JPS60254621A - Thin film forming method - Google Patents
Thin film forming methodInfo
- Publication number
- JPS60254621A JPS60254621A JP11111684A JP11111684A JPS60254621A JP S60254621 A JPS60254621 A JP S60254621A JP 11111684 A JP11111684 A JP 11111684A JP 11111684 A JP11111684 A JP 11111684A JP S60254621 A JPS60254621 A JP S60254621A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- plasma
- semiconductor substrate
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000010409 thin film Substances 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000001257 hydrogen Substances 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 abstract description 12
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 7
- 239000007789 gas Substances 0.000 abstract description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
−本発明は化合物半導体基板上への薄膜形成方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application - The present invention relates to a method of forming a thin film on a compound semiconductor substrate.
従来例の構成とその問題点
化合物半導体と絶縁膜の界面特性は、SiとS i02
の界面に比して界面準位密度が多く、特にG a A
sでは、反転層の形成が困難であった。このように界面
準位密度が多いのは、構成元素の損失によるダングリン
グボンドに起因している。The structure of the conventional example and its problems The interface characteristics between the compound semiconductor and the insulating film are Si and Si02
The interface state density is higher than that of the interface of G a A
With s, it was difficult to form an inversion layer. This high density of interface states is due to dangling bonds due to loss of constituent elements.
発明の目的
本発明は、このような従来の問題に鑑み、化合物半導体
基板上への界面準位密度の少ない薄膜形成方法を提供す
るものである。OBJECTS OF THE INVENTION In view of these conventional problems, the present invention provides a method for forming a thin film with a low density of interface states on a compound semiconductor substrate.
発明の構成
本発明は、水素プラズマ中で化合物半導体基板を200
℃〜460℃の温度で、処理した後、薄膜を形成するこ
とによシ界面準位密度の少ない薄膜形成方法を可能とす
るものである。Structure of the Invention The present invention provides a method for heating a compound semiconductor substrate in a hydrogen plasma for 200 minutes.
By forming a thin film after processing at a temperature of .degree. C. to 460.degree. C., a method of forming a thin film with a low density of interface states can be achieved.
実施例の説明
以下、n型G a A a基板上へのSi3N4膜形成
方法を例にとって説明する。DESCRIPTION OF EMBODIMENTS A method for forming a Si3N4 film on an n-type GaAa substrate will be described below as an example.
第1図に示すように、プラズマCVD装置1中に、試料
となるn型G a A s基板2を設置し、真空排気後
、H2ガスを導入しく約0.05 Torr )、基板
2を約350℃でヒーター3にて加熱しながら高周波(
13,56矧h)電源4(パワー60W)を印加してH
2プラズマを発生させ、約2時間放置後、ひき続いてS
iHとNH3ガスを導入し、基板2上にSi3N4膜を
堆積させるものである。5,6はガスの導入部、排気部
である。As shown in FIG. 1, an n-type GaAs substrate 2 as a sample is placed in a plasma CVD apparatus 1, and after evacuation, H2 gas is introduced (approximately 0.05 Torr), and the substrate 2 is heated to approx. While heating with heater 3 at 350℃, high frequency (
13,56 h) Apply power supply 4 (power 60W) to H
2 Plasma is generated, left for about 2 hours, and then S
A Si3N4 film is deposited on the substrate 2 by introducing iH and NH3 gases. Reference numerals 5 and 6 are a gas introduction section and an exhaust section.
第2図はこうして得られたSi3N4膜とn型G a
A sとの界面準位密度を、H2プラズマ処理をした試
料としなかった試料について比較したもの9である。Figure 2 shows the Si3N4 film obtained in this way and the n-type Ga
Figure 9 compares the interface state density with As between a sample subjected to H2 plasma treatment and a sample not treated with H2 plasma.
界面準位密度は、2ケタも減少していることがわかる。It can be seen that the interface state density has decreased by two orders of magnitude.
これはH原子の拡散によりダングリングボンドの数が減
少したためである。This is because the number of dangling bonds decreased due to the diffusion of H atoms.
なおH2プラズマ処理中の基板加熱温度としては、20
0℃〜460℃が良い。第3図は、n型G a A g
とSi3N4膜の最小界面準位密度と基板加熱温度との
関係を示しだものである。なおH2プラズマは0.05
Torrパワー50W、2時間である。The substrate heating temperature during H2 plasma processing is 20
0°C to 460°C is good. Figure 3 shows n-type G a A g
This figure shows the relationship between the minimum interface state density of the Si3N4 film and the substrate heating temperature. Note that H2 plasma is 0.05
Torr power 50W, 2 hours.
最小界面準位密度は200℃より低い温度域と460℃
より高い温度域で大きくなっている。この原因として、
低温域ではH2プラズマのダメージが残っているためで
、高温域では、GaAs中のAsの解離のためである。The minimum interface state density is in the temperature range lower than 200℃ and 460℃
It becomes larger in the higher temperature range. The cause of this is
In the low temperature range, this is because damage from the H2 plasma remains, and in the high temperature range, this is due to the dissociation of As in GaAs.
同様な傾向は1nPとSi3N4膜の界面についても見
られた基板加熱温度としては、200℃〜450℃が良
い0第4図は、n型InPとプラズマCV D ’S
L 3N4膜との界面特性について、本発明のプラズマ
H2処理(基板加熱温度300℃、 0.05Torr
、パワー50W、2時間)をしたものとしていないもの
を比較したものである。この場合も界面準位密度は2ク
タはど減少していることがわかる。なお、馬プラズマ中
ではなくH2ガス雰囲気中放置の試料については、以上
のような効果は見られなかった。A similar tendency was observed for the interface between 1nP and Si3N4 films.As for the substrate heating temperature, 200°C to 450°C is good.0 Figure 4 shows the interface between n-type InP and plasma CVD'S.
Regarding the interface characteristics with the L3N4 film, the plasma H2 treatment of the present invention (substrate heating temperature 300°C, 0.05 Torr
, power 50W, 2 hours) and without. It can be seen that in this case as well, the interface state density decreases by two factors. Note that the above effect was not observed for the sample that was left in an H2 gas atmosphere instead of in horse plasma.
以上のように本発明の方法を用いれば、従来に比して、
界面準位密度を顕著に減少させることが可能である。な
お以上の説明では、絶縁膜形成について述べたが、金属
膜形成に関しても利用できることはいうまでもない。As described above, if the method of the present invention is used, compared to the conventional method,
It is possible to significantly reduce the interface state density. In the above description, the formation of an insulating film has been described, but it goes without saying that the invention can also be used for forming a metal film.
発明の効果
以上のように本発明は、化合物半導体基板を、H2プラ
ズマ中で、2oO℃〜450℃の温度で処理した後、薄
膜を形成することにより、従来より界面準位密度の少な
い良好な界面特性を持った薄膜形成方法を実現するもの
である。Effects of the Invention As described above, the present invention processes a compound semiconductor substrate in H2 plasma at a temperature of 200°C to 450°C, and then forms a thin film, thereby producing a compound semiconductor substrate with a lower density of interface states than before. This method realizes a method for forming a thin film with interfacial properties.
第1図はプラズマCVD装置の概略図、第2図。
第4図はそれぞれn −GaAa 、 n −I nP
とSi3N4膜の界面準位密度分布を示す図、第3図は
、n −G a A sとSi3N4膜の最小界面準位
密度と基板加熱温度の関係を示す図である。
1・・・・・・CVD装置、2・・・・・・n型G a
A s基板。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図FIG. 1 is a schematic diagram of a plasma CVD apparatus, and FIG. 2 is a schematic diagram of a plasma CVD apparatus. Figure 4 shows n-GaAa and n-I nP, respectively.
FIG. 3 is a diagram showing the relationship between the minimum interface state density and substrate heating temperature of n-GaAs and Si3N4 films. 1...CVD equipment, 2...n-type Ga
A s board. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2
Claims (1)
℃の温度で加熱して処理した後、前記半導体基板表面に
薄膜を形成することを特徴とする薄膜形成方法。Compound semiconductor substrate in hydrogen plasma at 200°C to 450°C
A method for forming a thin film, comprising forming a thin film on the surface of the semiconductor substrate after heating and processing at a temperature of °C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11111684A JPS60254621A (en) | 1984-05-31 | 1984-05-31 | Thin film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11111684A JPS60254621A (en) | 1984-05-31 | 1984-05-31 | Thin film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60254621A true JPS60254621A (en) | 1985-12-16 |
Family
ID=14552819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11111684A Pending JPS60254621A (en) | 1984-05-31 | 1984-05-31 | Thin film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60254621A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0321023A (en) * | 1989-05-31 | 1991-01-29 | Mitel Corp | Manufacture including formation of spin-on-glass film and product manufactured through said manufacture |
WO2002043115A3 (en) * | 2000-11-24 | 2002-08-22 | Asm Inc | Surface preparation prior to deposition |
US6960537B2 (en) | 2001-10-02 | 2005-11-01 | Asm America, Inc. | Incorporation of nitrogen into high k dielectric film |
US8557702B2 (en) | 2009-02-02 | 2013-10-15 | Asm America, Inc. | Plasma-enhanced atomic layers deposition of conductive material over dielectric layers |
-
1984
- 1984-05-31 JP JP11111684A patent/JPS60254621A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0321023A (en) * | 1989-05-31 | 1991-01-29 | Mitel Corp | Manufacture including formation of spin-on-glass film and product manufactured through said manufacture |
WO2002043115A3 (en) * | 2000-11-24 | 2002-08-22 | Asm Inc | Surface preparation prior to deposition |
US6613695B2 (en) | 2000-11-24 | 2003-09-02 | Asm America, Inc. | Surface preparation prior to deposition |
US6958277B2 (en) | 2000-11-24 | 2005-10-25 | Asm America, Inc. | Surface preparation prior to deposition |
US7056835B2 (en) | 2000-11-24 | 2006-06-06 | Asm America, Inc. | Surface preparation prior to deposition |
US7476627B2 (en) | 2000-11-24 | 2009-01-13 | Asm America, Inc. | Surface preparation prior to deposition |
US6960537B2 (en) | 2001-10-02 | 2005-11-01 | Asm America, Inc. | Incorporation of nitrogen into high k dielectric film |
US7405453B2 (en) | 2001-10-02 | 2008-07-29 | Asm America, Inc. | Incorporation of nitrogen into high k dielectric film |
US7569284B2 (en) | 2001-10-02 | 2009-08-04 | Asm America, Inc. | Incorporation of nitrogen into high k dielectric film |
US8557702B2 (en) | 2009-02-02 | 2013-10-15 | Asm America, Inc. | Plasma-enhanced atomic layers deposition of conductive material over dielectric layers |
US9466574B2 (en) | 2009-02-02 | 2016-10-11 | Asm America, Inc. | Plasma-enhanced atomic layer deposition of conductive material over dielectric layers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4813737B2 (en) | Ultra-thin oxynitride UV pretreatment method for forming silicon nitride films | |
KR900007686B1 (en) | Vapor deposition method for simultaneously growing an epitaxial silicon layer and a polycrystalline silicon layer on a selectively oxidized silicon substrate | |
US6255149B1 (en) | Process for restricting interdiffusion in a semiconductor device with composite Si/SiGe gate | |
JP2770544B2 (en) | Method of manufacturing MIS type semiconductor device | |
US5045346A (en) | Method of depositing fluorinated silicon nitride | |
JPS60254621A (en) | Thin film forming method | |
JPH04146619A (en) | Thin film growth method | |
JPS617622A (en) | Manufacturing method of semiconductor device | |
JP2004103688A (en) | Method for forming insulating film and gate insulating film | |
JPS59215728A (en) | Optical cleaning method of surface of semiconductor | |
JPH0629222A (en) | Manufacture of semiconductor device | |
JP2987926B2 (en) | Vapor growth method | |
JPS6380525A (en) | Formation of coat | |
JPH05251439A (en) | Forming method for insulating film of semiconductor device | |
JP2917900B2 (en) | Method for surface treatment of III-V compound semiconductor substrate | |
JP2004152863A (en) | Semiconductor device and its manufacturing method | |
JPS6140770Y2 (en) | ||
JPS6341014A (en) | Epitaxial growth method | |
JP2853226B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH1197439A (en) | Semiconductor device and manufacture thereof | |
JPS6294942A (en) | Manufacture of thin film | |
US20050227454A1 (en) | Method for manufacturing silicon-on-insulator wafer | |
JPS6234139B2 (en) | ||
JP2829102B2 (en) | Method for manufacturing semiconductor device | |
JPH08325100A (en) | Pretreatment of compound semiconductor substrate |