[go: up one dir, main page]

JPH0430142B2 - - Google Patents

Info

Publication number
JPH0430142B2
JPH0430142B2 JP58141713A JP14171383A JPH0430142B2 JP H0430142 B2 JPH0430142 B2 JP H0430142B2 JP 58141713 A JP58141713 A JP 58141713A JP 14171383 A JP14171383 A JP 14171383A JP H0430142 B2 JPH0430142 B2 JP H0430142B2
Authority
JP
Japan
Prior art keywords
film
polyfluorinated olefin
polyfluorinated
monomer
polymerizable monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58141713A
Other languages
Japanese (ja)
Other versions
JPS6032247A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58141713A priority Critical patent/JPS6032247A/en
Publication of JPS6032247A publication Critical patent/JPS6032247A/en
Publication of JPH0430142B2 publication Critical patent/JPH0430142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電池用隔膜の製造方法に関し、詳しく
は、特に微孔性ポリフツ化オレフインフイルムか
らなり、耐薬品性にすぐれると共に、イオン透過
抵抗及び電気抵抗が小さく、また、機械的強度に
もすぐれるアルカリ電池用隔膜の製造方法に関す
る。 一般に小型高性能電池である水銀、銀電池等の
アルカリ電池は、陰極合剤と陽極合剤とが隔膜に
よつて隔絶され、電解液のみが隔膜を介して陰陽
両極間を移動して電池反応が行なわれるので、か
かるアルカリ電池用隔膜としては、化学的に安定
であること、イオン透過性が良好なこと、電気抵
抗が小さいこと、隔膜自体が非導電性であるこ
と、十分な機械的強度を有すること等が要求され
る。従来より電池用隔膜として汎用されているセ
ロフアン膜は、上記した特性をほぼ満足している
ものの、上述した化学的安定性に欠ける傾向があ
る。即ち、アルカリ電解液又はアルカリ下におけ
る陽極活物資の酸化性によつて酸化劣化を受けや
すく、電池保存中に陰極と陽極の活物質が相互に
接触して内部短絡、自己放電し、その結果、電池
寿命が短縮される。 一方、ポリフツ化オレフインからなる微孔性フ
イルムは表面エネルギーが極めて小さく、撥水性
である点を除けば、上記要求特性を満たしてい
る。そこで、この微孔性ポリフツ化オレフインフ
イルムに電子線のような電離性放射線を照射して
表面を活性化した後、親水性重合性単量体を接触
させて、これをグラフト重合させて、フイルムを
親水性化することが考慮される。しかし、ポリフ
ツ化オレフインにおけるC−F結合エネルギーは
441J/モルであつて、C−C結合エネルギー
348J/モルよりも大きいために、電離性放射線、
特に電子線を照射したとき、一部にはフツ素置換
炭素に架橋性ラジカルが生じて、これに重合性単
量体が有効にグラフト重合するとしても、電子線
の大部分は重合体鎖を切断するように作用し、重
合体を低分子量物に変性する。即ち、従来、ポリ
フツ化オレフインフイルム、特に、ポリテトラフ
ルオロエチレンフイルムに電離性放射線を照射
し、これに重合性単量体を接触させても、単量体
の有効なグラフト重合が起こり難いと共に、ポリ
フツ化オレフインが低分子量化するのを避けるこ
とができず、ポリフツ化オレフインフイルムの望
ましい物性を損なう問題があつた。 一方、ポリフツ化オレフインフイルムにおける
上記のような重合体鎖の切断を避けるために低線
量の電子線を照射すると、架橋性ラジカルの生成
量が重合性単量体のグラフト重合には不十分であ
つたり、或いは電子線の透過量が少ないために、
フイルムの極く表面にのみ架橋性ラジカルが発生
し、直ちに雰囲気中の酸素等と反応して活性を失
い、重合性単量体を有効にグラフト重合体させる
ことが困難であつた。 また、ポリフツ化オレフイン成形物はその表面
エネルギーが極めて小さく、濡れ性に乏しい。こ
のため、例えば、有機溶剤中でアルカリ金属−ナ
フタレン錯体を形成させ、これにポリフツ化オレ
フインフイルムを浸漬して、その表面濡れ性を改
善する方法が従来より知られている。 本発明者らは、上記した微孔性ポリフツ化オレ
フインフイルムのグラフト化による親水性化にお
ける問題を解決するために、グラフト重合に先立
つ微孔性ポリフツ化オレフインフイルムの表面処
理について鋭意研究した結果、フイルムを予め前
記のようなアルカリ金属処理することにより、予
期しないことに、未処理フイルムの場合には、重
合性単量体をグラフト重合させることが実質的に
困難である程度の低線量の電離性放射線を成形物
に照射することにより、実質的にポリフツ化オレ
フインの重合体鎖の切断を伴うことなしに、重合
性単量体をグラフト重合させるのに必要な量の架
橋性ラジカルを生じさせることができることを見
出して本発明に至つたものである。 本発明による電池用隔膜の製造方法は、ポリフ
ツ化オレフインからなる微孔性フイルムをアルカ
リ金属−芳香族炭化水素錯体溶液又は金属ナトリ
ウムの液体アンモニア溶液にて処理した後、電離
性放射線を照射し、次いで、親水性重合性単量体
と接触させて、上記フイルムに上記単量体をグラ
フト重合させることを特徴とする。 本発明において、ポリフツ化オレフインは、ポ
リフツ化ビニル、ポリフツ化ビニリデン、フツ化
ビニル−フツ化ビニリデン共重合体、ポリクロロ
トリフルオロエチレン、ポリテトラフルオロエチ
レン、テトラフルオロエチレン−ヘキサフルオロ
プロピレン共重合体、フツ化ビニル−テトラフル
オロエチレン共重合体、フツ化ビニリデン−テト
ラフルオロエチレン共重合体、フツ化ビニリデン
−ヘキサフルオロプロピレン共重合体等を含む
が、好ましくはポリテトラフルオロエチレンから
なる微孔性フイルムが用いられる。かかる微孔性
フイルムとしては、例えば、ポリテトラフルオロ
エチレンフイルムを延伸して多孔質化した
「NTF」(日東電気工業(株))や「ポリフロンペ
ーパー」(ダイキン工業(株))等を市販品として
入手することができる。 本発明において用いるアルカリ金属−芳香族炭
化水素錯体溶液は既に知られており、アルカリ金
属としてはナトリウムやリチウムが、また、芳香
族炭化水素としてはナフタレン、フエナンスレ
ン、アントラセン等が用いられ、通常、芳香族炭
化水素とテトラヒドロフランやジメトキシエタン
等の溶剤との混合物に金属ナトリウムを分散させ
て反応させることにより得られる。かかる錯体溶
液の一部は既に市販もされている。また、本発明
においては、金属ナトリウムの液体アンモニア溶
液も上記アルカリ金属−芳香族炭化水素錯体溶液
に代えて用いることができる。 このようなアルカリ金属溶液によるポリフツ化
オレフイン微孔性フイルムの処理は、通常、これ
を室温で上記溶液に数十分乃至数時間浸漬するこ
とにより行なわれる。この後、フイルムを適宜の
溶剤で洗滌し、乾燥する。この場合、特に、水や
アルコール等のような極性溶剤で洗滌すると、ポ
リフツ化オレフイン成形物表面にCOOH、CHO、
OH等の極性基が生成していることがESCAによ
る観察から確認される。また、フイルムを浸漬処
理後、空気中に放置することによつても、かかる
極性基を生成させることができる。ポリフツ化オ
レフインをアルカリ金属処理するとき、ポリフツ
化オレフイン中のフツ素がアルカリ金属フツ化物
として脱離せしめられ、ポリアセチレン型の重合
体に変性されることが知られているが、本発明の
方法によれば、ポリフツ化オレフインがこのよう
に変性されると共に、少なくとも表面に上記した
ような活性な極性基を有するために、低線量の放
射線の照射によつても、重合性単量体がこれにグ
ラフト重合し得るに必要な量の架橋性ラジカルを
生成するのであろう。例えば、未処理のポリフツ
化オレフインフイルムに3メガラツド程度の電子
線を照射した後、これに重合性単量体を接触させ
ても、これは実質的にグラフト重合しないが、本
発明の方法に従つて予めアルカリ金属−芳香族炭
化水素錯体やアルカリ金属の液体アンモニア溶液
で処理されたポリフツ化オレフインフイルムの場
合は、重合性単量体が有効にグラフト重合し、し
かも、照射放射線量が低線量であるので、重合体
鎖の切断は実質的に起こらない。 本発明において、電離性放射線としては、例え
ば、α線、β線、γ線、中性子線、X線、電子線
等が用いられるが、好ましくは電子線が用いられ
る。また、ポリフツ化オレフインフイルムへの電
子線照射の照射量は0.1〜50メガラツド、好まし
くは0.5〜20メガラツドの範囲である。 また、親水性重合性単量体としては、好ましく
はカルボキシル基や水酸基を有するビニル重合性
単量体が用いられ、特に、アクリル酸及びメタク
リル酸が好ましく用いられる。このような重合性
単量体を電離性放射線を照射後のポリフツ化オレ
フインフイルムに接触させるには、その単量体自
体中に、又は単量体の水溶液若しくは有機溶液と
し、この中にフイルムを浸漬してもよく、或いは
重合性単量体の蒸気を接触させてもよい。 本発明においては、電池用隔膜としてのイオン
の選択的透過性が一層すぐれるように、前記した
ような微孔性フイルムを必要に応じて加熱下に圧
延し、それが有する微孔孔径を調整することがで
きる。必ずしも限定されるものではないが、本発
明においては、微孔性フイルムは孔径が0.05〜
50μm程度の微孔を有することが好ましい。 以上のように、本発明の方法によれば、予め微
孔性ポリフツ化オレフインフイルム、特にポリテ
トラフルオロエチレンフイルムをアルカリ金属処
理し、その表面に架橋性ラジカルを形成しやすい
活性な極性基を導入するので、未処理フイルムの
場合には重合性単量体のグラフト重合体が実質的
に起こらないような低線量の電離系放射線の照射
によつても、グラフト重合に必要な量のラジカル
性が生じ、かくして、重合体鎖の切断なしに、ビ
ニル重合性単量体を有効にグラフト重合させて、
親水性化することができると共に、かくして得ら
れる微孔性フイルムは化学的安定性、特に耐アル
カリ性にすぐれ、更に、電気抵抗が小さく、ま
た、イオンの選択的透過性にすぐれるので、従来
にないすぐれたアルカリ電池用隔膜として使用す
ることができる。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。 実施例 1 孔径40μmの微孔を多数有し、厚みが500μであ
る「ポリフロンペーパー」を金属ナトリウム−ナ
フタレン錯体のジメトキシエタン溶液に室温で30
秒間浸漬した後、アセトン、次いで水で十分に洗
滌し、乾燥した。 次いで、このように処理したフイルムを温度
170℃で所定の厚みに圧延し、次いで、これにエ
レクトロンカーテンビーム(ソニートレーデイン
グ社製CB−150型)を用いて、酸素濃度500ppm
の窒素気流中、165kV、3mAの条件下に5メガ
ラツドの電子線を照射した後、直ちにアクリル酸
の50%水溶液を注入したガラス管に入れ、窒素置
換した後、封止し、60℃で14時間静置して、グラ
フト重合させた。 このようにして得られたグラフト重合後のフイ
ルムからソツクスレー抽出器によりアクリル酸の
ホモ重合体と残存未反応単量体を抽出し、乾燥さ
せた。 このようにして得た処理フイルムのグラフト化
率及び電気抵抗を表1に示す。尚、グラフト化率
は、〔(グラフト重合後のフイルム重量−グラフト
前のフイルム重量)/グラフト前のフイルム重
量〕×100(%)で定義される。また、電気抵抗の
測定においては、1kHzの交流をフイルムに印加
し、電解液自体の抵抗による影響を完全に除い
て、交流電流計にて電流値を測定した。また、電
解液には飽和した塩化カリウム水溶液を用い、こ
の中でフイルムを十分に平衡させた後に測定し
た。 実施例 2 実施例1において「ポリフロンペーパー」の代
The present invention relates to a method for manufacturing a diaphragm for batteries, and more specifically, it is made of a microporous polyfluorinated olefin film, has excellent chemical resistance, low ion permeation resistance and low electrical resistance, and has excellent mechanical strength. The present invention relates to a method for manufacturing a diaphragm for alkaline batteries. In general, alkaline batteries such as mercury and silver batteries, which are small high-performance batteries, have a cathode mixture and an anode mixture separated by a diaphragm, and only the electrolyte moves between the negative and anode electrodes via the diaphragm, causing the battery reaction. Therefore, the diaphragm for alkaline batteries must be chemically stable, have good ion permeability, have low electrical resistance, be non-conductive, and have sufficient mechanical strength. It is required to have the following. Cellophane membranes, which have conventionally been widely used as diaphragms for batteries, generally satisfy the above-mentioned properties, but tend to lack the above-mentioned chemical stability. That is, it is susceptible to oxidative deterioration due to the oxidizability of the anode active material in an alkaline electrolyte or under alkaline conditions, and the cathode and anode active materials come into contact with each other during battery storage, resulting in internal short circuit and self-discharge. Battery life will be shortened. On the other hand, a microporous film made of polyfluorinated olefin has extremely low surface energy and satisfies the above-mentioned required properties, except that it is water repellent. Therefore, after activating the surface of this microporous polyfluorinated olefin film by irradiating it with ionizing radiation such as an electron beam, it is brought into contact with a hydrophilic polymerizable monomer and graft-polymerized to form a film. It is considered to make it hydrophilic. However, the C-F bond energy in polyfluorinated olefin is
441J/mol, C-C bond energy
Ionizing radiation, because it is greater than 348 J/mol;
In particular, when irradiated with an electron beam, crosslinking radicals are generated in some of the fluorine-substituted carbons, and even though the polymerizable monomer is effectively grafted onto these radicals, the majority of the electron beam destroys the polymer chain. It acts to cleave and modify the polymer into a low molecular weight product. That is, conventionally, even when a polyfluorinated olefin film, particularly a polytetrafluoroethylene film, is irradiated with ionizing radiation and brought into contact with a polymerizable monomer, effective graft polymerization of the monomer is difficult to occur, and There was a problem in that the polyfluorinated olefin film could not be avoided from having a lower molecular weight, thereby impairing the desired physical properties of the polyfluorinated olefin film. On the other hand, when low-dose electron beams are irradiated to avoid the above-mentioned scission of polymer chains in polyfluorinated olefin films, the amount of crosslinking radicals generated is insufficient for graft polymerization of polymerizable monomers. or because the amount of electron beam transmission is small,
Crosslinking radicals are generated only on the very surface of the film and immediately react with oxygen in the atmosphere and lose activity, making it difficult to effectively graft polymerize the polymerizable monomer. Furthermore, polyfluorinated olefin molded products have extremely low surface energy and poor wettability. For this reason, for example, a method is conventionally known in which an alkali metal-naphthalene complex is formed in an organic solvent and a polyfluorinated olefin film is immersed in the complex to improve its surface wettability. In order to solve the above-mentioned problems in making the microporous polyfluorinated olefin film hydrophilic by grafting, the present inventors conducted intensive research on the surface treatment of the microporous polyfluorinated olefin film prior to graft polymerization. By pre-treating the film with alkali metals as described above, unexpectedly, the untreated film has a low dose of ionizing properties which makes it substantially difficult to graft polymerize the polymerizable monomers. By irradiating a molded article with radiation, an amount of crosslinking radicals necessary for graft polymerization of a polymerizable monomer is generated without substantially cutting the polymer chain of the polyfluorinated olefin. The present invention was achieved by discovering that this can be done. The method for producing a battery diaphragm according to the present invention includes treating a microporous film made of polyfluorinated olefin with an alkali metal-aromatic hydrocarbon complex solution or a liquid ammonia solution of metallic sodium, and then irradiating it with ionizing radiation. The film is then brought into contact with a hydrophilic polymerizable monomer to graft-polymerize the monomer onto the film. In the present invention, polyfluorinated olefins include polyvinyl fluoride, polyvinylidene fluoride, vinyl fluoride-vinylidene fluoride copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, It includes vinyl fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, etc., but preferably a microporous film made of polytetrafluoroethylene is used. used. As such microporous films, for example, "NTF" (Nitto Electric Industries, Ltd.) and "Polyflon Paper" (Daikin Industries, Ltd.), which are made porous by stretching polytetrafluoroethylene film, are commercially available. It can be obtained as a product. The alkali metal-aromatic hydrocarbon complex solution used in the present invention is already known, and the alkali metal used is sodium or lithium, and the aromatic hydrocarbon used is naphthalene, phenanthrene, anthracene, etc. It is obtained by dispersing metallic sodium in a mixture of group hydrocarbons and a solvent such as tetrahydrofuran or dimethoxyethane and reacting the mixture. Some of such complex solutions are already commercially available. Further, in the present invention, a liquid ammonia solution of metallic sodium can also be used in place of the alkali metal-aromatic hydrocarbon complex solution. Such treatment of a polyfluorinated olefin microporous film with an alkali metal solution is usually carried out by immersing it in the above solution at room temperature for several tens of minutes to several hours. Thereafter, the film is washed with a suitable solvent and dried. In this case, especially when cleaning with a polar solvent such as water or alcohol, COOH, CHO, etc.
Observation using ESCA confirms that polar groups such as OH are generated. Further, such polar groups can also be generated by leaving the film in the air after immersion treatment. It is known that when polyfluorinated olefin is treated with an alkali metal, the fluorine in the polyfluorinated olefin is eliminated as an alkali metal fluoride and modified into a polyacetylene type polymer. According to the above, since the polyfluorinated olefin is modified in this way and has the above-mentioned active polar groups at least on the surface, even when irradiated with a low dose of radiation, the polymerizable monomer can be absorbed into the polyfluorinated olefin. The amount of crosslinking radicals necessary for graft polymerization will be generated. For example, even if an untreated polyfluorinated olefin film is irradiated with an electron beam of about 3 megarads and then brought into contact with a polymerizable monomer, it will not substantially undergo graft polymerization, but according to the method of the present invention, In the case of a polyfluorinated olefin film that has been previously treated with an alkali metal-aromatic hydrocarbon complex or an alkali metal liquid ammonia solution, the polymerizable monomer can be effectively graft-polymerized, and the irradiated radiation dose is low. As a result, substantially no polymer chain scission occurs. In the present invention, as the ionizing radiation, for example, α rays, β rays, γ rays, neutron beams, X rays, electron beams, etc. are used, and preferably electron beams are used. The amount of electron beam irradiation to the polyfluorinated olefin film is in the range of 0.1 to 50 megarads, preferably 0.5 to 20 megarads. Further, as the hydrophilic polymerizable monomer, a vinyl polymerizable monomer having a carboxyl group or a hydroxyl group is preferably used, and acrylic acid and methacrylic acid are particularly preferably used. In order to bring such a polymerizable monomer into contact with the polyfluorinated olefin film after irradiation with ionizing radiation, the film is placed in the monomer itself or in an aqueous or organic solution of the monomer. It may be immersed or brought into contact with vapor of a polymerizable monomer. In the present invention, the above-mentioned microporous film is rolled under heat as necessary to adjust the diameter of the micropores so that the selective permeability of ions as a battery diaphragm is further improved. can do. Although not necessarily limited, in the present invention, the microporous film has a pore diameter of 0.05 to
It is preferable to have micropores of about 50 μm. As described above, according to the method of the present invention, a microporous polyfluorinated olefin film, particularly a polytetrafluoroethylene film, is treated with an alkali metal in advance to introduce active polar groups that easily form crosslinking radicals on its surface. Therefore, in the case of an untreated film, even when irradiated with a low dose of ionizing radiation that does not substantially cause graft polymerization of polymerizable monomers, the amount of radical properties necessary for graft polymerization can be generated. resulting in effective graft polymerization of vinyl polymerizable monomers without polymer chain scission,
In addition to being hydrophilic, the microporous film thus obtained has excellent chemical stability, especially alkali resistance, low electrical resistance, and excellent selective ion permeability. It can be used as an excellent diaphragm for alkaline batteries. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 Polyflon paper, which has many micropores with a pore diameter of 40 μm and a thickness of 500 μm, was placed in a dimethoxyethane solution of a metal sodium-naphthalene complex for 30 minutes at room temperature.
After being immersed for a second, it was thoroughly washed with acetone and then water, and then dried. The film treated in this way is then heated to
It is rolled to a predetermined thickness at 170°C, and then heated to an oxygen concentration of 500ppm using an electron curtain beam (CB-150 model manufactured by Sony Trading Co., Ltd.).
After being irradiated with a 5 megarad electron beam under the conditions of 165 kV and 3 mA in a nitrogen stream of The mixture was left standing for a while to allow graft polymerization. The acrylic acid homopolymer and remaining unreacted monomers were extracted from the graft-polymerized film thus obtained using a Soxhlet extractor and dried. Table 1 shows the grafting rate and electrical resistance of the treated film thus obtained. The grafting rate is defined as [(film weight after graft polymerization - film weight before grafting)/film weight before grafting] x 100 (%). In addition, in measuring the electrical resistance, a 1 kHz alternating current was applied to the film, and the current value was measured with an alternating current ammeter, completely eliminating the influence of the resistance of the electrolyte itself. In addition, a saturated potassium chloride aqueous solution was used as the electrolytic solution, and the film was sufficiently equilibrated therein before measurement. Example 2 In Example 1, “Polyflon paper” was replaced with

【表】 わりに、孔径0.5μmの微孔を多数有する
「NTF5205」を用いて同様にして隔膜を得、これ
るついて電気抵抗を測定した。結果を表1に示
す。 比較例 1 実施例1において用いたものと同じ「ポリフロ
ンペーパー」を金属ナトリウム−ナフレタン錯体
のジメトキシエタン溶液に浸漬処理することな
く、そのまま実施例1と同じ条件にて所定の厚み
に圧延し、次いで、電子線を照射した後、アクリ
ル酸のグラフト重合を行なつた。 このようにして得られたグラフト重合後のフイ
ルムのグラフト化率及び電気抵抗を表2に示す。
[Table] A diaphragm was obtained in the same manner using "NTF5205" which has many micropores with a pore diameter of 0.5 μm, and the electrical resistance was measured for this membrane. The results are shown in Table 1. Comparative Example 1 The same "Polyflon paper" as used in Example 1 was rolled to a predetermined thickness under the same conditions as Example 1 without being immersed in a dimethoxyethane solution of metal sodium-nafrethane complex, and Next, after irradiation with an electron beam, graft polymerization of acrylic acid was performed. Table 2 shows the grafting rate and electrical resistance of the film thus obtained after graft polymerization.

【表】 いずれの実施例においても、得られたフイルム
は、未処理フイルムに比べて電気抵抗が著しく小
さいことが明らかである。 また、比較例によるフイルムは、前記表1にお
ける未処理フイルムよりは低い電気抵抗を有する
が、しかし、本発明によるフイルムよりは高い電
気抵抗を有する。
[Table] It is clear that in each of the examples, the obtained films had significantly lower electrical resistance than the untreated films. Also, the film according to the comparative example has a lower electrical resistance than the untreated film in Table 1 above, but a higher electrical resistance than the film according to the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフツ化オレフインからなる微孔性フイル
ムをアルカリ金属−芳香族炭化水素錯体溶液又は
金属ナトリウムの液体アンモニア溶液にて処理し
た後、電離性放射線を照射し、次いで、親水性重
合性単量体と接触させて、上記フイルムに上記単
量体をグラフト重合させることを特徴とする電池
用隔膜の製造方法。
1. A microporous film made of polyfluorinated olefin is treated with an alkali metal-aromatic hydrocarbon complex solution or a liquid ammonia solution of metallic sodium, then irradiated with ionizing radiation, and then treated with a hydrophilic polymerizable monomer. A method for producing a diaphragm for a battery, characterized in that the monomer is graft-polymerized on the film by contacting the film with the monomer.
JP58141713A 1983-08-01 1983-08-01 Manufacture of diaphragm for battery Granted JPS6032247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141713A JPS6032247A (en) 1983-08-01 1983-08-01 Manufacture of diaphragm for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141713A JPS6032247A (en) 1983-08-01 1983-08-01 Manufacture of diaphragm for battery

Publications (2)

Publication Number Publication Date
JPS6032247A JPS6032247A (en) 1985-02-19
JPH0430142B2 true JPH0430142B2 (en) 1992-05-20

Family

ID=15298464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141713A Granted JPS6032247A (en) 1983-08-01 1983-08-01 Manufacture of diaphragm for battery

Country Status (1)

Country Link
JP (1) JPS6032247A (en)

Also Published As

Publication number Publication date
JPS6032247A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
US4339473A (en) Gamma radiation grafting process for preparing separator membranes for electrochemical cells
JPH0582114A (en) Secondary battery
US4396727A (en) Cation exchange membrane and process for producing the same
GB1581641A (en) Methods of heat treatment of graft copolymer films
US4376794A (en) Process for production of separators for use in cells
US4923611A (en) Novel anion-exchange membrane
JPS6145351B2 (en)
US4283442A (en) Method of producing a dimensionally stable battery separator
US4539277A (en) Ion exchange membrane and process for producing the same
JPH07296634A (en) Compound electrolytic film
JPH08180891A (en) Thin film electrolyte for room temperature fuel cell and room temperature fuel cell
JPH0430142B2 (en)
JPH0438762B2 (en)
JPS6055033A (en) Manufacturing method of cation exchange membrane
US4379200A (en) Novel method of producing ion exchange membrane
JPS6034980B2 (en) Method for producing graft membranes with excellent dimensional stability using radiation graft polymerization method
JPH0371736B2 (en)
JPS6020939A (en) Grafting onto polyfluoroolefin molding
JP2000260223A (en) High strength electrolytic film precursor
KR101446955B1 (en) Manufacturing method of hydrogen ion conduction film
JP3101058B2 (en) Battery separator
JPS60110711A (en) Production of graft-polymerized membrane
JPS6026414B2 (en) Novel ion exchange membrane manufacturing method
JP2539860B2 (en) Method for producing separator for alkaline battery having excellent performance of inhibiting silver ion permeation of anode active material
JPS598028B2 (en) Battery separator and its manufacturing method