JPS6034090B2 - optical fiber - Google Patents
optical fiberInfo
- Publication number
- JPS6034090B2 JPS6034090B2 JP54132557A JP13255779A JPS6034090B2 JP S6034090 B2 JPS6034090 B2 JP S6034090B2 JP 54132557 A JP54132557 A JP 54132557A JP 13255779 A JP13255779 A JP 13255779A JP S6034090 B2 JPS6034090 B2 JP S6034090B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- radiation
- layer
- coating layer
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Description
【発明の詳細な説明】 この発明は光フアィバに関する。[Detailed description of the invention] This invention relates to optical fibers.
光フアィバは抵損失・広帯域なため、従来の通信線に較
べスペースフアクタがよく、長距離通信用のみならず局
内の接続用やコ′ンピュー夕のりンク用などの特殊な用
途にも使用され始めている。Optical fiber has low loss and wide bandwidth, so it has a better space factor than conventional communication lines, and is used not only for long-distance communication but also for special purposes such as intra-office connections and computer links. It's starting.
そこで、上記のような特殊な用途の使用にも耐え得るよ
う、低コストで被覆の耐摩耗性・耐熱性等を向上させる
ことが要求される。光ファィバ心線は一般的に第1図に
示すように4層構造をもっている。Therefore, it is required to improve the abrasion resistance, heat resistance, etc. of the coating at low cost so that it can withstand use in the above-mentioned special applications. Optical fibers generally have a four-layer structure as shown in FIG.
すなわち中心部のドープト石英ガラスからなるフアィバ
素線1をシリコン樹脂等のプライマリーコート2で覆い
、更に高分子物質からなるクッション層3および高分子
物質からなる被覆層4で覆って構成されている。被覆層
4として放射線照射架橋性の高分子物質、例えばポリエ
チレン、ポリ塩化ビニル、ポリプロピレン、ハイパロン
、ポリスチレン、ポリアクリロニトリル、ボリ酢酸ビニ
ル、ポリビニルアルコール、ナイロン、ブタジエンラノ
ゞ−、クロロプレンラバ一等を用い、放射線を照射して
高分子の架橋を形成し、被覆層4の耐摩耗性および耐熱
性等の強度を向上させることができる。放射線としては
原子炉からの中性子やy線、コバルト6蛤等からのy線
あるいは電子線などを用いることができるが一般的には
電子線加速機による電子線を用いるのが好ましい。なお
クッション層3としては放射線照射架キ蚤性あるいは放
射線照射崩壊性のどちらの高分子物質を用いてもよいが
、ポリィソブチレン等の放射線照射により液化する高分
子物質がクッション層としての機能から見て適当である
。この場合具体的には直径125Amのフアィバ素線に
変成シリコーンのプライマリーコートを塗布し直径25
5Amとする。That is, a fiber wire 1 made of doped quartz glass in the center is covered with a primary coat 2 made of silicone resin or the like, and further covered with a cushion layer 3 made of a polymeric material and a covering layer 4 made of a polymeric material. As the coating layer 4, a radiation crosslinkable polymer material such as polyethylene, polyvinyl chloride, polypropylene, hypalon, polystyrene, polyacrylonitrile, polyvinyl acetate, polyvinyl alcohol, nylon, butadiene rubber, chloroprene rubber, etc. is used, By irradiating with radiation to form polymer crosslinks, it is possible to improve the strength such as wear resistance and heat resistance of the coating layer 4. As the radiation, neutrons or y-rays from a nuclear reactor, y-rays or electron beams from cobalt-6 or the like can be used, but it is generally preferable to use an electron beam from an electron beam accelerator. The cushion layer 3 may be made of either radiation-curable or radiation-degradable polymer materials, but from the viewpoint of its function as a cushion layer, polymer materials that are liquefied by radiation exposure, such as polyisobutylene, are preferred. Appropriate. In this case, specifically, a primary coat of modified silicone is applied to a fiber wire with a diameter of 125 Am.
It is assumed to be 5 Am.
そしてその上に他の変成シリコーンを塗布し直径450
ムmとする。更にその上に高密度ポリエチレンを押出し
成形により被覆して被覆層を形成し直径0.9柳の外蓬
とする。こうして得た光フアィバ心線を電子線加速機に
より照射する。加速電圧は200kV、電流は30.瓜
hAで、光フアィバ心線を200側/minの速度で移
動しながら電子線の照射を行なった。第1表は、照射前
と照射後の引張強度、耐ハンダ性、耐摩耗性、耐熱性を
比較したものである。Then, apply another modified silicone on top of it and make it 450mm in diameter.
Let's say m. Further, high-density polyethylene is further extruded to form a coating layer thereon to form a willow casing having a diameter of 0.9. The optical fiber core wire thus obtained is irradiated with an electron beam accelerator. Accelerating voltage is 200kV, current is 30. Electron beam irradiation was carried out while moving the optical fiber core wire at a speed of 200 sides/min using a melon hA. Table 1 compares the tensile strength, solder resistance, abrasion resistance, and heat resistance before and after irradiation.
第1表第1表から明らかなように照射後の光フアィバ心
線は優れた特性を示している。As is clear from Table 1, the optical fiber core wire after irradiation shows excellent characteristics.
ところで上記のように光フアィバ心線は本質的に非金属
物質で形成されており導電性をもたない。By the way, as mentioned above, the optical fiber core wire is essentially made of a non-metallic material and has no electrical conductivity.
そのため光ファィバ心線に放射線を照射して被覆層の高
分子に架橋を形成させる場合、照射効率がよくない或い
は加速電圧の大きな電子線加速機を要する等改善すべき
点もある。またフアィバ素線1をなすドーブト石英ガラ
スが放射線の照射を受けると着色中Dを発生し、これに
より光信号の伝送損失が増加すると云う不都合が生じる
おそれもある。本発明は、特殊な用途の使用にも耐え得
るよう、光フアィバの被覆の耐摩耗性・耐熱性等を向上
させることを低コストで実現し、しかも放射線照射した
場合に被覆層における照射架橋効率が高くかつ光ファィ
バ秦線における伝送損失の増加を防ぐことができるよう
にすることを目的とする。Therefore, when irradiating the optical fiber with radiation to form crosslinks in the polymer of the coating layer, there are some issues that need to be improved, such as poor irradiation efficiency or the need for an electron beam accelerator with a high acceleration voltage. Furthermore, when the doped quartz glass constituting the fiber wire 1 is irradiated with radiation, D occurs during coloring, which may cause an inconvenience in that the transmission loss of optical signals increases. The present invention improves the abrasion resistance, heat resistance, etc. of the optical fiber coating at a low cost so that it can withstand use in special applications, and also improves the irradiation crosslinking efficiency of the coating layer when irradiated with radiation. It is an object of the present invention to make it possible to have a high transmission loss and to prevent an increase in transmission loss in an optical fiber line.
本発明によればこれらの点を達成するためにフアィバ秦
線1と被覆層4との間に導電性物質層を形成するように
する。具体的にはクッション層3に導電性物質を用いる
。例えばクッション層3としてカーボン粉末あるいは他
の金属粉末を混入して導電性をもたせた高分子物質を用
いる。この高分子物質としては前記と同機に放射線照射
架橋性あるいは放射線照射崩壊性のどちらでもよいが、
クッション層の機能から云ってポリイソプチレンなどの
放射線照射により液化する高分子物質が好ましい。この
ようにファィバ素線1と放射線照射架橋性の高分子物質
の被覆層4との間に導電性物質層を設けることにより被
覆層4における照射架橋効率を高めることができる。According to the present invention, in order to achieve these points, a conductive material layer is formed between the fiber wire 1 and the coating layer 4. Specifically, a conductive material is used for the cushion layer 3. For example, the cushion layer 3 is made of a polymer material mixed with carbon powder or other metal powder to make it conductive. This polymeric material may be either radiation crosslinkable or radiation disintegrable in the same manner as above, but
From the viewpoint of the function of the cushion layer, a polymer material such as polyisoptylene which is liquefied by radiation irradiation is preferable. By providing a conductive material layer between the fiber strand 1 and the coating layer 4 made of a radiation-crosslinkable polymer material in this way, the radiation crosslinking efficiency in the coating layer 4 can be increased.
また照射された電子線が導電性物質層により吸収される
ので放射線がフアィバ素線1に到達せずフアィバ素線1
内に着色中心が発生することが防止できる。次にこの発
明のひとつの実施例について説明する。In addition, since the irradiated electron beam is absorbed by the conductive material layer, the radiation does not reach the fiber wire 1.
It is possible to prevent colored centers from occurring within the interior. Next, one embodiment of this invention will be described.
まず、直径125〃mのドープト石英ガラスのフアィバ
素線に変成シリコーンを塗布してプライマリーコートを
形成し直径220仏mとする。First, a primary coat is formed by applying modified silicone to a doped quartz glass fiber wire having a diameter of 125 mm, and the fiber wire is made to have a diameter of 220 mm.
そして変成シリコーンにカーボン粉末を重量比で2:1
に混入したものをプライマリーコートの上に塗布しクッ
ション層を形成し、直径400仏mとする。そして、こ
の上に高密度ポリエチレンを押出し成形により被覆して
被覆層を形成し外形の直径が0.9肋となるようにする
。このようにして製造した光フアィバ心線に電子線加速
機を用いて電子線を照射する。この時加速電圧は300
kV、電流は33.5mAで、光フアィバ心線を15仇
吻/minの速度で移送した。第2図はかくしてえられ
た光フアィバ心線(1)と導電層をもたない光フアィバ
心線(0)の伝送特性損失を示したものである。Then, the weight ratio of carbon powder to modified silicone is 2:1.
A cushion layer is formed by coating the mixture mixed with the primary coat on the primary coat, and the diameter is 400 mm. Then, high-density polyethylene is coated on top of this by extrusion molding to form a coating layer so that the outer diameter becomes 0.9 ribs. The optical fiber core wire thus produced is irradiated with an electron beam using an electron beam accelerator. At this time, the acceleration voltage is 300
kV, the current was 33.5 mA, and the optical fiber was transferred at a speed of 15 m/min. FIG. 2 shows the transmission characteristic loss of the optical fiber (1) thus obtained and the optical fiber (0) having no conductive layer.
この図から明らかなように導電層を備えた光フアィバ心
線(1)の方がその特性は優れており、これは放射線を
照射しても光ファイバ素線に着色中心が生じなかったこ
とを示している。以上、実施例について説明したように
本発明によれば、放射線照射架橋性の高分子物質により
被覆層を形成しているため低コストで被覆層の耐摩耗性
、耐熱性などの強度を増加することができ、しかも、放
射線照射架橋効率が高くかつ放射線照射による伝送損失
増加も防ぐことができる。As is clear from this figure, the optical fiber core wire (1) with a conductive layer has better properties, and this means that no colored centers were generated in the optical fiber wire even when irradiated with radiation. It shows. As described above in the embodiments, according to the present invention, the coating layer is formed of a radiation-crosslinkable polymer material, so that the strength such as abrasion resistance and heat resistance of the coating layer can be increased at low cost. In addition, the radiation crosslinking efficiency is high and an increase in transmission loss due to radiation irradiation can be prevented.
第1図は光フアィバ心線の構造を示すための横断面図、
第2図は内面に導電層を備えた放射線照射光フアィバ心
線(1)と内面に導電層を持たない放射線照射光フアィ
バ心線(0)の伝送特性図である。
1・・・・・・フアイバ素線、2・・・…プライマリー
コート、3・・・・・・クッション層、4…・・・被覆
層。
多ヱ図多2図Figure 1 is a cross-sectional view showing the structure of the optical fiber core.
FIG. 2 is a transmission characteristic diagram of a radiation-irradiated optical fiber core wire (1) having a conductive layer on its inner surface and a radiation-irradiated optical fiber core wire (0) having no conductive layer on its inner surface. 1...Fiber wire, 2...Primary coat, 3...Cushion layer, 4...Coating layer. Tae tu ta 2
Claims (1)
よび放射線照射によつて架橋された高分子物質からなる
被覆層が順次形成されてなることを特徴とする光フアイ
バ。 2 前記導電性物質層は、金属粉末を含む高分子物質層
よりなることを特徴とする特許請求の範囲第1項記載の
光フアイバ。[Scope of Claims] 1. An optical fiber characterized in that a conductive material layer and a coating layer made of a polymer material crosslinked by radiation irradiation are successively formed on a glass fiber wire for optical transmission. 2. The optical fiber according to claim 1, wherein the conductive material layer is a polymer material layer containing metal powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54132557A JPS6034090B2 (en) | 1979-10-15 | 1979-10-15 | optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54132557A JPS6034090B2 (en) | 1979-10-15 | 1979-10-15 | optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5655906A JPS5655906A (en) | 1981-05-16 |
JPS6034090B2 true JPS6034090B2 (en) | 1985-08-07 |
Family
ID=15084067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54132557A Expired JPS6034090B2 (en) | 1979-10-15 | 1979-10-15 | optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6034090B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5898706A (en) * | 1981-12-07 | 1983-06-11 | Sumitomo Electric Ind Ltd | Manufacture of plastic optical fiber |
JPS58162911A (en) * | 1982-03-23 | 1983-09-27 | Furukawa Electric Co Ltd:The | Optical communication line for joint use of overhead line |
FR2559275B1 (en) * | 1984-02-02 | 1988-04-08 | Thomson Csf | METHOD FOR MANUFACTURING AN OPTICAL FIBER WITH A CHIRAL STRUCTURE AND DEVICE CARRYING OUT THIS METHOD |
JPH0251303U (en) * | 1988-09-30 | 1990-04-11 |
-
1979
- 1979-10-15 JP JP54132557A patent/JPS6034090B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5655906A (en) | 1981-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4317001A (en) | Irradiation cross-linked polymeric insulated electric cable | |
US4096346A (en) | Wire and cable | |
US5949018A (en) | Water blocked shielded coaxial cable | |
US4479031A (en) | Heat-shrinkable tube with semiconductive parts for use in joining electrical cables | |
US3769085A (en) | Insulated cable having an insulating shielding layer | |
ES2330316T3 (en) | COMMUNICATIONS CABLE PROVIDED WITH A DIAPHONIC BARRIER FOR USE IN HIGH FREQUENCY OF TRANSMISSION. | |
US6846536B1 (en) | Laser-markable sheathing | |
GB2074753A (en) | Electro-optic cable | |
US4469539A (en) | Process for continuous production of a multilayer electric cable | |
FI96803C (en) | Isolated management and its manufacturing process | |
EP0089226B1 (en) | Coaxial cables | |
US4340773A (en) | Coaxial cables with foam dielectric | |
CA1280306C (en) | Telecommunications cable containing optical fibres | |
US3325325A (en) | Method of making polyethylene insulated electrical conductors | |
US4332976A (en) | Coaxial cables | |
JPS6034090B2 (en) | optical fiber | |
US20040071416A1 (en) | Optical cable having an increased resistance to dry band arcing and method for its manufacture | |
CA1269606A (en) | Laminated paper-plastic insulating tape and cable including such tape | |
JPS6056392A (en) | Self-adjusable heating cable and method of producing same | |
US3705257A (en) | Electric cable and method of making | |
JPS58150913A (en) | Optical cable | |
GB1387095A (en) | Filled communication cables with irradiated polyethylene insulation | |
JPH01267909A (en) | Radiation resistant electric wire-cable | |
GB2043078A (en) | Irradiation cross-linked polymeric insulation for electric cable | |
JP2594552B2 (en) | Method for manufacturing flexible optical waveguide |