JPS602883B2 - Rotary solution concentrator - Google Patents
Rotary solution concentratorInfo
- Publication number
- JPS602883B2 JPS602883B2 JP14672679A JP14672679A JPS602883B2 JP S602883 B2 JPS602883 B2 JP S602883B2 JP 14672679 A JP14672679 A JP 14672679A JP 14672679 A JP14672679 A JP 14672679A JP S602883 B2 JPS602883 B2 JP S602883B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- solution
- concentration
- rotating shaft
- separation module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 86
- 238000000926 separation method Methods 0.000 claims description 43
- 230000004087 circulation Effects 0.000 claims description 16
- 239000012528 membrane Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- 241001504592 Trachurus trachurus Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】 本発明は、回転式溶液濃縮装置に関する。[Detailed description of the invention] The present invention relates to a rotary solution concentrator.
溶液の濃縮には、一般的に蒸発法が用いられて居るが、
これは、多量のエネルギーを要するほか熱温により被濃
縮液の変質を招くことすらある。Evaporation methods are generally used to concentrate solutions, but
This requires a large amount of energy and may even lead to deterioration of the liquid to be concentrated due to heat.
このため、半透膜の逆鯵透現象を利用した溶液分離法で
精製濃縮を行う逆鯵透際式溶液濃縮装置が鋭利開発され
つつある。逆鯵透膿式濃縮装置には、瞥型、スパイラル
型、中空繊維型等の分離モジュールが用いられるが濃縮
に特に適して居るのは管型の分離モジュールである。For this reason, a solution concentrator of the reverse filtration type that performs purification and concentration by a solution separation method that utilizes the reverse filtration phenomenon of a semipermeable membrane is being developed. In the reverse pus-permeation type concentrator, separation modules such as a parallel type, a spiral type, and a hollow fiber type are used, but a tube type separation module is particularly suitable for concentration.
この管型分離モジュールを発展させた平板積層型分離モ
ジュールも又、濃縮の用に供することが出釆る。(袴顕
昭52一6067び号、特願昭弘−35776号を参照
されたい)今までに開発されて居る逆鯵透膿式溶液濃縮
装置には、次の3つの方式のものがある。A flat plate laminated separation module, which is a development of this tube separation module, can also be used for concentration. (Please refer to Akiaki Hakama No. 52-6067 and Japanese Patent Application Akihiro No. 35776) Among the reverse horse mackerel purulent solution concentration devices that have been developed so far, there are the following three types.
その1つは、高圧ポンプで高圧となった溶液が直列に連
続された複数の分離モジュールに、これらの分離モジュ
ール連結管の途中に昇氏ポンプを介設し又は介設せずし
て、供g脅され、夫々の分離モジュールの逆惨透作用で
溶液を透過水と濃縮液とに分離して濃縮液を得る直列方
式である。One method is to supply a high-pressure solution with a high-pressure pump to a plurality of serially connected separation modules, with or without an ascending pump interposed in the middle of the separation module connection pipe. This is a serial system in which the solution is separated into permeated water and concentrated liquid by the reverse permeation effect of each separation module to obtain the concentrated liquid.
この方式は、多数の分離モジュールが必要であり、加え
て、分離モジュールが直列に連結されて居るため、膜面
上の溶液流速が次第に遅くなり濃縮所要時間が長びくば
かりでなく、膿面上の流速による洗浄作用も次第におと
ろえ分離モジュールの劣化目づまりを生ずる欠点がある
。従って、高濃縮には適さない。第2のものは、一定量
の溶液を入れた糟の溶液を、高圧ポンプを経て並列され
た直列分離モジュール群へ供艶浩し、分離された濃縮液
を上記槽へ導き所定の濃縮度に繰返す循環方式である。This method requires a large number of separation modules, and in addition, since the separation modules are connected in series, the flow rate of the solution on the membrane surface gradually slows down, which not only prolongs the time required for concentration, but also The cleaning effect due to the flow rate also gradually weakens, resulting in deterioration and clogging of the separation module. Therefore, it is not suitable for high concentration. The second method is to supply a solution containing a certain amount of solution to a group of series separation modules connected in parallel via a high-pressure pump, and then lead the separated concentrated liquid to the above-mentioned tank to reach a predetermined concentration. It is a repeated circulation method.
この方式では分離モジュール数は比較的少くてすむが、
分離モジュールから出た高圧の溶液が常圧の糟へもどる
のでエネルギー損失が大きい。又、循環回数が多くなる
と液温の上昇をきたし、これにより濃縮液の変質や膜の
寿命に影響するので温度調節器を用いなくてはならない
等の欠点がある。第3のものは、第2の方式に於ける溶
液糟を圧力槽に置き換え、濃縮系内を所要圧力に保ちつ
つ、透過水量に相当する溶液の補充分を補給系から濃縮
系内へ注入する蓄圧循環方式である。この方式では、第
1方式のような1循環ごとに高圧溶液を常圧槽にもどす
ことによる大きなエネルギー損失は防げるが溶液を所要
圧力まで昇圧させるためのエネルギーと循環させるため
のエネルギーはロスとなり液温上昇も免れないので、温
度調節器も必要であり、又、堅固な圧力槽(系)が必要
となり設備費が嵩む不利を生ずる。本発明は上述の如き
、従来方式の有する欠点を解消するとともに、分離モジ
ュール中のェレメントを直列に配遣しても回転中心に近
い側(内側)から外側へ溶液が逸るように設置すれば溶
液濃度のこくなる外側で作用圧力が高くなるので性能上
好都合であり、又、回転を利用した放熱作用も加えられ
るという利点をも付加するものである。This method requires a relatively small number of separation modules, but
The high pressure solution coming out of the separation module returns to the normal pressure chamber, resulting in a large energy loss. Furthermore, if the number of circulations increases, the temperature of the liquid increases, which affects the quality of the concentrated liquid and the life of the membrane, so there are disadvantages such as the need to use a temperature controller. The third method replaces the solution tank in the second method with a pressure tank, and while maintaining the required pressure in the concentration system, replenishment of the solution equivalent to the amount of permeated water is injected from the supply system into the concentration system. It is a pressure accumulation circulation method. This method prevents the large energy loss caused by returning the high-pressure solution to the normal pressure tank after each circulation as in the first method, but the energy to raise the pressure of the solution to the required pressure and the energy to circulate it are lost and the liquid Since temperature rise is inevitable, a temperature controller is also required, and a robust pressure tank (system) is also required, resulting in a disadvantage of increased equipment costs. The present invention solves the drawbacks of the conventional method as described above, and even if the elements in the separation module are arranged in series, the present invention can be installed so that the solution is diverted from the side (inside) near the center of rotation to the outside. This is advantageous in terms of performance because the working pressure is higher on the outer side where the concentration is higher, and it also has the added advantage of adding heat dissipation effect using rotation.
従って本発明は、回転軸の回転と共に回転する選択性透
過膜分離モジュールへ回転軸を介して溶液を給液・収液
しそれを繰り返すことによって溶液を循環させつつ、そ
の溶液の濃縮度の上昇に応じて回転軸の回転速度を上昇
、若しくは、循環給液量の一定化のいずれか一方又は、
これら両方の制御をなすことにより、上述の欠点の解決
を図った回転式溶液濃縮装置を提供することにある。以
下添付図面を参照しながら、本発明の好適一実施例を説
明する。Therefore, the present invention supplies and collects a solution via a rotating shaft to a selective permeable membrane separation module that rotates with the rotation of the rotating shaft, and repeats this process to circulate the solution and increase the concentration of the solution. Either increase the rotational speed of the rotating shaft according to the situation, or keep the amount of circulating fluid constant, or
It is an object of the present invention to provide a rotary solution concentrator that solves the above-mentioned drawbacks by controlling both of these aspects. A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.
第1図は本発明の回転式溶液濃縮装置1を示す。FIG. 1 shows a rotary solution concentrator 1 of the present invention.
溶液濃縮装置1は支持横体2に軸受3cにて回転可能に
支承され、給液部3a及び収液部3bを有する回転軸3
と給液部3a及び収液部3bへ・蓮通された選択性透過
膜分離モジュール4と収液部3bと給液部3aとの間に
形成された循環路5と濃縮度に応じて回転軸3の回転数
を制御する回4転数制御手段7と循環路5に介設され、
濃縮度に応じて給液部3aへの給液量を制御する給液量
一定化手段8とから主に構成され、循環路5へ給液路9
が蓬通される外、分離モジュール4からの透過水を回収
する桑水手段10も設けられている。回転軸3の給液部
3aは回転軸3上部に形成された通液孔3a,、回転軸
3の固着された支持アーム3fに支承された環状給液管
3a2、通液孔3a,と環状給液管3a2との間を蓮通
せしめる所要数の給液管3a3、並びに環状給液管3a
2及び各分離モジュール4の液流入口4aの間を蓮通せ
しめる連管3a4から成る。回転軸3の回収部3bは環
状集液管3Q、各分離モジュール4の液流出口4b及び
環状集液管3b2の間を蓮通せしめる達管3b4、通液
孔30、並びに環状集液管3b2及び通液孔3b,の間
を蓮通せしめる集液管3b3から成る。The solution concentrator 1 is rotatably supported on a support horizontal body 2 by a bearing 3c, and has a rotating shaft 3 having a liquid supply section 3a and a liquid storage section 3b.
and to the liquid supply section 3a and the liquid collection section 3b.The selective permeable membrane separation module 4 passed through the circulation path 5 formed between the liquid collection section 3b and the liquid supply section 3a rotates according to the concentration level. Interposed between the rotation speed control means 7 for controlling the rotation speed of the shaft 3 and the circulation path 5,
It mainly consists of liquid supply amount constant means 8 that controls the amount of liquid supplied to the liquid supply section 3a according to the concentration level, and a liquid supply path 9 to the circulation path 5.
A mulberry water means 10 for collecting permeated water from the separation module 4 is also provided. The liquid supply part 3a of the rotating shaft 3 has a liquid passage hole 3a formed in the upper part of the rotating shaft 3, an annular liquid supply pipe 3a2 supported by a support arm 3f fixed to the rotating shaft 3, a liquid passage hole 3a, and an annular liquid passage hole 3a. A required number of liquid supply pipes 3a3 and an annular liquid supply pipe 3a that pass through the liquid supply pipe 3a2.
2 and a connecting pipe 3a4 that passes between the liquid inlet 4a of each separation module 4. The recovery section 3b of the rotating shaft 3 includes an annular liquid collection pipe 3Q, a reach pipe 3b4 that allows the passage between the liquid outlet 4b of each separation module 4 and the annular liquid collection pipe 3b2, a liquid passage hole 30, and an annular liquid collection pipe 3b2. It consists of a liquid collection pipe 3b3 that allows the liquid to pass between the liquid passage hole 3b and the liquid passage hole 3b.
環状給液管3a2と環状集液管3b2との間に取付けら
れるべき分離モジュール毎に設けられたアーム3d及び
3eと各分離モジュールの長手方向端部に設けられたア
ーム4c,4cとを夫々ピンPで連結して各分離モジュ
−ル4は回転軸3と共に回転し、給液及び収液可能にし
てある。これに使用する分離モジュール4は次のように
構成されて居るが、本発明に用い得る分離モジュールは
これに限られるものではなく、前述した平板積層型分離
モジュール等も用いることが出来る。第3図〜第5図に
分離モジュール4を示す。アーム4cを設けた2枚の支
持材4tの間に上部錘体4z及び下部誓体4×を固定す
る。上部鰹体4zの底部4yの孔4wと下部錘体4×の
上部壁4uの孔4wに、作用圧力に耐え得る外筒4gを
通し、この外筒4gと前記の底部4yと上部壁4uとを
固着する。又これらはいくつかの固定板4sでも固定さ
れる。上部簾体4zには液流入口4a、仕切壁4eがあ
り、蓋4dを隆体4zに固定することにより4f.・4
f2・4も・4f4の各部分に仕切られる。同様に下部
篤体4xに蓋4dを固定することにより41.・412
・413・414の各部分に仕切られ外筒4gの内面と
内筒を形成する膜分離ェレメント4hの外表面との間に
溶液が流入可能な状態で組立てられるので、流入口4a
から流入した溶液は、4f,一41,一4f2−412
−4f3−413−4ムー414をへて液流出口4bか
らモジュール外へ流出する。膿分離ェレメント4h項部
は外筒4gに部分的に支えられ、又、その中間は所定間
隔毎に例えば螺旋状の部村4iにて支えられ更にェレメ
ント下端部4mを支持板4nに隊着し、これに中間板4
pを挿入し下部僅体4×と蓋4dを前述のとおり固定す
ることによりこれらはすべて水密に固着し溶液の通路4
f,一41,一4f2−412一4f3−413一4f
4−414を形成するとともにェレメント内孔4h,に
導かれた透過水を中間板4pと支持板4nが形成する透
過集水路4oを経て流出口4rに導くことが出来るよう
構成する。分離モジュール4の液流出口4bから収液部
3bを経て回収される濃縮液を給液部3aへ送液する循
環路5は回転継手5a、第1及び第2の槽5b及び5c
、回転継手5aへ連結された配管5d、第1及び第2の
糟へ運速された配管5e及び5f、配管6dと配管5e
及び5fとの間に介設された切操弁5g、第1及び第2
の糟5b及び5cへ運速された配管5h及び5i、給液
ポンプ8 Zeを介して配管5kへ連結された配管5i
、配管5h及び5iと配管5jとの間に介設された功換
弁51、並びに配管5kを給液部3aへ連結する回転継
手5mから成る。The arms 3d and 3e provided for each separation module to be installed between the annular liquid supply pipe 3a2 and the annular liquid collection pipe 3b2 and the arms 4c and 4c provided at the longitudinal ends of each separation module are connected with pins, respectively. Each separation module 4 is connected by P and rotates together with the rotating shaft 3, making it possible to supply and collect liquid. The separation module 4 used for this is constructed as follows, but the separation module that can be used in the present invention is not limited to this, and the flat plate laminated type separation module described above can also be used. The separation module 4 is shown in FIGS. 3-5. An upper weight body 4z and a lower weight body 4x are fixed between two supporting members 4t provided with an arm 4c. An outer cylinder 4g that can withstand the applied pressure is passed through the hole 4w in the bottom 4y of the upper bonito body 4z and the hole 4w in the upper wall 4u of the lower weight body 4x, and the outer cylinder 4g, the bottom 4y, and the upper wall 4u are connected to each other. to fix. These are also fixed by some fixing plates 4s. The upper blind body 4z has a liquid inlet 4a and a partition wall 4e, and by fixing the lid 4d to the bulge 4z, the lid 4f.・4
f2/4 is also partitioned into each part of f4/4f4. 41. By similarly fixing the lid 4d to the lower body 4x.・412
・The inlet port 4a is assembled in such a way that the solution can flow between the inner surface of the outer cylinder 4g and the outer surface of the membrane separation element 4h forming the inner cylinder, which are partitioned into the respective parts 413 and 414.
The solution flowing from 4f, 41, 4f2-412
-4f3-413-4 The liquid flows out of the module through the liquid outlet 414 and the liquid outlet 4b. The nape of the pus separation element 4h is partially supported by an outer cylinder 4g, and the intermediate part is supported by, for example, spiral sections 4i at predetermined intervals, and the lower end 4m of the element is attached to a support plate 4n. , to which intermediate plate 4
By inserting the cap 4x and fixing the lower body 4x and the lid 4d as described above, they are all fixed watertight and the solution passage 4 is secured.
f, 41, 4f2-412-4f3-413-4f
4-414, and the permeated water introduced into the element inner hole 4h can be guided to the outlet 4r via the permeation collection channel 4o formed by the intermediate plate 4p and the support plate 4n. The circulation path 5 that sends the concentrated liquid collected from the liquid outlet 4b of the separation module 4 through the liquid collection part 3b to the liquid supply part 3a includes a rotary joint 5a, and first and second tanks 5b and 5c.
, a pipe 5d connected to the rotary joint 5a, pipes 5e and 5f conveyed to the first and second pots, a pipe 6d and a pipe 5e
and 5f, the first and second control valves are interposed between
The pipes 5h and 5i are transported to the pipes 5b and 5c, and the pipe 5i is connected to the pipe 5k via the liquid supply pump 8 Ze.
, a switching valve 51 interposed between the pipes 5h and 5i and the pipe 5j, and a rotary joint 5m connecting the pipe 5k to the liquid supply section 3a.
回転数制御手段7は予じめ設定される濃縮タイムスケジ
ュール又はスイッチ6aを介して又は介せずして検出手
段6からの信号に従って、回転数制御信号を発生する信
号発生装置7a、信号発生装置7aからの信号に応答す
る正逆回転可能な電動機7b、電動機7bの回転軸に連
結された伝達機構7C、伝達機構7cに整流子移動機構
7d,が連結された三相分巻型整流子電動機7d、電動
機7dの回転を回転軸3へ伝達する伝達機構例えばベル
ト機構7eとから成る。The rotational speed control means 7 includes a signal generator 7a that generates a rotational speed control signal according to a preset concentration time schedule or a signal from the detection means 6 via or without the switch 6a. A three-phase shunt-wound commutator motor including a motor 7b capable of forward and reverse rotation in response to a signal from the motor 7a, a transmission mechanism 7C connected to the rotating shaft of the motor 7b, and a commutator moving mechanism 7d connected to the transmission mechanism 7c. 7d, and a transmission mechanism for transmitting the rotation of the electric motor 7d to the rotating shaft 3, such as a belt mechanism 7e.
給液量一定化手段8は濃縮タイムスケジュ−ル、又はス
イッチ6aを介して若しくは介せずして検出手段6から
の信号に従って、制御信号を発生する信号発生装置8a
、信号発生装置8aからの信号に応答する正逆回転可能
な電動機8b、電動機8bの回転軸へ連結された伝達機
構8c、伝達機構8cに整流子移動機構8d,が連結さ
れた三相分巻型整流子電動機8d、並びに電動機8dの
回転軸へ継手8d2を介して連結された給液ポンプ8e
から成る。The liquid supply amount constant means 8 includes a signal generator 8a that generates a control signal according to a concentration time schedule or a signal from the detection means 6 with or without the switch 6a.
, an electric motor 8b capable of forward and reverse rotation in response to a signal from a signal generator 8a, a transmission mechanism 8c connected to the rotating shaft of the electric motor 8b, and a three-phase shunt winding device in which a commutator moving mechanism 8d is connected to the transmission mechanism 8c. type commutator motor 8d, and a liquid supply pump 8e connected to the rotating shaft of the motor 8d via a joint 8d2.
Consists of.
検出手段6は例えば第1及び第2の槽5b及び5c内に
配置された濃度検出器6b及び6c又は透過水量の検出
器などからなる給液路9は図示しない給液源へ運薄され
た配管9aと第1及び第2の槽5b及び5cへ蓬通され
た配管9b及び9cとの間に切換弁9dが介穀されて構
成されている。The detection means 6 includes, for example, concentration detectors 6b and 6c disposed in the first and second tanks 5b and 5c, or a permeated water amount detector.The liquid supply path 9 is connected to a liquid supply source (not shown). A switching valve 9d is interposed between the pipe 9a and the pipes 9b and 9c which extend through the first and second tanks 5b and 5c.
透過水築水手段10は環状透過水受10aと透過水槽1
0bとの間を配管10cにて蓬通し、透過水槽10bへ
蓬通された配管10dを排水溝もしくは所再設備へ運速
せしめて構成されている。The permeated water building means 10 includes an annular permeated water receiver 10a and a permeated water tank 1.
A pipe 10c is passed between the permeated water tank 10b and the permeated water tank 10b, and the pipe 10d is transported to a drainage ditch or to a refurbished facility.
以上の如く構成される本発明の溶液濃縮装置1の動作を
以下に説明する。配管gaを配管9bへ接続するように
切換弁9dを切換えて図示しない供給源から、濃縮しよ
うとする溶液(被濃縮液)を第1の糟5bへ給液してこ
れを充填する。The operation of the solution concentrating device 1 of the present invention configured as described above will be explained below. The switching valve 9d is switched so as to connect the pipe ga to the pipe 9b, and the solution to be concentrated (liquid to be concentrated) is supplied from a supply source (not shown) to the first tank 5b to fill it.
又、切換弁51も第1の糟5bを配管5iへ接続するよ
うに切換える。このような運転開始動作の完了時には、
公知の手段により溶液濃縮装置1の循環系には溶液が充
填されているものとする。信号発生装置7aにより、回
転軸3を所定の回転速度で回転させ得る位置へ整流子移
動機構7d,を設定するように電動機7bを制御する。Further, the switching valve 51 is also switched to connect the first tube 5b to the pipe 5i. Upon completion of such start-up operations,
It is assumed that the circulation system of the solution concentrator 1 is filled with the solution by known means. The signal generator 7a controls the electric motor 7b to set the commutator moving mechanism 7d to a position where the rotating shaft 3 can be rotated at a predetermined rotational speed.
回転軸3の回転数が所定の回転数に到達した時刻に、給
液ポンプ8eが作動される。At the time when the rotational speed of the rotary shaft 3 reaches a predetermined rotational speed, the liquid supply pump 8e is activated.
給液ポンプ8eからの給液量は液流入口4aからモジュ
ール4内への流速が所定の流速となりうる値で、この値
は信号発生装置8aにより、三相分巻型整流子鰭動機8
dの整流子移動機8d,の位置付け制御をなす電動機8
bを制御することによって設定しうる。かくして、第1
の糟5bから循環路5、給液部3aを経て分離モジュー
ル4内へ所定の流速で流入した被濃縮液(溶液)は通液
路4f,→41,→4f2→412→4f3→413→
4f4→414(第4図参照)へ至る夫々の通液中に、
回転による遠心力で所定の圧力を保ちつ)ェレメント4
hに作用し透過水と濃縮液とに分離される。The amount of liquid supplied from the liquid supply pump 8e is a value that allows the flow velocity from the liquid inlet 4a into the module 4 to be a predetermined flow velocity, and this value is determined by the signal generator 8a to the three-phase shunt type commutator fin motor 8.
An electric motor 8 that controls the positioning of the commutator moving machine 8d of d.
It can be set by controlling b. Thus, the first
The liquid to be concentrated (solution) flowing from the sap 5b through the circulation path 5 and the liquid supply section 3a into the separation module 4 at a predetermined flow rate flows through the liquid passages 4f, → 41, → 4f2 → 412 → 4f3 → 413 →
During each liquid passage from 4f4 to 414 (see Figure 4),
Element 4) Maintains a predetermined pressure due to centrifugal force due to rotation.
h and is separated into permeate and concentrate.
分離された透過水はェレメント4hの内孔4h,を流下
し、簾水路4oを経て半径方向外方へ流れ透過水流出口
4rからモジュール4外へ放出され透過水受10a等か
ら成る透過水集水手段10を経て所定の個所へ送水され
る。The separated permeated water flows down the inner hole 4h of the element 4h, flows radially outward through the blind waterway 4o, and is discharged from the permeated water outlet 4r to the outside of the module 4, where it is sent to a permeated water collection consisting of a permeated water receiver 10a, etc. Water is sent to a predetermined location via means 10.
他方、上述の如くして各ェレメント4hに作用して濃縮
されて来た溶液(濃縮液)は液流出口4bから収液部3
bを経て循環路5内へ戻される。On the other hand, the solution (concentrated liquid) that has been concentrated by acting on each element 4h as described above flows from the liquid outlet 4b to the liquid collecting section 3.
b and is returned into the circulation path 5.
このような溶液の循環濃縮を操返えせば艮0ちその循環
回教を多くすればするほど、溶液の濃縮度は高まり、濃
度の高い濃縮液となって来る。このように、溶液の濃縮
化が進んでも、予じめ設定されたタイムスケジュールで
、又は検出手段からの濃度信号に応答して、信号発生装
置7aにより、濃縮しつ)ある濃度に適合した回転速度
則ち濃縮度に通した作用圧力を分離モジュールに与える
回転速度(回転数)で分離モジュールを回転させるよう
に、整流子電動機7dの回転数が高められる。同様にし
て、溶液が濃縮化されて来ても、分離に適合した流速則
ち分離モジュール4内での分離性能の劣化を生ぜしめな
い所定の流速を維持するように給液量をほゞ一定に保つ
べく、信号発生装置8aにより給液ポンプ8e換言すれ
ば整流子蟹動機8dの回転数が制御される。The more you repeat the circulation and concentration of such a solution, the more you repeat the circulation, the more concentrated the solution becomes, and the more concentrated the solution becomes. In this way, even if the concentration of the solution progresses, the signal generating device 7a will rotate the solution according to a preset time schedule or in response to the concentration signal from the detection means. The rotational speed of the commutator motor 7d is increased so as to rotate the separation module at a rotational speed (rotational speed) that provides the separation module with an operating pressure corresponding to the speed or concentration. Similarly, even if the solution becomes concentrated, the amount of liquid supplied is kept approximately constant so as to maintain a flow rate suitable for separation, that is, a predetermined flow rate that does not cause deterioration of separation performance within the separation module 4. In order to maintain this, the signal generator 8a controls the rotational speed of the liquid supply pump 8e, in other words, the commutator crab motor 8d.
このような濃縮化制御の進行中に、もう1方の糟、上記
例示の場合には第2の糟5cへの給液が切換弁9dを切
換えてなされる。While such concentration control is in progress, liquid is supplied to the other sieve, in the case of the above example, the second sieve 5c, by switching the switching valve 9d.
そして、所定の濃縮度の濃縮液が得られた時点で、切換
弁51の切換えをなして第2の糟5c内の溶液に対し、
上述の如く濃縮経過をとらせる一方、切換弁9dを第1
の糟5bへ切換えて濃縮液を糟5bから他の貯蔵槽など
へ送られる。Then, when a concentrated liquid having a predetermined concentration level is obtained, the switching valve 51 is switched so that the solution in the second sieve 5c is
While the concentration progresses as described above, the switching valve 9d is switched to the first
The concentrated liquid is transferred to another storage tank or the like from the cassette 5b.
槽5bからの濃縮液が他の貯蔵槽などへ送られた後、次
の上述の如き濃縮化処理に備えて糟5bへの給液をなす
。After the concentrated liquid from the tank 5b is sent to another storage tank, the liquid is supplied to the tank 5b in preparation for the next concentration process as described above.
このような交互の濃縮化処理により、被濃縮液の連続的
濃縮が可能となる。Such alternating concentration processing enables continuous concentration of the liquid to be concentrated.
又、濃縮化処理の前後に、第1及び第2の槽5b及び5
c又は一方に洗浄液例えば水、洗剤等を給液し、回転を
生じさせず又は生じさせて給液ポンプ8eを作動させる
ことにより、他の手段なしに装置の洗浄をなすことが出
来る。Also, before and after the concentration process, the first and second tanks 5b and 5
By supplying a cleaning liquid such as water, detergent, etc. to one or both of the pumps 8e and 8e and operating the liquid supply pump 8e without or with rotation, the apparatus can be cleaned without any other means.
この洗浄もタイムスケジュールに組込んで自動連続運転
することも可能である。上記実施例では、分離モジュー
ル4を一重に設けた場合について説明したが、半径方向
位置を異にして多重に設ける場合にも本発明を適用しう
る。This cleaning can also be incorporated into a time schedule and run automatically and continuously. In the above embodiment, a case has been described in which the separation module 4 is provided in a single layer, but the present invention can also be applied to a case in which the separation module 4 is provided in multiples at different radial positions.
又、回転数制御手段はその変速手段として、他の可変遠
電動機を用いてもよいし、或いは一定回転数の原動機の
回転軸を変速機構を介して回転軸へ連結してもよい。Further, the rotational speed control means may use another variable remote electric motor as its transmission means, or may connect the rotational shaft of a prime mover with a fixed rotational speed to the rotational shaft via a transmission mechanism.
以上の説明から明らかな如く、本発明によれば、■ 被
濃縮液の濃縮化が進むにつれて分離モジュールの回転速
度が高められるので、従来装置の如き操作圧力の低下を
招くことなく又濃縮度に適した操作圧力で合理的な濃縮
をなし得、・■ 被濃縮液の濃縮化が進んでも、給液量
を一定に維持する制御がなされるので、従来装置の如き
分離性能に低下がなく、■ 従って高濃縮が可能となる
と共に、
■ 洗浄を含めて自動連続運転が可能となり省人化が計
れ、■ 本発明においてもエネルギー回収が行われてい
るから従釆装置に比し格段の省エネルギー化が達成され
ている等の優れた効果が得られる。As is clear from the above explanation, according to the present invention, (1) the rotational speed of the separation module is increased as the concentration of the liquid to be concentrated progresses; Reasonable concentration can be achieved at an appropriate operating pressure, and even if the concentration of the liquid to be concentrated progresses, the amount of liquid supplied is controlled to remain constant, so there is no drop in separation performance as with conventional equipment. ■ Therefore, high concentration is possible, ■ Continuous automatic operation including cleaning is possible, resulting in labor savings, and ■ Since energy recovery is also performed in the present invention, it is much more energy efficient than conventional equipment. Excellent effects such as the following are achieved.
第1図は本発明装置の一部断面側面図、第2図は第1図
の平面図、第3図は第4図のm−m線矢視断面図、第4
図は第3図のN−W線矢視断面図、第5図は第3図のV
−V線矢視断面図である。
図中、1は溶液濃縮装置、3は回転軸、3aは給液部、
3bは収液部、4は分離モジュール、5は循環路、7は
回転数制御手段、8は給液量一定化手段である。
第1図
第2図
第3図
第4図
第5図Fig. 1 is a partially sectional side view of the device of the present invention, Fig. 2 is a plan view of Fig. 1, Fig. 3 is a sectional view taken along line m-m in Fig.
The figure is a sectional view taken along the line N-W in Figure 3, and Figure 5 is a cross-sectional view taken along the line N-W in Figure 3.
- It is a sectional view taken along the line V. In the figure, 1 is a solution concentrator, 3 is a rotating shaft, 3a is a liquid supply part,
3b is a liquid collection part, 4 is a separation module, 5 is a circulation path, 7 is a rotation speed control means, and 8 is a liquid supply amount constant means. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
うるよう設けられた選択性透過膜型分離モジユールへ前
記回転軸の給液部を経て給液し、前記選択性透過膜型分
離モジユールで濃縮された溶液を前記回転軸の収液部を
経て回収し、該溶液が所定の濃縮度に達するまで前記溶
液を循環路を経て前記給液部へ循環させる回転式溶液濃
縮装置において、前記溶液の濃縮度の上昇に応じて前記
回転軸の回転数を上昇させる回転数制御手段と、前記循
環路に介設され、前記溶液の濃縮度が上昇しても給液量
を一定化させる給液量一定化手段とを設けたことを特徴
とする回転式溶液濃縮装置。1. Supply liquid through a liquid supply portion of the rotating shaft to a selectively permeable membrane type separation module that is provided at a predetermined position in the radial direction of the rotating shaft so as to be able to rotate together with the rotating shaft, and in the selectively permeable membrane type separation module. A rotary solution concentrator that collects a concentrated solution through a liquid collecting section of the rotating shaft and circulates the solution to the liquid supply section via a circulation path until the solution reaches a predetermined concentration level. a rotational speed control means for increasing the rotational speed of the rotating shaft according to an increase in the concentration of the solution; and a liquid supply that is interposed in the circulation path and that keeps the amount of liquid supplied constant even if the concentration of the solution increases. 1. A rotary solution concentrator, characterized in that it is provided with a volume constant means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14672679A JPS602883B2 (en) | 1979-11-13 | 1979-11-13 | Rotary solution concentrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14672679A JPS602883B2 (en) | 1979-11-13 | 1979-11-13 | Rotary solution concentrator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5670804A JPS5670804A (en) | 1981-06-13 |
JPS602883B2 true JPS602883B2 (en) | 1985-01-24 |
Family
ID=15414172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14672679A Expired JPS602883B2 (en) | 1979-11-13 | 1979-11-13 | Rotary solution concentrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602883B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6297605A (en) * | 1985-10-25 | 1987-05-07 | Agency Of Ind Science & Technol | Liquid membrane separation treatment method |
JPS62121667A (en) * | 1985-11-22 | 1987-06-02 | Iijima Seimitsu Kogyo Kk | Centrifugal type continuous filter apparatus using semipermeable membrane |
US5668014A (en) * | 1994-06-06 | 1997-09-16 | Kabushiki Kaisha Meidensha | Device and method for estimating three nitrogen-including ionic substances in water |
-
1979
- 1979-11-13 JP JP14672679A patent/JPS602883B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5670804A (en) | 1981-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101421020B (en) | A liquid treatment apparatus | |
US3669879A (en) | Fluid separation apparatus and method | |
US6177006B1 (en) | Filtering device | |
US20120234747A1 (en) | Filter device | |
US4333832A (en) | Rotating solution separation system | |
JP2788033B2 (en) | Untreated water treatment equipment | |
JP2755829B2 (en) | Double impeller pump | |
TWI600461B (en) | Filter for aromatic carboxylic acids | |
JPS602883B2 (en) | Rotary solution concentrator | |
KR20020042666A (en) | Multi-stage filtration and softening module and reduced scaling operation | |
JPH05285349A (en) | Membrane separator | |
EP0730893B1 (en) | Freeze crystallization concentration methods and apparatus | |
JP2019025405A (en) | Hollow fiber membrane module | |
ES2213383T3 (en) | FILTER SYSTEMS AND METHODS. | |
KR100280975B1 (en) | Cleaner for centrifuging sludge in indefinite water | |
CN101733292B (en) | Cleaning solution circulating device and using method thereof | |
CN101549222A (en) | Filtering pool | |
US3840121A (en) | Centrifuge with semi-permeable membrane, and method for its preparation | |
CN201419044Y (en) | Filter tank | |
CN108031291A (en) | A kind of multifunctional membrane filtration system | |
JP2021532863A (en) | A device for regenerating used dialysate | |
JP3667475B2 (en) | Filtration device backwash method | |
JP4036276B2 (en) | Ice making cooling system | |
CN221296576U (en) | Oil gas field sewage separator | |
CN220294253U (en) | Aluminum alloy casting filter equipment |