transistors. Also,
The term "semiconductor substrate" refers to a semiconductor region in the claims, and includes a semiconductor layer provided on one insulating film.
また、本発明のメモリセルの書込み・読み出しの選択は
、ソース領域、基板、制御illゲート電極。Further, the selection of writing/reading of the memory cell of the present invention includes the source region, the substrate, and the control ill gate electrode.
ドレイン領域1遺択ゲート電極の電位を制御することに
よって容易に可能になる。書込み時の場合、非選択のメ
モリセルに対してに、空間電荷形成領域に空間電荷領域
が形成されないようにする必要がある。Selection of the drain region 1 can be easily made possible by controlling the potential of the gate electrode. In the case of writing, it is necessary to prevent a space charge region from being formed in the space charge formation region for unselected memory cells.
第1商は、従来のpunch Tbrougb注入型半
導体注入型半導モト揮発性メモリ面図、第2図、第4図
、第5図はそれぞれ本発明のPuncb Throuq
h注入型メモリの第1から第5の実施例の断面図である
。第5図は、第2図の矢印BvC沿ったバンド構造図で
ある。
1.11,21.31・・・P型半導体基板2.12,
22,32・・・耐ソース領域3.13,23.33・
・・N+ドレイン領域4.14,24.34・・・浮遊
ゲート電極5.25.35・・・選択ゲート電極
6.7.B、16.1 B、26,27.2B。
36.37.38・・・絶縁膜
以 上
出願人 工業技術院長用田裕部
出 願人 株式会社 第二稍工合
弔/III
第2a
第3図The first quotient is a plan view of a conventional punch Tbrougb injection type semiconductor injection type semiconductor motovolatile memory, and FIGS.
FIG. 3 is a cross-sectional view of first to fifth embodiments of the h-injection memory. FIG. 5 is a band structure diagram along arrow BvC in FIG. 2. 1.11, 21.31...P-type semiconductor substrate 2.12,
22, 32... Source-resistant region 3.13, 23.33.
...N+ drain region 4.14, 24.34...Floating gate electrode 5.25.35...Selection gate electrode 6.7. B, 16.1 B, 26, 27.2B. 36.37.38...Insulating film and above Applicant: Hirobu Yoda, Director of the Agency of Industrial Science and Technology Applicant: Dainicho Kogoso Co., Ltd./III Figure 2a Figure 3
Claims (4)
導体領域と、前記第1の半導体領域表面に前記段差領域
を介して各々設けられた第1導電型と逆導電型である第
2導N、型のキャリア供給領域及びキャリア吸収領域と
、前記段差領域の前記@1の半導体領域表面に前記キャ
リア吸収領域に連続して設けられた注入領域と、前記注
入領域の上に第1の絶縁膜を介して設けられた浮遊ゲー
ト電極と、前記浮遊ゲート電極の電位を制御するために
前記浮遊ゲート電極上に第2の絶縁膜を介して設けられ
た第1の制御ゲート電極とから成り、前記キャリア供給
領域と前記注入領域との間に設けた第1の半導体領域内
で前記注入領域と前記キャリア供給領域との間の電位差
で空間電荷領域が形成されることによって、前記キャリ
ア供給領域内のギヤリアが前記キャリア吸収領域の電位
により制御される前記注入領域の電位しこよって前記空
間電荷領域内に引き出きれて高エネルギー状態で前記注
入領域として動作する前記第1の半導体領域表面に到達
して一部が前記第1の絶縁膜と前記注入領域との間のエ
ネルギー障壁を超えて前記浮遊ゲート電極に注入される
ことを特徴とする半導体不揮発注メモリ。(1) A first semiconductor region of a first conductivity type with a step region provided on the surface thereof, and a conductivity type opposite to the first conductivity type provided respectively on the surface of the first semiconductor region via the step region. a second N-type carrier supply region and a carrier absorption region; an implantation region provided on the surface of the @1 semiconductor region of the step region so as to be continuous with the carrier absorption region; a first control gate electrode provided on the floating gate electrode via a second insulating film to control the potential of the floating gate electrode; The carriers are the first semiconductor region in which a gear in the supply region operates as the injection region in a high energy state by being drawn into the space charge region by the potential of the injection region controlled by the potential of the carrier absorption region; 1. A semiconductor non-volatile memory, wherein a portion of the semiconductor non-volatile memory is implanted into the floating gate electrode after reaching the surface and exceeding an energy barrier between the first insulating film and the implantation region.
体領域の不純物濃度よりも高い不純物濃度の第1導電型
の拡散層を設けたことを特徴とする特許請求の範囲第1
項記載の半導体不揮発性メモリ。(2) A diffusion layer of a first conductivity type having an impurity concentration higher than that of the first semiconductor region is provided on the surface of the space charge forming region.
Semiconductor nonvolatile memory described in Section 1.
て前記空間電荷形成領域の電位を制御する第2の制御ゲ
ート電極を設けたことを特徴とする特許請求の範囲第1
項あるいに第2項記載の半導体不揮発性メモリ。(3) A second control gate electrode for controlling the potential of the space charge forming region is provided on the space charge region via a sixth gate insulating film.
The semiconductor nonvolatile memory according to item 1 or 2.
域とを共通な領域としたことを特徴とする特許請求の範
囲第1項から第6項いずれか記載の半導体不揮発性メモ
リ。(4) The semiconductor nonvolatile memory according to any one of claims 1 to 6, wherein the carrier absorption region and the first control gate region are a common region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58147106A JPS6038881A (en) | 1983-08-11 | 1983-08-11 | Semiconductor nonvolatile memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58147106A JPS6038881A (en) | 1983-08-11 | 1983-08-11 | Semiconductor nonvolatile memory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6038881A true JPS6038881A (en) | 1985-02-28 |
JPH0481347B2 JPH0481347B2 (en) | 1992-12-22 |
Family
ID=15422647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58147106A Granted JPS6038881A (en) | 1983-08-11 | 1983-08-11 | Semiconductor nonvolatile memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6038881A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419801A (en) * | 1987-07-15 | 1989-01-23 | Dx Antenna | Polarized wave discriminator |
US5047812A (en) * | 1989-02-27 | 1991-09-10 | Motorola, Inc. | Insulated gate field effect device |
US5467305A (en) * | 1992-03-12 | 1995-11-14 | International Business Machines Corporation | Three-dimensional direct-write EEPROM arrays and fabrication methods |
WO1996018998A1 (en) * | 1994-12-16 | 1996-06-20 | National Semiconductor Corporation | A method for programming a single eprom or flash memory cell to store multiple levels of data |
WO1996031883A1 (en) * | 1995-04-06 | 1996-10-10 | National Semiconductor Corporation | A method for programming an amg eprom or flash memory when cells of the array are formed to store multiple bits of data |
US5808937A (en) * | 1994-12-16 | 1998-09-15 | National Semiconductor Corporation | Self-convergent method for programming FLASH and EEPROM memory cells that moves the threshold voltage from an erased threshold voltage range to one of a plurality of programmed threshold voltage ranges |
US6051465A (en) * | 1997-07-30 | 2000-04-18 | Matsushita Electronics Corporation | Method for fabricating nonvolatile semiconductor memory device |
US6051860A (en) * | 1998-01-16 | 2000-04-18 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor memory device and method for fabricating the same and semiconductor integrated circuit |
US6121655A (en) * | 1997-12-30 | 2000-09-19 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor memory device and method for fabricating the same and semiconductor integrated circuit |
US6147379A (en) * | 1998-04-13 | 2000-11-14 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
JP2007158196A (en) * | 2005-12-07 | 2007-06-21 | Sharp Corp | Nonvolatile semiconductor device and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353983A (en) * | 1976-10-27 | 1978-05-16 | Hitachi Ltd | Semiconductor non-volatile memory device |
-
1983
- 1983-08-11 JP JP58147106A patent/JPS6038881A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353983A (en) * | 1976-10-27 | 1978-05-16 | Hitachi Ltd | Semiconductor non-volatile memory device |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0434321B2 (en) * | 1987-07-15 | 1992-06-05 | Dx Antenna | |
JPS6419801A (en) * | 1987-07-15 | 1989-01-23 | Dx Antenna | Polarized wave discriminator |
US5047812A (en) * | 1989-02-27 | 1991-09-10 | Motorola, Inc. | Insulated gate field effect device |
US5617351A (en) * | 1992-03-12 | 1997-04-01 | International Business Machines Corporation | Three-dimensional direct-write EEPROM arrays and fabrication methods |
US5467305A (en) * | 1992-03-12 | 1995-11-14 | International Business Machines Corporation | Three-dimensional direct-write EEPROM arrays and fabrication methods |
US5808937A (en) * | 1994-12-16 | 1998-09-15 | National Semiconductor Corporation | Self-convergent method for programming FLASH and EEPROM memory cells that moves the threshold voltage from an erased threshold voltage range to one of a plurality of programmed threshold voltage ranges |
US5594685A (en) * | 1994-12-16 | 1997-01-14 | National Semiconductor Corporation | Method for programming a single EPROM or flash memory cell to store multiple bits of data that utilizes a punchthrough current |
WO1996018998A1 (en) * | 1994-12-16 | 1996-06-20 | National Semiconductor Corporation | A method for programming a single eprom or flash memory cell to store multiple levels of data |
WO1996031883A1 (en) * | 1995-04-06 | 1996-10-10 | National Semiconductor Corporation | A method for programming an amg eprom or flash memory when cells of the array are formed to store multiple bits of data |
US6051465A (en) * | 1997-07-30 | 2000-04-18 | Matsushita Electronics Corporation | Method for fabricating nonvolatile semiconductor memory device |
US6121655A (en) * | 1997-12-30 | 2000-09-19 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor memory device and method for fabricating the same and semiconductor integrated circuit |
US6380585B1 (en) | 1997-12-30 | 2002-04-30 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor device capable of increased electron injection efficiency |
US6051860A (en) * | 1998-01-16 | 2000-04-18 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor memory device and method for fabricating the same and semiconductor integrated circuit |
US6358799B2 (en) | 1998-01-16 | 2002-03-19 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor memory device and method for fabricating the same, and semiconductor integrated circuit device |
US6147379A (en) * | 1998-04-13 | 2000-11-14 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
JP2007158196A (en) * | 2005-12-07 | 2007-06-21 | Sharp Corp | Nonvolatile semiconductor device and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0481347B2 (en) | 1992-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6172905B1 (en) | Method of operating a semiconductor device | |
US5319229A (en) | Semiconductor nonvolatile memory with wide memory window and long data retention time | |
US5586073A (en) | Semiconductor device having a multi-layer channel structure | |
US7072223B2 (en) | Asymmetric band-gap engineered nonvolatile memory device | |
US6872614B2 (en) | Nonvolatile semiconductor memory device and process of production and write method thereof | |
US5079603A (en) | Semiconductor memory device | |
US6026017A (en) | Compact nonvolatile memory | |
US20100038701A1 (en) | Integrated two device non-volatile memory | |
JP3696791B2 (en) | Semiconductor memory device | |
US6091634A (en) | Compact nonvolatile memory using substrate hot carrier injection | |
JPH07120720B2 (en) | Nonvolatile semiconductor memory device | |
EP0974166A1 (en) | Nonvolatile semiconductor memory | |
TW473989B (en) | 2-bit/cell type nonvolatile semiconductor memory | |
US20220085038A1 (en) | Memory cell of non-volatile memory | |
JPS6038881A (en) | Semiconductor nonvolatile memory | |
US5844271A (en) | Single layer polycrystalline silicon split-gate EEPROM cell having a buried control gate | |
JPS5889871A (en) | Electrically programmable read-only memory cell | |
JP2830447B2 (en) | Semiconductor nonvolatile storage device | |
US6127225A (en) | Memory cell having implanted region formed between select and sense transistors | |
JP2008118040A (en) | Nonvolatile semiconductor memory device, manufacturing method thereof, and information writing method using the same | |
US5604142A (en) | Method of making an EPROM with peripheral transistor | |
JP2000515326A (en) | Non-volatile memory cell | |
KR20000035785A (en) | Non-volatile storage cell | |
JP3186209B2 (en) | How to use semiconductor devices | |
US20020011621A1 (en) | Semiconductor nonvolatile memory with low programming voltage |