[go: up one dir, main page]

JPS6032247A - Manufacture of diaphragm for battery - Google Patents

Manufacture of diaphragm for battery

Info

Publication number
JPS6032247A
JPS6032247A JP58141713A JP14171383A JPS6032247A JP S6032247 A JPS6032247 A JP S6032247A JP 58141713 A JP58141713 A JP 58141713A JP 14171383 A JP14171383 A JP 14171383A JP S6032247 A JPS6032247 A JP S6032247A
Authority
JP
Japan
Prior art keywords
film
microporous
diaphragm
resistance
graft polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58141713A
Other languages
Japanese (ja)
Other versions
JPH0430142B2 (en
Inventor
Shohei Tamura
田村 正平
Sadamitsu Sasaki
佐々木 貞光
Shunichi Shimatani
俊一 島谷
Mitsuo Sakakawa
坂川 光男
Takashi Ichinose
一瀬 尚
Keiji Nakamoto
中本 啓次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP58141713A priority Critical patent/JPS6032247A/en
Publication of JPS6032247A publication Critical patent/JPS6032247A/en
Publication of JPH0430142B2 publication Critical patent/JPH0430142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain a diaphragm having a good chemical resistance, a small ion transmission resistance, a small electric resistance and an excellent mechanical strength by subjecting a microporous film consisting of a polyfluoroolefin to alkali metal treatment, then irradiating ionizing radiation upon the film before hydrophilic monomers are subjected to graft polymerization. CONSTITUTION:A microporous polyfluoroolefin film preferably a polytetrafluoroethylene film is subjected to alkali metal treatment so as to introduce active polar groups which can easily produce cross-linking radicals onto the surface of the film. When an untreated film is used, radicals of an amount necessary for graft polymerization are produced by the irradiation of ionizing radiation of such a low dose as not to cause graft polymerization, thereby effectively graft- polymerizing the monomers to make the film hydrophilic. The thus obtained microporous film has excellent chemical stabilities especially a good alkali resistance. Moreover, it has a small electric resistance and a high selective permeability for ions. Therefore the microporous film can be used as a superior diaphragm for an alkaline battery.

Description

【発明の詳細な説明】 本発明は電池用隔膜の製造方法Qこ関し、詳しくは、特
に微孔性ポリフッ化オレフィンフィルムからなり、耐薬
品性にすぐれると共に、イオン透過抵抗及び電気抵抗が
小さく、また、機械的強度にもすぐれるアルカリ電池用
隔膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a diaphragm for batteries, and more particularly, it is made of a microporous polyfluorinated olefin film, has excellent chemical resistance, and has low ionic permeation resistance and low electrical resistance. The present invention also relates to a method for producing a diaphragm for alkaline batteries that has excellent mechanical strength.

一般に小型高性能電池である水銀、銀電池等のアルカリ
電池は、陰極合剤と陽極合剤とが隔膜によって隔絶され
、電解液のみが隔膜を介して陰陽両極間を移動して電池
反応が行なわれるので、かかるアルカリ電池用隔膜とし
ては、化学的に安定であること、イオン透過性が良好な
こと、電気抵抗が小さいこと、隔膜自体が非導電性であ
ること、十分な機械的強度を有すること等が要求される
In general, alkaline batteries such as mercury and silver batteries, which are small high-performance batteries, have a cathode mixture and an anode mixture separated by a diaphragm, and only the electrolyte moves between the negative and anode electrodes via the diaphragm to carry out the battery reaction. Therefore, the diaphragm for alkaline batteries must be chemically stable, have good ion permeability, have low electrical resistance, be non-conductive, and have sufficient mechanical strength. etc. are required.

従来より電池用隔膜として汎用されているセロファン膜
は、上記した特性をほぼ満足しているものの、上述した
化学的安定性に欠ける1頃向がある。
Although cellophane membranes that have conventionally been widely used as diaphragms for batteries generally satisfy the above-mentioned properties, they tend to lack the above-mentioned chemical stability.

即ち、アルカリ電解液又はアルカリ下におりる陽極活物
質の酸化性によって酸化劣化を受けやすく、電池保存中
に陰極と陽極の活物質が相互に接触して内部短絡、自己
放電し、その結果、電池寿命が短縮される。
That is, the battery is susceptible to oxidative deterioration due to the oxidizing properties of the anode active material in the alkaline electrolyte or the alkali, and the cathode and anode active materials come into contact with each other during battery storage, resulting in internal short circuit and self-discharge. Battery life will be shortened.

一方、ポリフッ化オレフィンからなる微孔性フィルムは
表面エネルギーが極めて小さり、撥水性である点を除け
ば、上記要求特性を満たしている。
On the other hand, a microporous film made of polyfluorinated olefin has an extremely small surface energy and satisfies the above-mentioned required characteristics, except that it is water repellent.

そこで、この微孔性ポリフッ化オレフィンフィルムに電
子線のような電離性放射線を照射して表面を活性化した
後、親水性重合性単量体を接触さ・lて、これをグラフ
ト重合させて、フィルムを親水性化することが考慮され
る。しかし、ポリフッ化オレフィンにおけるC−F結合
エネルギー1;l’441J1モルであって、C−C結
合エネルギ−348J1モルよりも大きいために、電離
性放射線、特に電子線を照射したとき、一部にはフッ素
置換・炭素に架橋性ラジカルが生じて、これに重合性単
量体が有効にグラフト重合するとしても、電子線の大部
分は重合体鎖を切断するように作用し、重合体を低分子
量物に変性する。即ち、従来、ポリフッ化オレフィンフ
ィルム、特に、ポリテトラフルオロエチレンフィルムに
電離性放射線を照射し、これに重合性単量体を接触させ
ても、単量体の有効なグラフト重合が起こり難いと共に
、ポリフッ化オレフィンが低分子間化するのを避けるこ
とができず、ポリフッ化オレフィンフィルムの望ましい
物性を損なう問題があった。
Therefore, after irradiating this microporous polyfluorinated olefin film with ionizing radiation such as an electron beam to activate the surface, a hydrophilic polymerizable monomer is contacted and graft polymerized. , it is considered to make the film hydrophilic. However, because the C-F bond energy in polyfluorinated olefins is 1; l'441J1 mole, which is larger than the C-C bond energy -348J1 mole, when irradiated with ionizing radiation, especially electron beams, some Even if a crosslinking radical is generated in the fluorine-substituted carbon and the polymerizable monomer is effectively graft-polymerized to this radical, the majority of the electron beam acts to sever the polymer chain, causing the polymer to degrade. Denatures into molecular weight products. That is, conventionally, even when a polyfluorinated olefin film, particularly a polytetrafluoroethylene film, is irradiated with ionizing radiation and brought into contact with a polymerizable monomer, effective graft polymerization of the monomer is difficult to occur, and There was a problem in that the polyfluorinated olefin could not be avoided from having a low molecular weight, and the desirable physical properties of the polyfluorinated olefin film were impaired.

一方、ポリフッ化オレフィンフィルムにおける上記のよ
うな重合体鎖の切断を避けるために低線量の電子線を照
射すると、架橋性ラジカルの生成量が重合性単量体のグ
ラフト重合には不十分であったり、或いは電子線の透過
量が少ないために、フィルムの極く表面にのみ架橋性ラ
ジカルが発止し、直ちに雰囲気中の酸素等と反応して活
性を失ない、重合性単量体を有効にグラフト重合体させ
ることが困難であった。
On the other hand, when irradiating a polyfluorinated olefin film with a low dose of electron beam to avoid the above-mentioned scission of polymer chains, the amount of crosslinking radicals generated is insufficient for graft polymerization of polymerizable monomers. Or, because the amount of electron beam transmission is small, cross-linking radicals are generated only on the very surface of the film, and the polymerizable monomer is effective because it does not immediately react with oxygen in the atmosphere and lose its activity. It was difficult to make graft polymers.

また、ポリフッ化オレフィン成形物はその表面エネルギ
ーが極めて小さく、濡れ性に乏しい。このため、例えば
、有機溶剤中でアルカリ金属−ナフタレン錯体を形成さ
せ、これにポリフッ化オレフィンフィルムを浸漬して、
その表面濡れ性を改善する方法が従来より知られている
Furthermore, polyfluorinated olefin molded articles have extremely low surface energy and poor wettability. For this purpose, for example, an alkali metal-naphthalene complex is formed in an organic solvent, and a polyfluorinated olefin film is immersed in the complex.
Methods for improving the surface wettability have been known for some time.

本発明者らは、上記した微孔性ポリフッ化オレフィンフ
ィルムのグラフト化による親水性化における問題を解決
するために、グラフ1−重合に先立つ微孔性ポリフッ化
オレフィンフィルムの表面処理について鋭意研究した結
果、フィルムを予め前記のようなアルカリ金属処理する
ことにより、予期しないことに、未処理フィルムの場合
には、重合性tli体をグラフト重合させることが実質
的に困難である程度の低線量の電離性放射線を成形物に
照射することにより、実質的にポリフッ化オレフィンの
重合体鎖の切断を伴うことなしに、重合性単量体をグラ
フト重合させるに必要な量の架橋性ラジカルを生しさせ
ることができることを見出して本発明に至ったものであ
る。
In order to solve the above-mentioned problems in making microporous polyfluoroolefin films hydrophilic by grafting, the present inventors conducted intensive research on surface treatment of microporous polyfluoroolefin films prior to polymerization (Graph 1). As a result, the above-described prior alkali metal treatment of the film unexpectedly results in a low dose of ionization that would make it substantially difficult to graft-polymerize the polymerizable tli form in the case of an untreated film. By irradiating the molded article with sexual radiation, a sufficient amount of crosslinking radicals are generated to graft-polymerize the polymerizable monomer without substantially cutting the polymer chain of the polyfluorinated olefin. The present invention was achieved by discovering that this can be done.

本発明による電池用隔膜の製造方法は、ポリフッ化オレ
フィンからなる微孔性フィルムをアルカリ金属処理した
後、電離性放射線を照射し、次いで、親水性重合性単量
体と接触させて、上記フィルムに」二記Rffi体をグ
ラフト重合させることを特徴とする。
The method for producing a battery diaphragm according to the present invention includes treating a microporous film made of polyfluorinated olefin with an alkali metal, irradiating it with ionizing radiation, and then bringing the film into contact with a hydrophilic polymerizable monomer. It is characterized by graft polymerizing the Rffi body described above.

本発明において、ポリフッ化オレフィンは、ポリフッ化
ビニル、ポリフッ化ビニリデン、フッ化ビニル−フッ化
ビニリデン共重合体、ポリクロロトリフルオロエチレン
、ポリテトラフルオロエチレン、テトラフルオロエチレ
ン−へキサフルオロプロピレン共重合体、フッ化ビニル
−テトラフルオロエチレン共重合体、フッ化ビニリデン
−テトラフルオロエチレン共重合体、フッ化ビニリデン
ーヘキヵ・フルオロプロピレン共重合体等を含むが、好
ましくはポリテトラフルオロエチレンからなる微孔性フ
ィルムが用いられる。ががる微孔性フィルムとしては、
例えば、ポリテトラフルオロエチレンフィルムを延伸し
て多孔質化したr N TF J(日東電気工業@)や
「ポリフロンベーパー」(ダイキン工業@)等を市販品
として入手することができる。
In the present invention, polyfluorinated olefins include polyvinyl fluoride, polyvinylidene fluoride, vinyl fluoride-vinylidene fluoride copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, and tetrafluoroethylene-hexafluoropropylene copolymer. , vinyl fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, etc., but preferably micropores made of polytetrafluoroethylene. A transparent film is used. As a loose microporous film,
For example, rNTF J (Nitto Electric Industries@) and "Polyflon Vapor" (Daikin Industries@), which are made porous by stretching a polytetrafluoroethylene film, are available as commercial products.

本発明において用いるアルカリ金属−芳香族炭化水素錯
体溶液は既に知られており、アルカリ金属としてはナト
リウムやリヂウムが、また、芳香族炭化水素としてはナ
フタジン、フェナンスレン、アントラセン等が用いられ
、通常、芳香族炭化水素とテトラヒドロフランやジメト
キシエタン等の溶剤との混合物に金属ナトリウムを分散
させて反応させることにより得られる。ががる錯体溶液
の一部は既に市販も、されている。また、本発明におい
ては、金属ナトリウムの液体アンモニア溶液も上記アル
カリ金属−芳香族炭化水素錯体溶液に代えて用いること
ができる。
The alkali metal-aromatic hydrocarbon complex solution used in the present invention is already known, and the alkali metal used is sodium or lithium, and the aromatic hydrocarbon used is naphthazine, phenanthrene, anthracene, etc. It is obtained by dispersing metallic sodium in a mixture of group hydrocarbons and a solvent such as tetrahydrofuran or dimethoxyethane and reacting the mixture. Some of the Gagaru complex solutions are already commercially available. Further, in the present invention, a liquid ammonia solution of metallic sodium can also be used in place of the alkali metal-aromatic hydrocarbon complex solution.

このようなアルカリ金属溶液によるポリフッ化オレフィ
ン微孔性フィルムの処理は、通常、これを室温で上記i
1′8液に数十分乃至数時間浸漬することにより行なわ
れる。この後、フィルムを適宜の溶剤で洗滌し、乾燥す
る。この場合、特に、水やアルコール等のような極性溶
剤で洗滌すると、ポリフッ化オレフィン成形物表面にC
00II 、、Cll01011等の極性基が生成して
いることがEscAによる観察から確認される。また、
フィルムを浸漬処理後、空気中に放置することによって
も、かかる極性基を生成させることができる。ポリフッ
化オレフィンをアルカリ金属処理するとき、ポリフッ化
オレフィン中のフッ素がアルカリ金属フッ化物として脱
離せしめられ、ポリアセチレン型の重合体に変性される
ことが知られているが、本発明の方法によれば、ポリフ
ッ化オレフィンがこのように変性されると共に、少なく
とも表面に上記したような活性な極性基を有するために
、低線量の放射線の照射によっても、重合性単量体がこ
れにグラフl−重合し得るに必要な量の架橋性ラジカル
を生成するのであろう。例えば、未処理のポリフッ化オ
レフィンフィルムに3メガラッド程度の電子線を照射し
た後、これに重合性単量体を接触させても、これは実質
的にグラフト重合しないが、本発明の方法に従って予め
アルカリ金属−芳香族炭化水素錯体やアルカリ金属の液
体アンモニア溶液で処理されたポリフッ化オレフィンフ
ィルムの場合は、重合性単量体が有効にグラフト重合し
、しかも、照射放射線量が低線量であるので、重合体鎖
の切断は実質的に起こらない。
Treatment of polyfluorinated olefin microporous films with such alkali metal solutions is typically carried out at room temperature with the above i.
This is done by immersing it in a 1'8 liquid for several minutes to several hours. Thereafter, the film is washed with a suitable solvent and dried. In this case, especially when cleaning with a polar solvent such as water or alcohol, the surface of the polyfluorinated olefin molded article may be
Observation with EscA confirms that polar groups such as 00II, Cll01011, etc. are generated. Also,
Such polar groups can also be generated by leaving the film in the air after dipping. It is known that when a polyfluorinated olefin is treated with an alkali metal, the fluorine in the polyfluorinated olefin is eliminated as an alkali metal fluoride and modified into a polyacetylene type polymer. For example, since the polyfluorinated olefin is modified in this way and has active polar groups as described above at least on the surface, even when irradiated with a low dose of radiation, the polymerizable monomer is It will generate the necessary amount of crosslinking radicals to enable polymerization. For example, even if an untreated polyfluorinated olefin film is irradiated with an electron beam of about 3 megarads and then brought into contact with a polymerizable monomer, it will not substantially undergo graft polymerization; In the case of polyfluorinated olefin films treated with alkali metal-aromatic hydrocarbon complexes or liquid ammonia solutions of alkali metals, the polymerizable monomers are effectively graft-polymerized, and the radiation dose is low. , substantially no polymer chain scission occurs.

−本発明において、電離性放射線としては、例えば、α
線、β線、γ線、中性子線、X線、電子線等が用いられ
るが、好ましくは電子線が用いられる。また、ポリフッ
化オレフィンフィルムへの電子線照射の照射量は0.1
〜50メガラツド、好ましくは0.5〜20メガラツド
の範囲である。
- In the present invention, the ionizing radiation includes, for example, α
rays, β-rays, γ-rays, neutron beams, X-rays, electron beams, etc., and preferably electron beams are used. In addition, the amount of electron beam irradiation to the polyfluorinated olefin film was 0.1
-50 Megarads, preferably 0.5-20 Megarads.

また、親水性重合性単量体としては、好ましくはカルボ
キシル基や水酸基を有するビニル重合性単量体が用いら
れ、特に、アクリル酸及びメククリル酸が好ましく用い
られる。このようなr1合性単量体を電離性放射線を照
射後のポリフッ化オレフィンフィルムに接触させるには
、その単量体自体中に、又は単量体の水溶液若しくは有
機溶液とし、この中にフィルムを浸漬してもよく、或い
は重合性R量体の蒸気を接触させてもよい。
Further, as the hydrophilic polymerizable monomer, a vinyl polymerizable monomer having a carboxyl group or a hydroxyl group is preferably used, and acrylic acid and meccrylic acid are particularly preferably used. In order to bring such an r1-combinable monomer into contact with the polyfluorinated olefin film after irradiation with ionizing radiation, the monomer itself or an aqueous or organic solution of the monomer may be used, and the film may be added to the monomer itself or in an aqueous or organic solution. Alternatively, the polymerizable R-mer vapor may be brought into contact with the polymerizable R-mer.

本発明においては、電池用隔膜としてのイオンの選択的
透過性が一層すぐれるように、前記したような微孔性フ
ィルムを必要に応して加熱下に圧延し、それが有する微
孔孔径を調整することができる。必ずしも限定されるも
のではないが、本発明においては、微孔性フィルムは孔
径が0.05〜50μm程度の微孔を有することが好ま
しい。
In the present invention, in order to further improve the selective permeability of ions as a battery diaphragm, the above-mentioned microporous film is rolled under heat as necessary to reduce the diameter of the micropores it has. Can be adjusted. Although not necessarily limited, in the present invention, the microporous film preferably has micropores with a pore diameter of about 0.05 to 50 μm.

以上のように、本発明の方法によれば、予め微孔性ポリ
フッ化オレフィンフィルム、特にポリテトラフルオロエ
チレンフィルムをアルカリ金属処理し、その表面に架橋
性ラジカルを形成しやすい活性な極性基を導入するので
、未処理フィルムの場合には重合性単量体のグラフト重
合体が実質的に起こらないような低ljl量の電離系放
射線の照射によっても、グラフト重合に必要な量のラジ
カルが生じ、かくして、重合体鎖の切断なしに、ビニル
重合性単量体を有効にグラフト重合させて、親水性化す
ることができると共に、か(して得られる微孔性フィル
ムは化学的安定性、特に耐アルカリ性にすぐれ、更に、
電気抵抗が小さく、また、イオンの選択的透過性にすぐ
れるので、従来にないすぐれたアルカリ電池用隔膜とし
て使用することができる。
As described above, according to the method of the present invention, a microporous polyfluorinated olefin film, particularly a polytetrafluoroethylene film, is treated with an alkali metal in advance to introduce active polar groups that easily form crosslinking radicals on its surface. Therefore, even if an untreated film is irradiated with a low ljl amount of ionizing radiation that does not substantially cause graft polymerization of polymerizable monomers, the amount of radicals necessary for graft polymerization will be generated. In this way, the vinyl polymerizable monomer can be effectively graft-polymerized to make it hydrophilic without cutting the polymer chain, and the resulting microporous film has excellent chemical stability, especially It has excellent alkali resistance, and
Since it has low electrical resistance and excellent selective ion permeability, it can be used as an unprecedented diaphragm for alkaline batteries.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 孔径40μmの微孔を多数有し、厚みが5o。Example 1 It has many micropores with a pore diameter of 40 μm and a thickness of 5 mm.

μである「ポリフロンペーパー」を金属ナトリウム−ナ
フタレン錯体のジメトキシエタン溶液に室温で30秒間
浸漬した後、アセトン、次いで水で十分に洗滌し、乾燥
した。
"Polyflon Paper", which is .mu., was immersed in a dimethoxyethane solution of metal sodium-naphthalene complex for 30 seconds at room temperature, thoroughly washed with acetone, then water, and dried.

次いで、このように処理したフィルムを温度170℃で
所定の厚みに圧延し、次いで、これにエレクトロンカー
テンビーム(ソニートレーディング社McB−150型
)を用イーで、酸素濃度5゜Oppmの窒素気流中、1
65kV、3mAの条件下に5メガラツドの電子線を照
射した後、直ちにアクリル酸の50%水溶液を注入した
ガラス管に入れ、窒素置換した後、封止し、60°Cで
14時間静置して、グラフト重合させた。
Next, the film thus treated was rolled to a predetermined thickness at a temperature of 170°C, and then rolled in a nitrogen stream with an oxygen concentration of 5°Oppm using an electron curtain beam (Model McB-150, Sony Trading Co., Ltd.). ,1
After being irradiated with a 5 megarad electron beam under conditions of 65 kV and 3 mA, the tube was immediately placed in a glass tube filled with a 50% aqueous solution of acrylic acid, replaced with nitrogen, sealed, and allowed to stand at 60°C for 14 hours. Then, graft polymerization was carried out.

このようにして得られたグラフト重合後のフィルムから
ソックスレー抽出器によりアクリル酸のホモ重合体と残
存未反応単量体を抽出し、乾燥させた。
The acrylic acid homopolymer and remaining unreacted monomers were extracted from the thus obtained graft-polymerized film using a Soxhlet extractor and dried.

このようにして得た処理フィルムのグラフト化率及び電
気抵抗を表に示す。尚、グラフト化率は、〔(グラフト
重合後のフィルム重量−グラフト前のフィルム重量)/
グラフト前のフィルム重量〕x100 (%)で定義さ
れる。また、電気抵抗の測定においては、IKIIzの
交流をフィルムに印加し、電解液自体の抵抗による影響
を完全に除いて、交流電流計にて電流値を測定した。ま
た、電解液には飽和した塩化カリウム水溶液を用い、こ
め中でフィルムを十分に平衡させた後に測定した。
The grafting rate and electrical resistance of the treated film thus obtained are shown in the table. The grafting rate is [(film weight after graft polymerization - film weight before grafting)/
It is defined as the film weight before grafting] x 100 (%). Further, in measuring the electrical resistance, an alternating current of IKIIz was applied to the film, and the current value was measured with an alternating current ammeter, completely excluding the influence of the resistance of the electrolyte itself. In addition, a saturated potassium chloride aqueous solution was used as the electrolytic solution, and the film was sufficiently equilibrated in a rice cooker before measurements were taken.

実施例2 実施例1において「ポリフロンペーパー」の代わりに、
孔径0.5μmの微孔を多数有するrNTF5205J
を用いて同様にして隔膜を得、これるついて電気抵抗を
測定した。結果を表に示す。
Example 2 In place of “Polyflon paper” in Example 1,
rNTF5205J with many micropores with a pore diameter of 0.5 μm
A diaphragm was obtained in the same manner using a diaphragm, and the electrical resistance of the membrane was measured. The results are shown in the table.

いずれの実施例においても、得られたフィルムは、未処
理フィルムに比べて電気抵抗が著しく小さいことが明ら
かである。
In both examples, it is clear that the resulting films have significantly lower electrical resistance than untreated films.

Claims (1)

【特許請求の範囲】[Claims] (1) ポリフッ化オレフィンからなる微孔性フィルム
をアルタJり金属処理した後、電離性放射線を照射し、
次いで、親水性重合性単量体と接触させて、上記フィル
ムに上記単量体をグラフト重合させることを特徴とする
電池用隔膜の製造方法。
(1) After a microporous film made of polyfluorinated olefin is treated with Alta metal, it is irradiated with ionizing radiation,
A method for producing a battery diaphragm, comprising: then bringing the film into contact with a hydrophilic polymerizable monomer to graft-polymerize the monomer onto the film.
JP58141713A 1983-08-01 1983-08-01 Manufacture of diaphragm for battery Granted JPS6032247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141713A JPS6032247A (en) 1983-08-01 1983-08-01 Manufacture of diaphragm for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141713A JPS6032247A (en) 1983-08-01 1983-08-01 Manufacture of diaphragm for battery

Publications (2)

Publication Number Publication Date
JPS6032247A true JPS6032247A (en) 1985-02-19
JPH0430142B2 JPH0430142B2 (en) 1992-05-20

Family

ID=15298464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141713A Granted JPS6032247A (en) 1983-08-01 1983-08-01 Manufacture of diaphragm for battery

Country Status (1)

Country Link
JP (1) JPS6032247A (en)

Also Published As

Publication number Publication date
JPH0430142B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
US4339473A (en) Gamma radiation grafting process for preparing separator membranes for electrochemical cells
US4143218A (en) Polymeric materials
US4407846A (en) Method of producing a hydrophilic membrane from a polyethylene base film
US4376794A (en) Process for production of separators for use in cells
CA1189018A (en) Cation exchange membrane and process for producing the same
US5075342A (en) Process for producing an ion exchange membrane by grafting non ion-selective monomers onto a ion exchange
JPS6145351B2 (en)
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
JPS6032247A (en) Manufacture of diaphragm for battery
US4379200A (en) Novel method of producing ion exchange membrane
JPH0438762B2 (en)
JPH0774289B2 (en) Method for producing hydrophilic tetrafluoroethylene resin porous membrane
JPS6034980B2 (en) Method for producing graft membranes with excellent dimensional stability using radiation graft polymerization method
JPS6055033A (en) Production of cation exchange membrane
JPS62193604A (en) Production of membrane responsive to external stimulation by graft polymerization
KR101446955B1 (en) Manufacturing method of hydrogen ion conduction film
JP3101058B2 (en) Battery separator
JPS6020939A (en) Grafting onto polyfluoroolefin molding
JPH07279052A (en) Method for improving polypropylene-based base material
JPH0371736B2 (en)
JPS6020941A (en) Grafting onto polyfluoroolefin molding
JPS638582B2 (en)
JP3742256B2 (en) Method for producing separator for alkaline battery and method for producing alkaline battery
JPS598028B2 (en) Battery separator and its manufacturing method
JPH09296368A (en) Hydrophilic porous fluorofiber sheet and method for producing the same