JPS602653A - Production of precipitation hardening type nickel-base alloy - Google Patents
Production of precipitation hardening type nickel-base alloyInfo
- Publication number
- JPS602653A JPS602653A JP10942283A JP10942283A JPS602653A JP S602653 A JPS602653 A JP S602653A JP 10942283 A JP10942283 A JP 10942283A JP 10942283 A JP10942283 A JP 10942283A JP S602653 A JPS602653 A JP S602653A
- Authority
- JP
- Japan
- Prior art keywords
- less
- base alloy
- corrosion resistance
- alloy
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 46
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000004881 precipitation hardening Methods 0.000 title 1
- 230000007797 corrosion Effects 0.000 claims abstract description 50
- 238000005260 corrosion Methods 0.000 claims abstract description 50
- 238000005336 cracking Methods 0.000 claims abstract description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 230000032683 aging Effects 0.000 claims abstract description 16
- 230000035882 stress Effects 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 39
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- 238000007792 addition Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000003129 oil well Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910001068 laves phase Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910000816 inconels 718 Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、腐食環境下、特に硫化水素、二酸化炭素およ
び塩素イオンの1種または2種以上を含む環境下におい
て良好な耐応力腐食割れ性および耐水素割れ性を示す高
強度、高靭性ニッケル基合金材料の製造法に関する。Detailed Description of the Invention The present invention exhibits good stress corrosion cracking resistance and hydrogen cracking resistance in a corrosive environment, particularly in an environment containing one or more of hydrogen sulfide, carbon dioxide, and chloride ions. This invention relates to a method for producing high-strength, high-toughness nickel-based alloy materials.
従来、油井、化学工業、地熱発電等の設備用の構造材な
どのように、高強度でかつ高耐食性を要求される全底部
材は、(固溶強化)+(冷間加工強化)によって強度上
昇をはかるものが大半であったため、冷間加工等が施せ
ないような複雑なあるいは特殊な形状を有する金属部材
にあっては、上述のような従来の手段では強度上昇が困
難であった。Conventionally, full-bottom parts that require high strength and high corrosion resistance, such as structural materials for equipment in oil wells, chemical industries, geothermal power generation, etc., have been strengthened by (solid solution strengthening) + (cold working strengthening). In most cases, the strength of metal members with complicated or special shapes that cannot be subjected to cold working is difficult to increase using the conventional means described above.
一方、特殊形状の部材にも適用できる強度上昇手段とし
て従来より知られている手段は合金組成としてTiおよ
び八lあるいはNbを添加してNi 3 (Ti、 A
I>の金属間化合物(γ゛相)あるいはNi 3 Nb
の金属間化合物(γ”相)を析出させることである。こ
のような析出強化を利用したものとしては、すでに、イ
ンコネル−718、インコネル−750(商品名)等の
Ni基合金があるが、従来の合金では低Cr、高Tiで
あるため耐食性が十分でない。例えばインコネル−71
8等はNb、 Ti、AI添加によるT′およびγ”析
出強化型Ni基合金でγ”相による析出強化を主体とし
ているが、かなりのTi量を含むため耐食性は十分とは
いえない。On the other hand, a conventionally known means for increasing the strength that can be applied to members with special shapes is to add Ti and 81 or Nb to the alloy composition to increase the strength of Ni 3 (Ti, A
I> intermetallic compound (γ゛ phase) or Ni 3 Nb
This is to precipitate an intermetallic compound (γ'' phase).Already, there are Ni-based alloys such as Inconel-718 and Inconel-750 (trade name) that utilize such precipitation strengthening. Conventional alloys do not have sufficient corrosion resistance due to their low Cr and high Ti content.For example, Inconel-71
Grade 8 is a T' and γ'' precipitation-strengthened Ni-based alloy with the addition of Nb, Ti, and AI, and is mainly precipitation strengthened by the γ'' phase, but it cannot be said to have sufficient corrosion resistance because it contains a considerable amount of Ti.
ところで、油井、化学工業および地熱発電環境等のよう
に硫化水素、二酸化炭素および塩素イオンの1種または
2種以上含有する環境下で使用される材料に対しては高
強度・高靭性とともにすぐれた耐食性、すなわち耐応力
腐食割れ性および耐水素割れ性が要求される。このよう
な用途に構造材として使用される材料の場合、板あるい
は管のように比較的成形の容易なものは冷間加工によっ
て強度上昇をはかることが望ましいが、バルブ、継手、
配管等で冷間加工の施せないような特殊形状を有するも
のについては析出強化によって強度上昇をはからなけれ
ばならない。しかしながら、Tiおよび^1添加による
γ゛析出強化型Ni基合金が大半を占めている」1述の
ような従来の析出強化合金では、本発明者らの研究の結
果によれば、本質的に耐食性が不良であることを知見し
た。By the way, materials that are used in environments containing one or more of hydrogen sulfide, carbon dioxide, and chlorine ions, such as oil wells, chemical industries, and geothermal power generation environments, have excellent strength and toughness. Corrosion resistance, that is, stress corrosion cracking resistance and hydrogen cracking resistance is required. For materials used as structural materials in such applications, it is desirable to increase the strength of materials that are relatively easy to form, such as plates or pipes, by cold working, but for materials such as valves, joints,
For items such as piping that have a special shape that cannot be cold worked, the strength must be increased by precipitation strengthening. However, according to the results of the research conducted by the present inventors, in conventional precipitation-strengthened alloys such as those described in 1, most of which are γ-precipitation-strengthened Ni-based alloys due to the addition of Ti and ^1, essentially It was found that the corrosion resistance was poor.
例えば、耐応力腐食割れ性の良い合金として特開昭57
−203741号公報の開示するものは、NhおよびT
i(またはAI)を複合添加しているため時効処理によ
りγ”−Ni 3 (Ti、八l)およびγ”−Ni
3 Nbの2つの金属間化合物が主に析出するが、Ti
添加量が多いため過時効となり易く、過時効析出相とし
てη−Ni3Tiの金属間化合物が析出すると耐食性、
特に耐水素割れ性が著しく劣化する。この耐食性を改善
するには熱処理条件および時効処理条件を厳しく制限す
る必要がある。For example, as an alloy with good stress corrosion cracking resistance,
-203741 discloses Nh and T
Due to the composite addition of i (or AI), γ''-Ni 3 (Ti, 8l) and γ''-Ni
3 Two intermetallic compounds of Nb precipitate mainly, but Ti
Since the amount added is large, over-aging is likely to occur, and when an intermetallic compound of η-Ni3Ti is precipitated as an over-aging precipitation phase, corrosion resistance and
In particular, hydrogen cracking resistance deteriorates significantly. In order to improve this corrosion resistance, it is necessary to strictly limit the heat treatment conditions and aging treatment conditions.
また、同様の合金として、特開昭57−123948号
公報記載のものも知られているが、これもTiさらには
AIが多量に添加されていて耐食性が不良である。Ti
およびAI添加量に下限値が設定されていることからも
分かるように、Ni 3 (Ti、 ’AI)つまりγ
9相の析出を意図したものである。Furthermore, a similar alloy described in JP-A-57-123948 is also known, but this also has poor corrosion resistance due to the addition of a large amount of Ti and even AI. Ti
As can be seen from the fact that a lower limit is set for the amount of addition of AI and Ni 3 (Ti, 'AI), that is, γ
It is intended to precipitate nine phases.
ここに、本発明者らは、Ti添加系のγ”析出強化型N
i基合金は本質的に耐食性が不良で、安定性に欠けるこ
と、すなわち、γ’−Nt 3 Tiが析出するような
Ti添加合金(Ti、 Nb複合添加でも同様である)
では耐食性が著しく劣化することを知見し、さらに研究
を進めた結果、Ni基合金の成分系の選定および熱間加
工、熱処理および時効処理の各条件を特定することによ
って、種々の強度、延性、靭性を有し、しかも耐応力腐
食割れ性および耐水素割れ性に著しく優れた材料が得ら
れることを見い出し、本発明を完成した。Here, the present inventors have developed a Ti-added γ” precipitation-strengthened N
i-base alloys inherently have poor corrosion resistance and lack stability; that is, Ti-added alloys in which γ'-Nt 3 Ti precipitates (the same is true for Ti and Nb composite additions).
As a result of further research, we found that the corrosion resistance of Ni-based alloys significantly deteriorated, and by selecting the composition of the Ni-based alloy and specifying the hot working, heat treatment, and aging treatment conditions, we were able to achieve various strengths, ductility, The present invention was completed based on the discovery that it is possible to obtain a material that has toughness and has excellent stress corrosion cracking resistance and hydrogen cracking resistance.
ここに、本発明の要旨とするところは、C: 0.05
0%以下、Si : 0.50%以下、Mn : 2.
0%以下、 Ni : 45〜60%、Cr:18〜2
7%、 Ti : 0.40%以下、Mo : 2.5
〜5.5%およびW:11%以下の少なくとも1種(た
だし、、2.5%≦Mo+ ’A’A≦5.5%)、
八1: 6.30%以下、 P :o、ots%以下、
Nb 72.5〜5.0%およびTa : 2.0%以
下の少なくとも1種(ただし、2.5%≦Nb+ %T
a≦5.0%)、
S :o、ooso%以下、N :o、o3o%以下残
部付随不純物およびFe
からなる合金を1200〜800℃で断面減少率50%
以」二の熱間加工を施した後、1000〜1200”c
で1o分から5時間保持後、空冷以上の速度で冷却しく
ただし、9゜0〜500℃の間は10℃/分以上の冷却
速度で冷却)、この後500〜750℃で1時間〜20
0時間の時効処理を1回ないし2回以上施すことにより
、硫化水素、二酸化炭素および塩素イオンの1種または
2種以上含有する環境下で耐応力腐食割れ性および耐水
素割れ性に優れたγ”析出強化型ニッケル基合金を製造
する方法である。Here, the gist of the present invention is that C: 0.05
0% or less, Si: 0.50% or less, Mn: 2.
0% or less, Ni: 45-60%, Cr: 18-2
7%, Ti: 0.40% or less, Mo: 2.5
~5.5% and W: at least one type of 11% or less (however, 2.5%≦Mo+'A'A≦5.5%), 81: 6.30% or less, P: o, ots %below,
Nb 72.5-5.0% and Ta: at least one of 2.0% or less (however, 2.5%≦Nb+%T
a≦5.0%), S: o, ooso% or less, N: o, o3o% or less, the balance consisting of incidental impurities and Fe is reduced in area by 50% at 1200 to 800°C.
1000~1200"c after hot working
After holding for 5 hours from 10°C, cool at a rate faster than air cooling (however, between 9° and 500°C, cool at a cooling rate of 10°C/min or more), then at 500°C to 750°C for 1 hour to 20°C.
By performing aging treatment for 0 hours once or twice or more, γ has excellent stress corrosion cracking resistance and hydrogen cracking resistance in an environment containing one or more of hydrogen sulfide, carbon dioxide, and chlorine ions. ``This is a method for producing precipitation-strengthened nickel-based alloys.
さらに、本発明においては、前記合金が、必要により、
Cu : 2.0%以下および/またはCo:2.0%
以下を含んでもよく、あるいは、これとは別にまたは同
時ニREM : 0.10%以下、Mg : 0.10
%以下、Ca : 0゜10%以下およびY:0.20
%以下の1種または2種以上を含んでいてもよい。Furthermore, in the present invention, the alloy may optionally include:
Cu: 2.0% or less and/or Co: 2.0%
It may also contain, or separately or simultaneously, the following: REM: 0.10% or less, Mg: 0.10
% or less, Ca: 0°10% or less and Y: 0.20
% or less of one type or two or more types.
すなわち、このように本発明によれば、硫化水素、二酸
化炭素および塩素イオンの1種または2種以」二を含む
、例えば油井、化学工業および地熱発電環境において良
好な耐応力腐食割れ性および耐水素割れ性を有し、しか
も油井用バルブボディのようにその特殊形状の故に冷間
加工の施せない部材に使用しても高強度が得られるよう
、従来よりも高CrでかつTi添加量を抑えてNb添加
を主体とした合金組成を構成し、これに特定の熱間加工
と熱処理とを組合せて施すことにより耐食性の著しく良
好な高強度、高靭性を示すγ”析出強化型Ni基合金が
得られるのである。That is, according to the present invention, the present invention provides a material containing one or more of hydrogen sulfide, carbon dioxide, and chloride ions, which has good stress corrosion cracking resistance and resistance in, for example, oil well, chemical industry, and geothermal power generation environments. In order to obtain high strength even when used in parts that have hydrogen cracking properties and cannot be subjected to cold working due to their special shape, such as valve bodies for oil wells, the new material has a higher Cr and Ti content than before. A γ" precipitation-strengthened Ni-based alloy that exhibits high strength and toughness with extremely good corrosion resistance by forming an alloy composition with a low Nb addition and applying it in combination with specific hot working and heat treatment. is obtained.
したがって、本発明の一つの特徴によれば、従来の析出
強化型Ni基合金の耐食性改善法として、前述の知見に
基づき、従来法よりもTi添加量を抑えて、T゛相では
な(γ”−Ni 3 Nbによる析出強化を図り、さら
に有効な析出強化を得るための熱処理条件および時効条
件を特定するのである。Therefore, according to one feature of the present invention, as a method for improving the corrosion resistance of conventional precipitation-strengthened Ni-based alloys, based on the above-mentioned knowledge, the amount of Ti added is suppressed compared to the conventional method, and the Ti phase is not (γ). ”-Ni 3 Nb, and specify the heat treatment conditions and aging conditions to obtain more effective precipitation strengthening.
以下に本発明にあって合金組成および加工条件を上述の
ように附定した理由についてさらに詳しく説明をする。The reason why the alloy composition and processing conditions are specified as described above in the present invention will be explained in more detail below.
1)化学成分
Ni、、、、、、本合金はオーステナイト基地にNi3
Nbの金属間化合物γ゛相が時効により析出し強化する
ことを基本としており、Crおよびと〇との添加量のバ
ランスによってσ、μ、P、Laves相などの延性、
靭性、耐食性に対して好ましくない金属間化合物を生成
しないようにオーステナイト基地を安定化するに足るN
i量が必要であり、そのためにはNi≧45%となる。1) Chemical composition Ni, this alloy has Ni3 in the austenite base.
The basic principle is that the intermetallic compound γ phase of Nb precipitates and strengthens with aging, and the balance of the amount of Cr and 〇 added increases the ductility and ductility of the σ, μ, P, Laves phases, etc.
Sufficient N to stabilize the austenite base so as not to form intermetallic compounds that are unfavorable for toughness and corrosion resistance.
i amount is necessary, and for that purpose Ni≧45%.
またNiが60%を越えると耐水素割れ性が著しく劣化
するためN4660%が望ましいが、好ましくは、50
%≦Ni≦55%とする。Moreover, if Ni exceeds 60%, the hydrogen cracking resistance will deteriorate significantly, so N460% is desirable, but preferably 50%
%≦Ni≦55%.
Cr、、、、、、Moとともに耐食性を向上させる。こ
のためには18%以上必要であるが27%を越えると熱
間加工性が低下し、さらに延性、靭性、耐食性に対して
好ましくない金属間化合物(σ、μ、P 、 Lave
s相など)が生成し易くなる。好ましくは、Crは22
〜27%である。Cr improves corrosion resistance together with Mo. For this purpose, 18% or more is required, but if it exceeds 27%, hot workability decreases, and intermetallic compounds (σ, μ, P, Lave
s-phase, etc.) are more likely to be generated. Preferably Cr is 22
~27%.
MO% W、 、 、 、 、Crとの共存によって特
に耐孔食性を向上させる。この効果は例えばMo2.5
%以上の添加で顕著となるがCr同様多量添加によって
延性、靭性、耐食性に対して好ましくない金属間化合物
(σ、μ、P 、 Laves相など)が生成し易くな
ることがらMo5.5%以下の添加が望ましい。讐はM
oと同様な作用を示すが、同じ効果を得るにはMo量の
2倍量の添加を要する。したがって、その割合で所要M
o量を少なくとも一部判で置換しても良い。見は11%
を越えて添加するとMoと同様に上述のような金属間化
合物が生成し易くなることから、11%以下に制限する
。MO% W, , , , , the coexistence with Cr particularly improves the pitting corrosion resistance. This effect is, for example, Mo2.5
% or more, but like Cr, adding a large amount tends to generate intermetallic compounds (σ, μ, P, Laves phases, etc.) that are unfavorable for ductility, toughness, and corrosion resistance. It is desirable to add The enemy is M
Although it exhibits the same effect as Mo, it is necessary to add twice the amount of Mo to obtain the same effect. Therefore, the required M
o amount may be replaced by at least one size. 11% saw
If added in excess of 1%, the above-mentioned intermetallic compounds are likely to be formed similarly to Mo, so it is limited to 11% or less.
よって、本発明にあっては、Mo : 2.5〜5゜5
%およびW:11%以下の少なくとも1種(ただし、2
.5%≦Mo+ !4W≦5.5%)を添加する。これ
らの範囲を外れると耐食性改善が十分でなく、また延性
、靭性が劣化する。Therefore, in the present invention, Mo: 2.5 to 5°5
% and W: At least one type of 11% or less (however, 2
.. 5%≦Mo+! 4W≦5.5%). Outside these ranges, corrosion resistance will not be improved sufficiently and ductility and toughness will deteriorate.
Ti、、、、、、Tiは0.4%を越えるとNi 3
Tiとして析出するが、耐食性を著しく劣化させるため
脱酸効果のみを考慮してTi : 0.40%以下とし
、好ましくは、Ti : 0.20%以下とする。Ti, , , , If Ti exceeds 0.4%, Ni 3
Although it precipitates as Ti, it significantly deteriorates the corrosion resistance, so considering only the deoxidizing effect, the Ti content is set to 0.40% or less, preferably Ti: 0.20% or less.
Δ]、、、、、、AIはNi基合金の脱酸剤として最も
適しており、添加量の増加とともに脱酸効果は向上する
が0.30%を越えるとその効果は飽和するため、Al
70.30%以下とし、好ましくは0.15%以下と
する。Δ], , , , AI is most suitable as a deoxidizing agent for Ni-based alloys, and the deoxidizing effect improves as the amount added increases, but the effect is saturated when it exceeds 0.30%, so Al
The content should be 70.30% or less, preferably 0.15% or less.
Nb、 Ta、、、、 T ” −Ni 3 (Nb、
Ta )として析出し強度上昇に寄与する。その効果は
、Nb+%Taが2.5%以上で顕著となるが、5.0
%を越えると熱間加工性が低下し、また、延性、靭性、
耐食性に対して好ましくない金属間化合物(f・μ・P
% Laves相など)が生成し易くなる。ただし、
Nb 72.5%〜5.0%、Ta : 2.0%以下
である。これらの範囲を外れると強度上昇に効果がなく
、むしろ延性、靭性が劣化する。Taの場合、その添加
効果はNbのほぼ1/2となる。よって、本発明にあっ
ては、Nb : 2.5〜5.0%およびTa:2.0
%以下の少なくとも1種を2.5%≦Nb”ATa≦5
.0%の範囲内で添加する。Nb, Ta,..., T''-Ni3(Nb,
Ta) contributes to an increase in precipitation strength. The effect becomes remarkable when Nb+%Ta is 2.5% or more, but when 5.0%
%, hot workability decreases, and ductility, toughness,
Intermetallic compounds (f・μ・P) that are unfavorable for corrosion resistance
% Laves phase, etc.) are easily generated. however,
Nb: 72.5% to 5.0%, Ta: 2.0% or less. Outside these ranges, there is no effect on increasing strength, but rather the ductility and toughness deteriorate. In the case of Ta, the effect of adding it is approximately 1/2 that of Nb. Therefore, in the present invention, Nb: 2.5 to 5.0% and Ta: 2.0%
% or less of at least one of the following: 2.5%≦Nb”ATa≦5
.. Add within the range of 0%.
c、、、、00.析出強化の妨げとなり、また、0.0
50%を越えるとNbC、Tic等の介在物量が増加し
延性、靭性、耐食性が劣化する。好ましくはC≦0.0
20 %T:あるがC50,010%では延性、靭性は
さらに向上する。c,,,00. Precipitation strengthening is hindered, and 0.0
When it exceeds 50%, the amount of inclusions such as NbC and Tic increases, resulting in deterioration of ductility, toughness, and corrosion resistance. Preferably C≦0.0
20% T: Yes, but ductility and toughness are further improved at 50,010% C.
Sis Mn、、、、Si、 Mnは脱酸剤および脱硫
剤として添加するが、Stは0.50%を越えるとσ相
などの延性、靭性に対して好ましくない金属間化0
合物が生成し易くなるため、Si : 0.5%以下と
する。溶接性を考慮するとSiS2.10%が好ましい
。さらにMnについても同様にMnS2.0%が望まし
いが、好ましくはMnS2゜80%とする。Sis Mn, Si, Mn is added as a deoxidizing agent and desulfurizing agent, but if St exceeds 0.50%, intermetallic compounds such as σ phase, which are unfavorable for ductility and toughness, are formed. Si: 0.5% or less to make the process easier. Considering weldability, 2.10% SiS is preferable. Furthermore, regarding Mn, it is similarly desirable that MnS be 2.0%, but preferably MnS2.80%.
p 、 s、0.、、p 、 sは粒界偏析により熱間
加工性を低下させ、また、耐食性も劣化するため、P≦
0.015%、S≦0.0050%、好ましくは、S≦
0.0010%とする。p, s, 0. ,,p,s reduce hot workability due to grain boundary segregation and also deteriorate corrosion resistance, so P≦
0.015%, S≦0.0050%, preferably S≦
It shall be 0.0010%.
N 、、、、、、、、Nは介在物量を増加させ材料特性
の異方性の要因となるため、N≦0.030%、好まし
くはN≦0.010%とする。Since N increases the amount of inclusions and causes anisotropy in material properties, N≦0.030%, preferably N≦0.010%.
Fe’、、、、、、、、Ni添加量とのバランスにより
析出強化を促進するため適当量必要であり、合金組成の
残部は付随不純物を除いてFeである。好ましくは、3
.0%≦Fe≦25%とする。An appropriate amount of Fe' is required to promote precipitation strengthening depending on the balance with the amount of Ni added, and the remainder of the alloy composition is Fe, excluding incidental impurities. Preferably 3
.. 0%≦Fe≦25%.
Cu、 Co、、、、耐食性の向上に有効であるがその
効果は2.0%を越えると飽和するためCu、Go≦2
゜0%とする。Cu, Co,... is effective in improving corrosion resistance, but the effect is saturated when it exceeds 2.0%, so Cu, Go≦2
゜0%.
REM 、Mg、 Ca、 Y、、、、、微量添加によ
り熱間加工性を向上させるがそれぞれ0.10%、0.
10%、0゜10%および0.20%の各上限を越える
と逆に1
低融点化合物を生成し易くなり加工性が低下する。Hot workability is improved by adding small amounts of REM, Mg, Ca, Y, 0.10% and 0.0%, respectively.
If the upper limits of 10%, 0.10% and 0.20% are exceeded, on the contrary, low melting point compounds are likely to be produced, resulting in a decrease in processability.
その他、、、、B % Sns Zn、Pb等は@量で
は本発明合金の特性に何ら影Bを与えないので不純物と
してそれぞれ0.10%まで許容されるが上限を越える
と加工性あるいは耐食性が劣化する。In addition, B % Sns Zn, Pb, etc. do not affect the properties of the alloy of the present invention in @ amount, so up to 0.10% of each is allowed as impurities, but if the upper limit is exceeded, workability or corrosion resistance will deteriorate. to degrade.
2)熱間加工
本発明におけるようにNbを添加した場合、凝固時に粒
界部に低融点化合物が生成し易くなる傾向があり、熱間
加工時の加熱温度および加工温度範囲を制限する必要が
ある。熱間加工の開始温度が1200”Cを越えると粒
界の脆弱化がみられる。一方、仕上げ温度が800°C
未満では加工が困¥Wになる。本発明では、シタがって
、1200〜800℃の温度範囲、好ましくは、115
0〜850℃で熱間加工を行う。2) Hot processing When Nb is added as in the present invention, low melting point compounds tend to be generated at grain boundaries during solidification, and it is necessary to limit the heating temperature and processing temperature range during hot processing. be. Grain boundary embrittlement is observed when the starting temperature of hot working exceeds 1200"C. On the other hand, when the finishing temperature exceeds 800"C
If it is less than that, it will be difficult to process. In the present invention, the temperature range is 1200 to 800°C, preferably 115°C.
Hot working is performed at 0 to 850°C.
さらにNb、 Mo等は凝固時におけるマクロ偏析の原
因になり易く、このような偏析が製品においても残存す
ると厚肉材等では靭性および耐食性劣化の要因となる。Furthermore, Nb, Mo, etc. tend to cause macro segregation during solidification, and if such segregation remains in products, it becomes a factor in deterioration of toughness and corrosion resistance in thick-walled materials.
このためインゴットから製品までの熱間加工度を断面減
少率で50%以上としてNb、 Mo等のマクロ偏析を
防止する。For this reason, the degree of hot working from the ingot to the product is set to 50% or more in area reduction rate to prevent macro segregation of Nb, Mo, etc.
2
3)熱処理
時効によるγ”−Ni 3 Nbの析出を有効に行わせ
るためには完全溶体化処理が必要であり、そのため本発
明にあっては時効に先だって1000℃〜1200℃、
好ましくは1050〜1150℃で10分間〜5.0時
間保持後空冷以上の冷却速度で冷却する。特に900℃
〜500℃の間は脆化相が析出し易いので10℃/分以
上の冷却速度で冷却して析出を抑制する。2 3) Complete solution treatment is necessary to effectively precipitate γ''-Ni 3 Nb by heat treatment. Therefore, in the present invention, prior to aging, heat treatment is performed at 1000°C to 1200°C,
Preferably, the temperature is maintained at 1050 to 1150°C for 10 minutes to 5.0 hours, and then cooled at a cooling rate higher than air cooling. Especially 900℃
Since the brittle phase is likely to precipitate between 500° C. and 500° C., precipitation is suppressed by cooling at a cooling rate of 10° C./min or more.
4)時効処理
本発明により得られる合金にあっては時効によりγ”−
Ni 3 Nbが粒内に均一に分散析出するため高強度
と良好な延性、靭性および耐食性が得られる。しかし、
時効温度が500°C未満、1.0時間未満では十分な
強度が得られず、一方、750℃を越える高温では過時
効となり、γ”−Ni 3 Nbの粗大化あるいはδ−
Ni3Nbの生成およびσ相等の金属間化合物の生成等
により強度、靭性が低下してしまう。時効時間は最大2
00時間で十分である。4) Aging treatment The alloy obtained by the present invention has a γ”-
Since Ni 3 Nb is uniformly dispersed and precipitated within the grains, high strength, good ductility, toughness, and corrosion resistance are obtained. but,
If the aging temperature is less than 500°C and less than 1.0 hours, sufficient strength will not be obtained, whereas if the aging temperature exceeds 750°C, over-aging will occur, resulting in coarsening of γ''-Ni 3 Nb or δ-
Strength and toughness deteriorate due to the formation of Ni3Nb and intermetallic compounds such as σ phase. The maximum statute of limitations is 2
00 hours is sufficient.
安定した強度、延性、靭性および耐食性を得るにはオー
ステナイト基地にγ”−Ni 3 Nbのみが微細にか
つ均一に分散析出することが望ましいが、このためには
600℃〜700℃での時効処理が好ましい。In order to obtain stable strength, ductility, toughness, and corrosion resistance, it is desirable that only γ”-Ni 3 Nb be finely and uniformly dispersed and precipitated in the austenite matrix, but for this purpose aging treatment at 600°C to 700°C is necessary. is preferred.
3
かくして、本発明方法によれば、機械的性質として、0
.2%耐力≧63k[rf / mm (好ましくは≧
77 kg f/、%)、伸び≧20%、絞り130%
および衝撃値≧5kgf−m /cJ (好ましくは≧
10kgf−m /cJ)を有し、かつ耐食性、つまり
、SCCおよび水素脆性に対する抵抗性が非常に優れた
製品を得ることが出来る。本発明による合金は、Ni
3 Nbの金属間化合物であるγ”相の析出強化により
、高い強度を得ることが出来るので、冷間加工等による
強化が出来ない油井管用バルブボディのような特殊形状
品であっても、良好な強度、靭性および耐食性を備えた
ものを製造することができる。3 Thus, according to the method of the present invention, the mechanical properties are 0.
.. 2% proof stress ≧63k [rf/mm (preferably ≧
77 kg f/,%), elongation ≧20%, aperture 130%
and impact value≧5kgf-m/cJ (preferably≧
10 kgf-m /cJ) and excellent corrosion resistance, that is, resistance to SCC and hydrogen embrittlement. The alloy according to the invention comprises Ni
3 High strength can be obtained by precipitation strengthening of the γ” phase, which is an intermetallic compound of Nb, so even products with special shapes such as oil country tubular valve bodies that cannot be strengthened by cold working etc. can be used in good condition. It is possible to manufacture products with excellent strength, toughness, and corrosion resistance.
次に、本発明を実施例にもとづいてさらに説明する。な
お、本明細書において特にことわりがない限り「%」は
「重量%」である。Next, the present invention will be further explained based on examples. In this specification, "%" means "% by weight" unless otherwise specified.
実施例
下掲の第1表に示す化学組成を有する各合金について、
同じく第2表に示す熱間加工条件、熱処理条件そして時
効処理条件で析出強化型ニッケル基合金を製造した。Examples For each alloy having the chemical composition shown in Table 1 below,
Precipitation-strengthened nickel-based alloys were produced under the same hot working conditions, heat treatment conditions, and aging treatment conditions shown in Table 2.
得られた合金の機械的性質および耐食性試験の結果を同
じく第2表にまとめて示す。The mechanical properties and corrosion resistance test results of the obtained alloy are also summarized in Table 2.
4
引張試験は直径3.5mm 、標点間距離20.0mm
の試験棒を使用して行った。衝撃値はシャルピー衝撃試
験によるものであって、5.0印m X 10mm X
55mmのサイズのものに2 、0mmのり一ノソチ
を付けた試験片を使用した。試験温度は0°Cであった
。4 Tensile test with a diameter of 3.5 mm and a gauge distance of 20.0 mm.
This was done using a test rod. The impact value is based on the Charpy impact test, and is 5.0 m x 10 mm x
A test piece with a size of 55 mm and a 2.0 mm glue strip was used. The test temperature was 0°C.
耐食性はSCCについては、25%NaC]−0,5%
CCH3C00H−15at l(2S5−1Oat
Co 2の溶液(pH=2 )を使用して、250°C
で行った。また、水素脆性については、NACE条件下
(5%NaC+−0,5%CH3C00H−1atm+
12S)で炭素鋼カップリングを使い、RO,25Uノ
ツチ付きの試験片を使い、25℃で行った。Corrosion resistance for SCC is 25% NaC] -0.5%
CCH3C00H-15at l (2S5-1Oat
250 °C using a solution of Co2 (pH = 2)
I went there. Regarding hydrogen embrittlement, under NACE conditions (5%NaC+-0,5%CH3C00H-1atm+
The test was carried out at 25°C using a carbon steel coupling (RO, 25U) and a notched test piece.
なお、第2表において、“0”は割れのなかった場合を
、X”は割れの発生した場合をそれぞれ示す。In Table 2, "0" indicates the case where there was no cracking, and "X" indicates the case where the cracking occurred.
比較例は、本発明方法において使用する合金の成分範囲
内ではあるが、熱間加工、熱処理、時効処理の各条件を
はずれたものをNo、29〜34に、また、処理条件は
範囲内であるが、合金成分のはずれたものを尚35〜4
4に示す。比較例にあっては、いずれも強度、延性、靭
性あるいは耐食性のうち1つまたは2つ以上が良好でな
い。Comparative examples are Nos. 29 to 34, which are within the composition range of the alloy used in the method of the present invention, but outside the hot working, heat treatment, and aging treatment conditions, and the processing conditions are within the range. However, those with different alloy components are still 35-4
4. In the comparative examples, one or more of strength, ductility, toughness, and corrosion resistance are not good.
No、45〜56はTiおよびAI添加系の従来の析出
強化型5
合金について本発明方法により得られた合金との比較を
するために示したものである。これらの従来合金では強
度的には良好なものも多いが耐食性がその性質上劣化し
ており、そのような耐食性を改善するためには強度を犠
牲にしなければならず、両者ともに良好なものは得られ
ない。Nos. 45 to 56 are shown for comparison with the conventional precipitation-strengthened type 5 alloys with addition of Ti and AI obtained by the method of the present invention. Many of these conventional alloys have good strength, but their corrosion resistance has deteriorated due to their nature, and in order to improve such corrosion resistance, strength must be sacrificed. I can't get it.
添伺図面は第1表および第2表のNos 、 1〜14
およびNos 、 29〜34の合金についての高温ね
じり試験の結果をグラフにまとめて示すものである。図
中、白丸は捻回値を、白玉角はそのときのトルクを表す
。試験温度が1200℃を越えると捻回値は著しく低下
しているのが分かる。これは、本発明の場合、Nbを比
較的多量に添加しているため、1200℃を越える高温
で加工されると粒界に低融点化合物が生成するためであ
る。The accompanying drawings are Nos. 1 to 14 in Tables 1 and 2.
The results of high-temperature torsion tests for alloys Nos. and Nos. 29-34 are summarized in a graph. In the figure, the white circle represents the twist value, and the white circle corner represents the torque at that time. It can be seen that when the test temperature exceeds 1200°C, the twist value decreases significantly. This is because in the case of the present invention, since a relatively large amount of Nb is added, low melting point compounds are generated at grain boundaries when processed at a high temperature exceeding 1200°C.
このようにして、本発明における如く合金の成分範囲な
らびに熱間加工、熱処理、時効処理の各条件を限定する
ことによって、耐食性の抜群に優れた高強度、高靭性材
料が得られる。In this way, by limiting the range of alloy components and the conditions of hot working, heat treatment, and aging treatment as in the present invention, a high-strength, high-toughness material with outstanding corrosion resistance can be obtained.
66
添付図面は、本発明方法により得られた合金の高温ねじ
り試験結果を示すグラフである。
I出願人 住友金属工業株式会社
代理人 弁理士 広 瀬 章 −
試験温度(’C)
3
手−系売ネli正書(自発)
昭和59年 1月12日
特許庁長官若杉和夫殿
1、事件の表示
昭和58年特許願第109422号
2、発明の名称
析出強化型ニッケル基合金の製造法
3、補正をする者
事件との関係 特許出願人
住所 大阪市東区北浜5丁目15番地
名称 (211)住友金属工業株式会社4、代理人
明細書の発明の詳細な説明のtltl16、補正の内容
別紙のとおり
補正の内容
明細書の下記の箇所の記載を次の通り訂正する。
X 行 玉上■■載 酊」裁9尤載
3 5〜6 N+3(Ti、 AI) Ni3(Ti、
A1)の を主体とする
6 Ni 3 Nhの Ni 3 Nbを主体とする
4 21〜22 さらにはA1 −削除−51およびA
I
2 つまりr°相
7 14 γ°相ではなく
14 5 sec 応力腐食割れ
水素脆性 水素割れ
15 6 3CC応力腐食割れ試験
8 水素脆性 水素割れ試験
20 第2表の
「耐食性」のWISCC耐応力腐食割れ水素脆性 耐水
素割れ
21 5CC耐応力腐食割れ
水素脆性 耐水素割れ
22 3CC耐応力腐食割れ
W J〒4>諸11昧nLu147) 置載22 第2
表の
「耐食性」の欄 水素脆性 耐水素割れ以上
309−The accompanying drawing is a graph showing the high temperature torsion test results of the alloy obtained by the method of the present invention. I Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - Test Temperature ('C) 3 Hand-based Sales Authorization (Spontaneous) January 12, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1, Case Indication of 1982 Patent Application No. 109422 2 Name of invention Method for producing precipitation-strengthened nickel-based alloy 3 Relationship to the case of the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Industries, Ltd. 4, Detailed Explanation of the Invention in the Agent's Specification, tltl 16, Contents of Amendment As shown in the appendix, the description in the following portion of the specification of the contents of the amendment is corrected as follows. X row Tamakami ■■ placement 酊” trial 9 尤 3 5-6 N+3 (Ti, AI) Ni3 (Ti,
A1) mainly composed of 6 Ni 3 Nh and 4 21 to 22 mainly composed of Ni 3 Nb, as well as A1 -Deletion-51 and A
I 2 That is, r° phase 7 14 Not γ° phase but 14 5 sec Stress corrosion cracking Hydrogen embrittlement Hydrogen cracking 15 6 3CC stress corrosion cracking test 8 Hydrogen embrittlement Hydrogen cracking test 20 WISCC stress corrosion cracking in "Corrosion resistance" in Table 2 Hydrogen embrittlement Hydrogen cracking resistance 21 5CC Stress corrosion cracking resistance Hydrogen embrittlement Hydrogen cracking resistance 22 3CC Stress corrosion cracking resistance W J〒4>Miscellaneous 11 nLu147) Placement 22 No. 2
"Corrosion resistance" column in the table Hydrogen embrittlement Hydrogen cracking resistance or higher 309-
Claims (1)
以下、Mn : 2.0%以下、 Ni : 45〜6
0%、Cr : 18〜27%、 Ti : 0.40
%以下、Mo : 2.5〜5.5%およびW:11%
以下の少なくとも1種(ただし、2.5%≦Mo+ !
4W≦5.5%)、 ^1 F 0.30%以下、 P :o、ots%以下
、Nb : 2.5〜5.0%およびTa : 2.0
%以下の少なくとも1種(ただし、2.5%≦Nb+%
Ta≦5.0%)、 S :0.0050%以下、N :o、o3o%以下残
部付随不純物およびFe からなる合金を1200〜800℃で断面減少率50%
以上の熱間加工を施した後、1000〜1200℃で1
0分から5時間保持後、空冷以上の冷却速度で冷却しく
ただし、900〜500℃の間は10℃/分以上の冷却
速度で冷却し)、次いで500〜750℃で1時間〜2
00時間時効処理を1回ないし2回以上施すことから成
る、硫化水素、二酸化炭素および塩素イオンの1種また
は2種以上含有する環境下で耐応力腐食割れ性および耐
水素割れ性に優れたγ”析出強化型ニッケル基合金を製
造する方法。 (2)前記合金が、さらに、Cu : 2.0%以下お
よび/またはCo:2.0%以下を含む、特許請求の範
囲第(1)項記載の方法。 (3)前記合金が、さらに、REM :o、to%以下
、Mg:0.10%以下、Ca : 0.10%以下お
よびY:0.20%以下の1種または2種以上を含む特
許請求の範囲第(1)項または第(2)項記載の方法。[Claims] (]) C40,050% or less, St: 0.50%
Below, Mn: 2.0% or less, Ni: 45-6
0%, Cr: 18-27%, Ti: 0.40
% or less, Mo: 2.5-5.5% and W: 11%
At least one of the following (however, 2.5%≦Mo+!
4W≦5.5%), ^1 F 0.30% or less, P: o, ots% or less, Nb: 2.5-5.0% and Ta: 2.0
% or less (however, 2.5%≦Nb+%
Ta≦5.0%), S: 0.0050% or less, N: o, o3o% or less, the balance is incidental impurities and Fe.
After the above hot working, 1 at 1000~1200℃
After holding for 0 minutes to 5 hours, cool at a cooling rate higher than air cooling (however, between 900 and 500°C, cool at a cooling rate of 10°C/min or higher), then at 500 to 750°C for 1 hour to 2 hours.
γ that has excellent stress corrosion cracking resistance and hydrogen cracking resistance in an environment containing one or more of hydrogen sulfide, carbon dioxide, and chloride ions, which is obtained by performing aging treatment for 00 hours once or twice or more. ``A method for producing a precipitation-strengthened nickel-based alloy.'' (2) Claim (1), wherein the alloy further contains Cu: 2.0% or less and/or Co: 2.0% or less. The method described. (3) The alloy further comprises one or two of REM: o, to% or less, Mg: 0.10% or less, Ca: 0.10% or less, and Y: 0.20% or less. A method according to claim (1) or (2) comprising the above.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10942283A JPS602653A (en) | 1983-06-20 | 1983-06-20 | Production of precipitation hardening type nickel-base alloy |
US06/622,288 US4652315A (en) | 1983-06-20 | 1984-06-19 | Precipitation-hardening nickel-base alloy and method of producing same |
EP84304165A EP0132055B1 (en) | 1983-06-20 | 1984-06-20 | Precipitation-hardening nickel-base alloy and method of producing same |
DE8484304165T DE3461106D1 (en) | 1983-06-20 | 1984-06-20 | Precipitation-hardening nickel-base alloy and method of producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10942283A JPS602653A (en) | 1983-06-20 | 1983-06-20 | Production of precipitation hardening type nickel-base alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS602653A true JPS602653A (en) | 1985-01-08 |
JPS631387B2 JPS631387B2 (en) | 1988-01-12 |
Family
ID=14509834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10942283A Granted JPS602653A (en) | 1983-06-20 | 1983-06-20 | Production of precipitation hardening type nickel-base alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602653A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119641A (en) * | 1984-11-16 | 1986-06-06 | Sumitomo Metal Ind Ltd | Highly corrosion resistant Ni-based alloy and its manufacturing method |
JPS61288041A (en) * | 1985-06-14 | 1986-12-18 | Babcock Hitachi Kk | Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance |
JPS62174343A (en) * | 1985-10-01 | 1987-07-31 | Nippon Kokan Kk <Nkk> | Alloy for environment containing sulfur |
JPS63145740A (en) * | 1986-05-27 | 1988-06-17 | シーアールエス ホールディングス,インコーポレイテッド | Corrosion resistant ageing cured nickel base alloy |
JPH0594811U (en) * | 1992-11-07 | 1993-12-24 | キヤノン株式会社 | Lens barrel with built-in printed circuit board |
JP2002268354A (en) * | 2001-03-09 | 2002-09-18 | Ricoh Co Ltd | Toner-replenishing device |
-
1983
- 1983-06-20 JP JP10942283A patent/JPS602653A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119641A (en) * | 1984-11-16 | 1986-06-06 | Sumitomo Metal Ind Ltd | Highly corrosion resistant Ni-based alloy and its manufacturing method |
JPS61288041A (en) * | 1985-06-14 | 1986-12-18 | Babcock Hitachi Kk | Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance |
JPS62174343A (en) * | 1985-10-01 | 1987-07-31 | Nippon Kokan Kk <Nkk> | Alloy for environment containing sulfur |
JPS63145740A (en) * | 1986-05-27 | 1988-06-17 | シーアールエス ホールディングス,インコーポレイテッド | Corrosion resistant ageing cured nickel base alloy |
JPH0594811U (en) * | 1992-11-07 | 1993-12-24 | キヤノン株式会社 | Lens barrel with built-in printed circuit board |
JP2565557Y2 (en) * | 1992-11-07 | 1998-03-18 | キヤノン株式会社 | Lens barrel |
JP2002268354A (en) * | 2001-03-09 | 2002-09-18 | Ricoh Co Ltd | Toner-replenishing device |
Also Published As
Publication number | Publication date |
---|---|
JPS631387B2 (en) | 1988-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6336367B2 (en) | Ultra-high strength alloy for harsh oil and gas environments and manufacturing method | |
US4652315A (en) | Precipitation-hardening nickel-base alloy and method of producing same | |
US4295769A (en) | Copper and nitrogen containing austenitic stainless steel and fastener | |
CN100465325C (en) | Duplex Steel Alloy | |
WO2016032604A2 (en) | Nickel-chromium-iron-molybdenum corrosion resistant alloy and article of manufacture and method of manufacturing thereof | |
JPS61130462A (en) | High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above | |
GB2084187A (en) | Ferritic stainless steel | |
JP3308090B2 (en) | Fe-based super heat-resistant alloy | |
JPS602653A (en) | Production of precipitation hardening type nickel-base alloy | |
JPH0114992B2 (en) | ||
US3574002A (en) | Stainless steel having improved corrosion and fatigue resistance | |
JPS61119641A (en) | Highly corrosion resistant Ni-based alloy and its manufacturing method | |
JPH0499128A (en) | Manufacturing method of martensitic stainless steel line pipe | |
US4657606A (en) | High chromium duplex stainless steel | |
JPS6164815A (en) | Manufacturing method for high-strength steel with excellent delayed fracture resistance | |
JP3848463B2 (en) | High strength austenitic heat resistant steel with excellent weldability and method for producing the same | |
JP3198807B2 (en) | Age-hardened nickel-base alloy material excellent in strength and corrosion resistance and method for producing the same | |
JPS60131958A (en) | Production method of precipitation-strengthened Ni-base alloy | |
JPH09272956A (en) | Seawater resistant precipitation hardening type high alloy steel and its production | |
US5116570A (en) | Stainless maraging steel having high strength, high toughness and high corrosion resistance and it's manufacturing process | |
JPS61223155A (en) | High corrosion resistance Ni-based alloy and its manufacturing method | |
JPH0387332A (en) | High strength-low alloy-heat resistant steel | |
JPS589962A (en) | High-strength stainless steel with superior intergranular corrosion cracking resistance and workability | |
JPS6046353A (en) | Heat resistant steel | |
JPS61130461A (en) | Nitrogen-containing stainless steel of two phase system having superior hot workability |