JPS60251180A - Method of bonding ceramic member and metal member - Google Patents
Method of bonding ceramic member and metal memberInfo
- Publication number
- JPS60251180A JPS60251180A JP10372984A JP10372984A JPS60251180A JP S60251180 A JPS60251180 A JP S60251180A JP 10372984 A JP10372984 A JP 10372984A JP 10372984 A JP10372984 A JP 10372984A JP S60251180 A JPS60251180 A JP S60251180A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- ceramic
- joint
- joining
- ceramic member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 79
- 239000002184 metal Substances 0.000 title claims description 79
- 239000000919 ceramic Substances 0.000 title claims description 70
- 238000000034 method Methods 0.000 title claims description 29
- 239000000463 material Substances 0.000 claims description 30
- 238000005304 joining Methods 0.000 claims description 29
- 238000003466 welding Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 10
- 229910000833 kovar Inorganic materials 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 6
- 229910000975 Carbon steel Inorganic materials 0.000 description 5
- 239000010962 carbon steel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000004859 Copal Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 241000782205 Guibourtia conjugata Species 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- -1 810 rotating body Substances 0.000 description 1
- 241000016649 Copaifera officinalis Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 229910017309 Mo—Mn Inorganic materials 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 241000375392 Tana Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔本発明の技術分野〕
本発明は、セラミック部材と金属部材との接合方法に関
する。特に、本発明は、ターボチャージャ・ガスタービ
ン、掘削ドリル等に用いられるセラミック製回転体と金
属製シャフトとの接合に好適なセラミック部材と金属部
材との接合方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of joining a ceramic member and a metal member. In particular, the present invention relates to a method of joining a ceramic member and a metal member, which is suitable for joining a ceramic rotating body and a metal shaft used in a turbocharger gas turbine, an excavation drill, etc.
ターボチャージャ、ガスタービン、ドリル等に用いられ
る回転体は高温、高速回転(ターボチャージャ、ガスタ
ービン等)、摩耗回転(ドリル等)といった過酷な使用
条件にさらされるため、従来は旧 基耐熱合金(ターボ
チャージャ、ガスタービン等)や工具鋼(ドリル等)々
どが使用されてきた。Rotating bodies used in turbochargers, gas turbines, drills, etc. are exposed to harsh operating conditions such as high temperatures, high speed rotation (turbochargers, gas turbines, etc.), and rotational wear (drills, etc.). Turbochargers, gas turbines, etc.) and tool steels (drills, etc.) have been used.
しかし、最近、Sl、N、、 810 等の高強度のセ
ラミックが開発され、耐熱性、耐摩耗性等の向上による
高性能化や寿命の延長を狙って、上記回転体に使用する
動きが活発になって来た。一方、回転体に接続されるシ
ャフトは回転時に繰返しの曲げ応力が働くために脆性材
料であるセラミックは使用できず、炭素鋼等の金属材料
が使用されるが、その結果、セラミック製の回転体と金
属製のシャフトを強固に接合する必要が生じてきた。However, recently, high-strength ceramics such as Sl, N, and 810 have been developed, and there is a growing movement to use them in the above-mentioned rotating bodies with the aim of improving performance and extending life by improving heat resistance, wear resistance, etc. It has become. On the other hand, the shaft that is connected to the rotating body cannot be made of ceramic, which is a brittle material because of the repeated bending stress that occurs during rotation, and metal materials such as carbon steel are used. It has become necessary to firmly join the metal shaft to the metal shaft.
しかし、従来から電気部品等に用いられてきたセラミッ
クと金属の接合法であるMo−Mnメタ2イジン2+ム
fろう付(セラミック表面にMo、Mn粉末をメタライ
ジングしたあと、金属とムt ろう付する方法)や接着
剤、焼きばめ等の方法は使用条件が過酷な場合採用でき
ず、さらに高強度、高信頼性を有する接合法の開発が必
要である。However, Mo-Mn metal brazing is a method of joining ceramics and metals that has traditionally been used for electrical parts, etc. (after metallizing Mo and Mn powders on the ceramic surface, metal and metal brazing) Methods such as bonding, adhesives, and shrink fitting cannot be used under severe usage conditions, and it is necessary to develop a bonding method that has even higher strength and reliability.
そこで、本発明者等は、セラミックと金属との接合方法
に関し、特にセラミックの割れを防止して強固に接合す
る手段として、インサート材を用いる方法を、すでに提
案している。In view of this, the present inventors have already proposed a method of using an insert material as a means for firmly joining ceramics and preventing cracks in the ceramics, particularly as a method for joining ceramics and metals.
すなわち、インサート材として、N1 と金属酸化物、
窒化物又は炭化物、もしくはOu と金属酸化物、窒化
物又は炭化物を使用するもの(特願昭58−23798
6号参照)、ないしは、0ulO,NIO,510g
、 Fed、ム10.ム14O3、MoO、710B
。That is, as insert materials, N1 and metal oxide,
Nitride or carbide, or one using O and metal oxide, nitride or carbide (Patent application No. 58-23798)
(see No. 6), or 0ulO, NIO, 510g
, Fed, Mu10. Mo14O3, MoO, 710B
.
ZnO,Aug、 0r20B、 Coo、 Zr01
. Tag、 WOI、 NbO。ZnO, Aug, 0r20B, Coo, Zr01
.. Tag, WOI, NbO.
MyO,Cab、 y、o、のいずれか1つと、Cu、
Ml。Any one of MyO, Cab, y, o, and Cu,
Ml.
8鳳、Fe、ム2.ムt、 MO,TI、 Zn、 A
u、 Or、 Co、 Zr。8 Otori, Fe, Mu2. Mut, MO, TI, Zn, A
u, Or, Co, Zr.
Ta、 W、 Wb、 Mtのいずれか1つを混合した
複合インサートを使用するもの(特願昭58−2588
18号参照)である。そして、このよう々インサート材
をセラミック接合面にイオンブレーティング又は溶射て
密着固定した後、加熱反応促進処理して金属と強固に冶
金的接合させるものである。Those using a composite insert containing any one of Ta, W, Wb, and Mt (Japanese Patent Application No. 58-2588)
(See No. 18). Then, after the insert material is closely fixed to the ceramic bonding surface by ion blasting or thermal spraying, it is subjected to heating reaction acceleration treatment to form a strong metallurgical bond with the metal.
本発明者等は、セラミックと金属との接合、特にセラミ
ック製回転体と金属製シャフトとの接合に関し、よシ一
層の研究を重ねた結果、本発明を完成したものである。The present inventors have completed the present invention as a result of extensive research into the bonding of ceramics and metals, particularly the bonding between ceramic rotary bodies and metal shafts.
すなわち、本発明は、セラミック部材と金属部材とのよ
シ強固な接合手段を提供することを特徴とする特に本発
明は、セラミック製の回転体と金属製のシャフトを接合
するにあたシ、過酷な回転に耐える様な高強度、高信頼
性を有するセラミック部材と金属部材との接合方法を提
供することを目的とする。That is, the present invention is characterized by providing a means for strongly joining a ceramic member and a metal member. In particular, the present invention provides a means for joining a ceramic rotating body and a metal shaft. The object of the present invention is to provide a method for joining a ceramic member and a metal member that has high strength and high reliability and can withstand severe rotation.
そして、本発明は、上記目的を達成する手段として、セ
ラミック部材の継手部を、先端部を球面状とした円柱体
形状とし、これに金属製パイプを嵌入させ接合するよう
に構成した点にある。すなわち、本発明は、セラミック
部材と金属部材とを接合する方法に於いて、セラミック
部材の継手部を円柱状とし、かつ、その先端部を球面状
とし、これに若干内径を大きくシ、端部を閉じた金属製
パイプを嵌入し、これを容器内に圧力媒体粉末と共に封
入し、オートクレーブ中で加熱、加圧して拡散溶接し、
次いで、該パイプと金属部材とを溶接することを特徴と
するセラミック部材と金属部材との接合方法である。As a means for achieving the above object, the present invention is configured such that the joint portion of the ceramic member is formed into a cylindrical shape with a spherical tip, and a metal pipe is fitted into the joint portion and joined to the joint portion. . That is, the present invention provides a method for joining a ceramic member and a metal member, in which the joint portion of the ceramic member is made into a cylindrical shape, the tip portion is made into a spherical shape, and the inner diameter is made slightly larger, and the end portion is made into a cylindrical shape. A closed metal pipe is inserted into the container, this is sealed together with pressure medium powder in an autoclave, and diffusion welding is performed by heating and pressurizing the pipe.
This method of joining a ceramic member and a metal member is characterized in that the pipe and the metal member are then welded.
そして、上記のようにセラミック部材と金属部材とを接
合するに際に、セラミック部材の継手□部材又は金属製
パイプの内面に、
■ IJl と金属酸化物、窒化物又は炭化物、もしく
はOu と金属酸化物、窒化物又は炭化物、■ 0u2
0. NIo、 8101. Fed、 Aye、 A
14OB、 MOO。When joining a ceramic member and a metal member as described above, ■ IJl and metal oxide, nitride or carbide, or O and metal oxide are added to the inner surface of the joint □ member of the ceramic member or the metal pipe. substance, nitride or carbide, ■ 0u2
0. NIo, 8101. Fed, Aye, A
14OB, MOO.
Tl0I、 ZnO,、AuO,0rlO1,Cab、
Zr01. Tag。Tl0I, ZnO,, AuO, 0rlO1, Cab,
Zr01. Tag.
WO2、NbO、MyO、OaO、%OBのいずれか1
つと、Ou、Ml、81.Fs、Q、ムt、Mo、TI
、zn、Au。Any one of WO2, NbO, MyO, OaO, %OB
Tsuto, Ou, Ml, 81. Fs, Q, Mut, Mo, TI
, zn, Au.
cr、 Co、 Zr、 Ta、 ’w、 N’b、
Myのいずれか1つを混合したもの
■ Ml、 Ou、 Cr
をインサート材としてコーティングすることを好ましい
実施態様とするものである。cr, Co, Zr, Ta, 'w, N'b,
A preferred embodiment is to coat a mixture of any one of My, Ml, Ou, and Cr as an insert material.
以下、本発明をセラミック製回転体と金属製シャフトと
の接合を例としてあげ、第1〜4図に基づいて詳細に説
明するが、本発明はこれのみに限定されるものではなく
、セラミック製回転体以外にセラミック製静止構造体を
金属部材に接合する場合も当然のことながら本発明に包
含されるものである。Hereinafter, the present invention will be explained in detail based on FIGS. 1 to 4, taking as an example the joining of a ceramic rotating body and a metal shaft. However, the present invention is not limited to this, and Naturally, the present invention also includes the case where a ceramic stationary structure other than a rotating body is bonded to a metal member.
第1図は本発明の実施例であるセラミック製回転体と金
属製パイプとを接合するだめの工程図を示し、第2図は
同接合時の加圧工程を示す図であり、第3図は金属製パ
イプに金属製シャフトを接合する際の該パイプ端面加工
工程を示し、第4図は同パイプと金属製シャフトとを接
合する工程を示す図である。FIG. 1 shows a process diagram for joining a ceramic rotating body and a metal pipe according to an embodiment of the present invention, FIG. 2 shows a pressurizing process during the same joining, and FIG. FIG. 4 shows the process of working the end face of a metal pipe when joining the metal shaft to the metal pipe, and FIG. 4 is a diagram showing the process of joining the pipe and the metal shaft.
1は81zM4 、810. ZrO2、ム140s
等のセラミック製回転体、2はコバール(?e−Nl−
○O合金)、炭素鋼、ステンレス鋼、 N1 合金等の
一方の端部が閉じた金属製パイプ、5はセラミック回転
体の継手部に移行するR部、4は継手部となるセラミッ
ク円柱部、5は継手部となるセラミック円柱部先端に設
けた球面部、7はステンレス鋼、炭素鋼等の容器、8は
継手部に3次元の加圧力を伝達するZrO2等をはじめ
とするセラミック粉あるいは石膏等の圧力媒体である。1 is 81zM4, 810. ZrO2, Mu140s
etc., 2 is Kovar (?e-Nl-
○ O alloy), carbon steel, stainless steel, N1 alloy, etc., a metal pipe with one end closed, 5 is the R part that transitions to the joint part of the ceramic rotating body, 4 is the ceramic cylindrical part that becomes the joint part, 5 is a spherical part provided at the tip of a ceramic cylinder that will become a joint, 7 is a container made of stainless steel, carbon steel, etc., and 8 is a ceramic powder such as ZrO2 or plaster that transmits three-dimensional pressing force to the joint. It is a pressure medium such as
なお6は、容器内外の気密を確保するだめの溶接を示す
。Note that 6 indicates welding to ensure airtightness inside and outside the container.
本発明では、まず、第1図の如く、セラミック製回転体
1と金属製パイプ2を相対させ、その両者をがん合させ
る。その際、円柱部4及び球面部50部分又はバイブ2
の内面に、前述した複合インサートないしはインサート
材がコーティングされているものである。In the present invention, first, as shown in FIG. 1, a ceramic rotating body 1 and a metal pipe 2 are made to face each other, and the two are pressed together. At that time, the cylindrical part 4 and the spherical part 50 part or the vibrator 2
The inner surface of the insert is coated with the above-described composite insert or insert material.
又、セラきツク製回転体1の継手部となる円柱部4と金
属製パイプ2との間隙Xは[LD 1m〜α2mを採用
する(α01−以下ではかん合挿入が困難であシ、a2
1w以上では後述する3次元加圧拡散溶接で圧力媒体5
の粉末が接合面に侵入しゃすくな夛、接合を阻害するた
めである)
次いで、このようにがん合された円柱部4とバイープ2
とを、第2図に示すように1金属製容器7の中央部にセ
ットする。そして、その周囲を圧力媒体8の粉末を圧密
して詰めたあと、容器7の上端にふたをし、溶接6で内
部を密閉する。In addition, the gap X between the cylindrical part 4, which is the joint part of the rotating body 1 made of Serakitsu, and the metal pipe 2 is [LD] 1m to α2m (if it is less than α01, it is difficult to insert the mating,
For 1W or more, the pressure medium 5 is
This is to prevent the powder from entering the bonding surface and inhibiting the bonding.) Next, the cylindrical portion 4 and the bip 2 which are tightly bonded in this way are
and are set in the center of a metal container 7 as shown in FIG. After compressing and packing the powder of the pressure medium 8 around it, the upper end of the container 7 is covered and the inside is sealed by welding 6.
このあと、オートクレーブ中で、これを加熱加圧し、前
記セラミック円柱部4と金属製パイプ2を接合する。そ
の際施工条件は加熱温度500℃以上1400℃以下、
加圧力α1 kg / w ”以上20kg/■3以下
、時間は5分以上5時間以下とする。それぞれの数値の
下限以下の条件ではセラミックの回転体1と金属製パイ
プ2の反応性が低いため、接合欠陥が生じ易く、上限以
上ではコスト高となることと、接合性向上にもはや寄与
するところがないためである。また加圧力が低いと金属
製パイプ2とセラミック円柱部4の接触、密着も生じな
い。Thereafter, this is heated and pressurized in an autoclave to join the ceramic cylindrical portion 4 and the metal pipe 2. At that time, the construction conditions are heating temperature of 500℃ or more and 1400℃ or less,
The pressure should be α1 kg/w” or more and 20 kg/■3 or less, and the time should be 5 minutes or more and 5 hours or less. Under conditions below the lower limits of each value, the reactivity of the ceramic rotating body 1 and the metal pipe 2 is low. This is because bonding defects are likely to occur, and if it exceeds the upper limit, the cost will increase, and there will be no contribution to improving bonding performance.In addition, if the pressurizing force is low, the contact and adhesion between the metal pipe 2 and the ceramic cylindrical portion 4 will be poor. Does not occur.
このオートクレーブ中の加熱処理で、第3図に示すよう
に、金属製パイプ2はセラミック円柱体4及びその先端
に設けた球面部5と強固に接合され、次いで金属製パイ
プ2の端面をセラミック円柱部4の径と同一径に加工さ
れる。Through this heat treatment in the autoclave, the metal pipe 2 is firmly joined to the ceramic cylinder 4 and the spherical part 5 provided at its tip, as shown in FIG. It is machined to have the same diameter as the portion 4.
このあと、第4図に示す如く、炭素鋼、ステンレス鋼、
)Jt 合金等の金属製シャフト10と金属製バイブ
2とを電子ビーム溶接、レーザ溶接、 TIG溶接等で
溶接部11を形成し、接合、組立を完了する。After this, as shown in Figure 4, carbon steel, stainless steel,
) A welded portion 11 is formed between the metal shaft 10 made of Jt alloy or the like and the metal vibrator 2 by electron beam welding, laser welding, TIG welding, etc., and the joining and assembly are completed.
なお、継手部には前記したインサート材を用いるのを原
則とするが、稼動条件が比較的緩やかな場合は、)il
、 Ou、 C!r などを蒸着、メッキなどの手法に
よシコーティングしておいても良く、インサート材なし
で直接接合も可能である。In principle, the above-mentioned insert material is used for the joint, but if the operating conditions are relatively gentle,
, Ou, C! It is also possible to coat the substrate with a material such as r by vapor deposition, plating, or the like, and direct bonding is also possible without using an insert material.
又、第2図では金属製容器に1個の部材が挿114−J
−1411小も=1イ1へフ」? \V社μ−々ム個の
挿入を行っても良いことは言うまでもない。Also, in Fig. 2, one member is inserted into the metal container 114-J.
-1411 small = 1 i 1 hef”? It goes without saying that insertions may be made as many times as \V company μ-m.
本発明は、上記したように、セラミック製回転体1の継
手部となる部分を円柱部4とし、かつ、その先端部を球
面部5とし、この継手部に金属製パイプ2をかん合する
継手形状を採用すること及びオートクレーブ中でガス圧
で第2図に示した当該部材を内蔵した金属容器7を加熱
下で3次元方向に加圧することによシ、金属製パイプ2
が塑性変形してセラミック円柱部4に密着して強固な拡
散溶接継手が得られる。特にセラミック円柱部4の先端
に球面部を設けることで本セラミック製回転体1の継手
部はシャープな角部が存在せず、全て大きく緩やかなR
部をもった形状を有するととになシ、本回転体1の実根
稼動時において、セラミックに対する応力集中部がなく
なり、セラミックの割れ破損に対する危険度が激減する
効果をもつ。As described above, the present invention provides a joint in which the part of the ceramic rotating body 1 that becomes the joint part is a cylindrical part 4, the tip thereof is a spherical part 5, and the metal pipe 2 is fitted to this joint part. By adopting the shape and pressurizing the metal container 7 containing the member shown in FIG. 2 with gas pressure in an autoclave in a three-dimensional direction under heating, the metal pipe 2
is plastically deformed and tightly adheres to the ceramic cylindrical portion 4, resulting in a strong diffusion welded joint. In particular, by providing a spherical part at the tip of the ceramic cylindrical part 4, the joint part of the ceramic rotating body 1 has no sharp corners, and all of the joint parts have a large and gentle radius.
When the rotating body 1 is in full operation, there is no stress concentration area on the ceramic, and the risk of cracking and damage to the ceramic is drastically reduced.
即ち、上記第1図及び3図の如き球面先端を有する円柱
はめ込み継手を用い、且つ、加熱下で3次元加圧を行う
ことではじめて、全継手面に均等な加圧力が付加され、
高強度継手およびセラミックの耐破損性にすぐれる良好
な拡散溶接”継手を得ることができる。5次元加圧を行
うことでセラミック製回転体1、金属製パイプ2、その
継手部、いずれにも均等加圧が加わるため、部材の偏加
圧による破損も生じない。すなわち、この加圧はオート
クレーブ中のガス圧が、金属製容器中の粉末に伝達され
、ついで継部、部材に伝達されることとなる。また、こ
の接合部に、本発明者等が提案した前記のインサート材
を使用することによって、よ)高強度の接合が得られる
ものである。これは、インサート材中のセラミックがセ
ラミック製回転体1とイオン結合あるいは共有結合を主
体に拡散接合し、一方、インサート材中の金属が金属製
パイプ2と金属結合で拡散接合し、良好々接合が成就す
るものである。That is, only by using a cylindrical fit-in joint with a spherical tip as shown in FIGS. 1 and 3 above and applying three-dimensional pressure under heating can uniform pressure be applied to all joint surfaces.
It is possible to obtain a high-strength joint and a good diffusion welded joint with excellent ceramic breakage resistance.By applying five-dimensional pressure, the ceramic rotating body 1, the metal pipe 2, and their joints can be bonded together. Since uniform pressure is applied, damage due to uneven pressure on the parts does not occur.In other words, this pressurization is caused by the gas pressure in the autoclave being transmitted to the powder in the metal container, and then to the joints and parts. In addition, by using the above-mentioned insert material proposed by the present inventors in this joint, a high-strength joint can be obtained.This is because the ceramic in the insert material The ceramic rotating body 1 is diffusion-bonded mainly through ionic or covalent bonds, while the metal in the insert material is diffusion-bonded to the metal pipe 2 through metal bonding, and a good bond is achieved.
一方、Ml、’Ou、 Or インサートおよび直接接
合の場合は、これら金属の表面に存在する微量酸化物が
酸化物系セラミック製回転体ではその構成酸化物と、非
酸化物系セラミック製回転体ではその焼結助剤として含
まれている酸化物と反応して接合し、これら金属と金属
製パイプとは金属同志の接合となシ、容易に接合が成就
する(これら金属の表面に存在する酸化物は加圧によ)
部分的に破壊され、清浄な金属の露出面と強固に拡散接
合する)。On the other hand, in the case of Ml, 'Ou, Or inserts and direct bonding, the trace oxides present on the surfaces of these metals are different from the constituent oxides in the case of oxide-based ceramic rotating bodies, and in the case of non-oxide-based ceramic rotating bodies. These metals and metal pipes are bonded by reacting with the oxides contained as sintering aids, and the bonding between these metals and metal pipes is easily accomplished. Objects are pressurized)
(partially destroyed, forming a strong diffusion bond with exposed clean metal surfaces).
オートクレーブ中での加熱、加圧が終了すると冷却する
が、冷却過程において、セラミック円柱部の熱膨張係数
(813M4. sic・・・3〜4X10.7’戎。After the heating and pressurization in the autoclave is completed, it is cooled, and during the cooling process, the coefficient of thermal expansion of the ceramic cylinder part (813M4.sic...3~4X10.7').
h14o、 、zro鵞−・・7〜a x 1o′/℃
)が金属製パイプの熱膨張係数(炭素鋼・・・12X1
0″/℃。h14o, , zro -...7~ax 1o'/℃
) is the thermal expansion coefficient of metal pipe (carbon steel...12X1
0″/℃.
ステンレス鋼・・・17 X 10− / ’C、Nl
合金・・・12X10−″′/℃、コバール・・・5
X 1 o−’/’C)よシ小さいため、゛金属製パ
イプがセラミック円柱よシ大きく収縮し、セラミックに
密着しながら冷却する。即ち、接合面には剥離力は全く
生ぜず、逆に密着方向に力が作用して冷却し、すぐれた
継手を得ることができる。これは金属製パイプを外面に
配設した本発明の継手の大きな作用効果の一つである。Stainless steel...17 x 10-/'C, Nl
Alloy...12X10-''/℃, Kovar...5
Since the metal pipe is smaller than the ceramic cylinder, it is cooled while being in close contact with the ceramic. That is, no peeling force is generated on the joint surfaces, but on the contrary, force acts in the direction of adhesion and cooling, resulting in an excellent joint. This is one of the major effects of the joint of the present invention in which a metal pipe is disposed on the outer surface.
なお、オートクレーブ中での加熱、加圧による接合に類
似するものとして、焼ばめ結合があるが、仁の焼、ばめ
は温度を一定時間、均一に保持することが困難であるこ
と、加圧力を大きく負荷することが困難であること等よ
し、十分な拡散接合の履行が不可能であり、且つまた、
セラミックに加圧応力が負荷された部分と負荷されない
部分との境界で、セラミックが破損しやすい欠点を有す
るが、本発明では、これら不真合点を全て解決しうるも
のである。Shrink fit bonding is similar to bonding by heating and pressurizing in an autoclave; It is difficult to apply a large amount of pressure, and it is impossible to perform sufficient diffusion bonding.
Although the ceramic has a disadvantage that it is easily damaged at the boundary between the part where pressure stress is applied and the part where it is not applied, the present invention can solve all of these incompatibilities.
以上のようにセラミック製回転体に金属−バイブが接合
されると、金属シャフトとけ通常の溶接法で溶接が可能
であシ、全工程の接合が完了する。When the metal-vibrator is joined to the ceramic rotating body as described above, the metal shaft can be welded using a normal welding method, and the entire joining process is completed.
以上本発明の詳細な説明したが、さらに本発明の具体例
をあげ、本発明をよシ詳細に説明する。第5図は以下の
本発明の具体例1〜6を説明するだめの図であって、セ
ラミック回転体と金属製パイプとの概要寸法図である。Although the present invention has been described in detail above, the present invention will be explained in more detail by giving specific examples of the present invention. FIG. 5 is a diagram for explaining the following specific examples 1 to 6 of the present invention, and is a schematic dimensional diagram of a ceramic rotating body and a metal pipe.
〔具体例1〕−インサート材としてOul O+Ouを
用いた例−
供試材として、ム140sの回転体、13%Or鋼のパ
イプ、MIOrMO鋼のシャフトを用いた。[Specific Example 1] - Example using Oul O+Ou as insert material - As test materials, a rotating body of MU 140s, a pipe of 13%OrMO steel, and a shaft of MIOrMO steel were used.
回転体は直径が30−(ム)、継手部の円柱部が15−
φ(B)、長さ20震(0)で端部は直径15−一の球
面形状を有し、接合部となる部分(円柱部および先端球
面部)にcu、o+ou (重量%でOuz O/C!
uz2 o/80 )をPVD :ff−ティングし
た。The diameter of the rotating body is 30 mm, and the cylindrical part of the joint is 15 mm.
The end part has a spherical shape with a diameter of 15-1, and the joint part (cylindrical part and spherical tip part) is made of cu, o + ou (Ouz O in weight%). /C!
uz2o/80) was subjected to PVD:ff-ting.
15%or 鋼パイプは内径1aQ5mφ(D)、外径
19.03−φ(IC)、長さ25 m (P) (端
部は3憐の肉厚をもつ中実部を有する)である。The 15% or steel pipe has an inner diameter of 1aQ5mφ (D), an outer diameter of 19.03-φ (IC), and a length of 25 m (P) (the end has a solid part with a wall thickness of 3 mm).
両者をがん合したあと、厚さ1−の8841 容器内の
中心部に挿入し、その周囲に石膏粉末を封入したあと、
厚さ1−の8841 腰上ぶたをかぶせ、周囲をシール
溶接した。After pressing the two together, insert it into the center of the 1-thick 8841 container, and seal the gypsum powder around it.
A 1-thick 8841 waist cover was placed over the waist and the surrounding area was sealed and welded.
次いで、これをオートクレーブに入れ、1050℃に加
熱し、ムr ガス圧500 、kl/ / am ”
、加熱保持時間2時間で3次元加圧の拡散溶接を行った
。Then, it was placed in an autoclave and heated to 1050°C, gas pressure 500, kl//am”
, three-dimensional pressure diffusion welding was performed with a heating and holding time of 2 hours.
その結果、非接合部がなく、良好な継手性能を有するム
40g−13Cr鋼の継手が得られた。そのあと、該1
5qlror鋼とNICrMO鋼のシャフトとを電子ビ
ーム溶接で溶接して所定の回転構造体を得た。最後に該
回転構造体を回転試験したが、良好な回転性能が得られ
、高信頼性を有する継手が形成されることが判明した。As a result, a joint made of Mu40g-13Cr steel with no non-joint parts and good joint performance was obtained. After that, 1
A shaft of 5qlror steel and NICrMO steel was welded together by electron beam welding to obtain a predetermined rotating structure. Finally, the rotary structure was subjected to a rotation test, and it was found that good rotation performance was obtained and a highly reliable joint was formed.
〔具体例2〕−インサート材としてN、10+旧を用い
た例−
供試材として、81.N4 の回転体、コバールのパイ
プ、NiCrMo 鋼のシャフトを用いた。回転体は直
径が50 m (ム)、継手部の円柱部が15■φ(B
)、長さ20瓢(C)で端部は直径15−φの球面形状
を有し、接合部となる部分(円柱部および先端球面部に
旧0−1−N1 (重量%でNIO/nt = 20/
80 )をPVDコーティングした。コバールのパイプ
は内径1氏03−φ(D)、外径19、03 mφ(l
it)、長さ2311m(F)(端部は3−の肉厚をも
つ中実部を有する)である。[Specific Example 2] - Example using N, 10 + old as insert material - As the test material, 81. An N4 rotating body, a Kovar pipe, and a NiCrMo steel shaft were used. The rotating body has a diameter of 50 m (mm), and the cylindrical part of the joint has a diameter of 15 mm (B).
), the length is 20 gourds (C), the end part has a spherical shape with a diameter of 15-φ, and the part that becomes the joint (the cylinder part and the spherical tip part are old 0-1-N1 (NIO/nt in weight%) = 20/
80) was PVD coated. Kovar's pipe has an inner diameter of 1 degree 03-φ (D) and an outer diameter of 19,03 mφ (l
it), length 2311 m (F) (the ends have a solid part with a wall thickness of 3 -).
両者をがん合したあと、厚さ1−の811141 容器
内の中心部に挿入し、その周囲にZrOH粉末を封入し
たあと、厚さ1−のB841 腰上ぶたをかぶせ、周囲
を7−ル溶接した。次いでこれをオートクレーブに入れ
、1150℃に加熱し、ムrガス圧1500 kg 7
ax” 、加熱保持時間2時間で3次元加圧の拡散溶
接を行った。After pressing the two together, insert it into the center of the 1-thick 811141 container, enclose the ZrOH powder around it, cover it with the 1-thick B841 waist cover, and wrap the 7-thickness around it. Welded. Next, this was placed in an autoclave and heated to 1150°C, and the gas pressure was increased to 1500 kg 7
three-dimensional pressure diffusion welding was performed with a heating and holding time of 2 hours.
その結果、非接合部がなく、良好な継手性能を有する1
lil、N4 −コバールの継手が得られた。そのあと
、該コバールとM l (! rMo 鋼のシャフトを
電子ビーム溶接で溶接して所定の回転構造体を得た。As a result, there is no non-joint part and the joint performance is good.
A lil, N4-Kovar joint was obtained. Thereafter, the Kovar and M l (! rMo steel shafts were welded by electron beam welding to obtain a predetermined rotating structure.
最後に該回転構造体を回転試験したが、良好な回転性能
が得られ、高信頼性を有する継手が形成されることが判
明した。Finally, the rotary structure was subjected to a rotation test, and it was found that good rotation performance was obtained and a highly reliable joint was formed.
〔具体例3〕−インサート材としてN1 を用いた例−
供試材として811N40回転体、コ/(−ルの7くイ
ブ、NiN10r 鋼のシャフトを用いた。回転体は直
径がs o 1111 (A)、継手部の円柱部が15
8φ(B)、長さ20 m (0)で端部は直径15■
φの球面形状を有し、接合部となる部分(円柱部および
先端球面部)にMl をPVDコーティングした。コバ
ールパイプは内径15.03−一(D)、外径19.0
5wmφ(B)、長さ25mm(F)(端部は3−の肉
厚をもつ、中実部を有する)である。[Specific Example 3] - Example using N1 as insert material - As test materials, an 811N40 rotating body, 7 tubes of coil, and a shaft of NiN10r steel were used. The rotating body had a diameter of 1111 ( A), the cylindrical part of the joint part is 15
8φ (B), length 20m (0), end diameter 15mm
It has a spherical shape of φ, and the parts that will become the joint (cylindrical part and spherical tip part) are coated with Ml by PVD. Kovar pipe has an inner diameter of 15.03-1 (D) and an outer diameter of 19.0
It has a diameter of 5 wm (B) and a length of 25 mm (F) (the end portion has a solid portion with a wall thickness of 3 mm).
両者をがん合したあと厚さ1wIのB841 容器内の
中心部に挿入し、その周囲にZr01粉末を封入したあ
と、厚さ1−の8841 腰上ぶたをかぶせ、周囲をシ
ール溶接した。After the two were pressed together, the container was inserted into the center of a B841 container with a thickness of 1 wI, Zr01 powder was sealed around it, and an 8841 waist cover with a thickness of 1-1 mm was placed over the container, and the periphery was sealed and welded.
次いで、これをオートクレーブに入れ、1250℃に加
熱し、ムr ガス圧1500 kg / am”、加熱
保持時間2時間で3次元加圧の拡散溶接を行った。Next, this was placed in an autoclave, heated to 1250° C., and three-dimensional pressure diffusion welding was performed at a gas pressure of 1500 kg/am” and a heating holding time of 2 hours.
その結果、非接合部がなく、良好々継手性能を有する8
1.N4−コバールの継手が得られた。そのアト、該コ
バールとllorMo鋼のシャフトとを電子ビーム溶接
で溶接して所定の回転構造体を得た。最後に該回転構造
体を回転試験したが、良好な回転性能が得られ、高信頼
性を有する継手が形成されることが判明した。As a result, there are no non-joint parts and the joint performance is good.
1. A N4-Kovar joint was obtained. At that time, the Kovar and the shaft of LlorMo steel were welded by electron beam welding to obtain a predetermined rotating structure. Finally, the rotary structure was subjected to a rotation test, and it was found that good rotation performance was obtained and a highly reliable joint was formed.
〔具体例4〕−インサート材としてOu を用いた例−
具体例3における供試材(811N4 の回転体)にか
えでA4030回転体を使用し、N1 にかえてOu
をインサート材として使用し、及び、オートクレーブの
加熱温度1250℃を1050℃にする以外は、具体例
3と同じであシ、同じ結果が得られた。[Specific Example 4] - Example using Ou as insert material - A4030 rotating body was used instead of the test material (811N4 rotating body) in Specific Example 3, and Ou was used instead of N1.
The procedure was the same as in Example 3, except that the material was used as the insert material and the heating temperature of the autoclave was changed from 1250°C to 1050°C, and the same results were obtained.
〔具体例5〕−インサート材としてCr を用いた例−
具体例3における供試材(81,N、 の回転体)にか
えてStCの回転体を使用し、狙 にかえてOr をイ
ンサート材として使用する以外は、具体例3と同じであ
り、同じ結果が得られた。[Specific Example 5] - Example using Cr as the insert material - A StC rotating body was used instead of the test material (81, N, rotating body) in Specific Example 3, and Or was used as the insert material instead of the target material. The procedure was the same as in Specific Example 3 except that it was used as , and the same results were obtained.
〔具体例6〕−インサート材を用いない例−供試材とし
て、810の回転体、コパールのノくイブ、M10rM
O鋼のシャフトを用いた。回転体は直径がs o wn
(A)、継手部の円柱部が155mφ(B)、長さ2
01111 (0)で、端部は直径15Wφの球面形状
を有している。コパールのパイプは内径15.03−φ
(D)、外径1903■φ(E)、長さ231111I
(F)(端部は5wxrの肉厚をもつ中実部を有する)
である。[Specific Example 6] - Example not using insert material - As test materials, 810 rotating body, copal knob, M10rM
An O steel shaft was used. The diameter of the rotating body is so wn
(A), the cylindrical part of the joint part is 155mφ (B), length 2
01111 (0), and the end portion has a spherical shape with a diameter of 15Wφ. Copal pipe has an inner diameter of 15.03-φ
(D), outer diameter 1903■φ (E), length 231111I
(F) (The end has a solid part with a wall thickness of 5wxr)
It is.
両者を直接がん合したあと、厚さ1mの8841容器内
の中心部に挿入し、その周囲に石膏粉末を封入したあと
、厚さ111IIlの8841 腰上ぶたをかぶせ、周
囲をシール溶接した。次いでこれをオートクレーブに入
れ、1100℃に加熱し、Ar ガス圧1500 kg
/ tx” 、加熱保持時間1時間で5次元加圧の拡散
溶接を行った。After the two were directly pressed together, it was inserted into the center of an 8841 container with a thickness of 1 m, and after sealing gypsum powder around it, the 8841 waist cover with a thickness of 111 II was covered and the surrounding area was sealed and welded. Next, this was placed in an autoclave, heated to 1100°C, and heated to 1500 kg of Ar gas pressure.
/tx", five-dimensional pressure diffusion welding was performed with a heating holding time of 1 hour.
その結果、非接合部がなく、良好な継手性能を有する5
tC−コパールの継手が得られた。そのあと、該コパー
ルとNIOrMO鋼のシャフトを電子ビーム溶接で溶接
して所定の回転構造体を得た。最後に該回転構造体を回
転試験したが、良好な回転性能が得られ、高信頼性を有
する継手が形成されることが判明した。As a result, there are no non-joint parts and good joint performance.
A tC-copal joint was obtained. Thereafter, the copal and NIOrMO steel shafts were welded by electron beam welding to obtain a predetermined rotating structure. Finally, the rotary structure was subjected to a rotation test, and it was found that good rotation performance was obtained and a highly reliable joint was formed.
本発明は、以上詳記したように、セラミック部材の継手
部を先端球面状の円柱体形状とし、これに金属製パイプ
を嵌合させ、この両者を圧着接合させ、次いで、該パイ
プと金属部材とを接合させるものであるから、セラミッ
ク部材と金属部材とが強固に接合できる効果が生ずるも
のである。特に本発明では、セラミック部材の継手部と
して、先端球面状の円柱体形状とした仁とにより、該継
手部にはシャープな角部が存在せず、全て大きくゆるや
かなR部をもった形状を有することになり、その結果、
セラミックに対する応力集中部がなくなシ、セラミック
部材の割れ破損に対する危険度が激減する効果が生ずる
ものである。As described in detail above, the present invention provides a joint portion of a ceramic member having a cylindrical shape with a spherical tip, fitting a metal pipe thereto, joining the two by pressure, and then connecting the pipe and the metal member. Since the ceramic member and the metal member are bonded together, the ceramic member and the metal member can be firmly bonded. In particular, in the present invention, the joint part of the ceramic member has a cylindrical shape with a spherical tip, so that the joint part does not have sharp corners and has a shape with large and gentle rounded parts. As a result,
There is no stress concentration area on the ceramic, and there is an effect that the risk of cracking and damage of the ceramic member is drastically reduced.
第1図は本発明の実施例であるセラミック製回転体と金
属製パイプとを接合するための工程図を示し、第2図は
同接合時の加圧工程を示し、第5図は金属製パイプに金
属製シャフトを接合する際の該パイプ端面加工工程を示
し、第4図は同パイプと金属製シャフトとを接合する工
程を示す。第5図はセラミック回転体と金属製パイプと
の概要寸法図である。
1・・・回転体
2・・・パイプ
5・・・R部
4・・・円柱部
5・・・球面部
6・・・溶接
7・・・容器
8・・・圧力媒体
10・・・シャフト
11・・・溶接部
X・・・間隙
復代理人 内 1) 明
復代理人 萩 原 亮 −
第1因
第2図
第3図
第5図
第1頁の続き
■Int、CI、’ 識別記号 庁内整理番号F 01
D 5104 7910−3G■発 明 者 松 1
) 光 雄 相模原市田名300幅内
地 三菱重工業株式会社相模原製作所Fig. 1 shows a process diagram for joining a ceramic rotating body and a metal pipe according to an embodiment of the present invention, Fig. 2 shows a pressurizing process during the same joining, and Fig. FIG. 4 shows the pipe end face processing process when joining the metal shaft to the pipe, and FIG. 4 shows the process of joining the pipe and the metal shaft. FIG. 5 is a schematic dimensional drawing of the ceramic rotating body and the metal pipe. 1... Rotating body 2... Pipe 5... R part 4... Cylindrical part 5... Spherical part 6... Welding 7... Container 8... Pressure medium 10... Shaft 11...Welding part Internal office reference number F 01
D 5104 7910-3G■Inventor Matsu 1
) Mitsuo 300 Tana, Sagamihara City Mitsubishi Heavy Industries, Ltd. Sagamihara Works
Claims (4)
於いて、セラミック部材の継手部を円柱状とし、かつ、
その先端部を球面状とし、これに若干内径を大きくシ、
端部を閉じた金属製パイプを嵌入し、これを容器内に圧
力媒体粉末と共に封入し、オートクレーブ中で加熱、加
圧して拡散溶接し、次いで、該パイプと金属部材とを溶
接することを特徴とするセラミック部材と金属部材との
接合方法。(1) In the method of joining a ceramic member and a metal member, the joint portion of the ceramic member is made cylindrical, and
The tip part is made spherical, and the inner diameter is made slightly larger.
It is characterized by fitting a metal pipe with a closed end, sealing it in a container with pressure medium powder, heating and pressurizing it in an autoclave to perform diffusion welding, and then welding the pipe and the metal member. A method for joining a ceramic member and a metal member.
内面に、N1 と金属酸化物、窒化物又は炭化物、もし
くは、Ou と金属酸化物、窒化物又は炭化物をインサ
ート材としてコーチ7グする特許請求の範囲第1項記載
のセラミック部材と金属部材との接合方法。(2) A patent claim for coating the joint surface of a ceramic member or the inner surface of a metal pipe with N1 and a metal oxide, nitride, or carbide, or Ou and a metal oxide, nitride, or carbide as an insert material. A method for joining a ceramic member and a metal member according to item 1.
内面に、cujo、 NIo、 8101 、 Peo
、 AfO。 ム740s、MOO,T10!e ZnO,ムuo、0
rlO1,Cod。 Zr01. Tag、 ’wo、、 M’bO,MP、
、 Cab、 y、o、のいづれか1つと、Ou、 M
l、 sf、’ Fe、 AP、ムL、 Mo。 TI、 Zn、ムu、 Or、 Co、 Zr、Ta、
W、 Nb、 MWのいづれか1つを混合した複合イ
ンサート材をコーティングする特許請求の範囲第1項記
載のセラミック部材と金属部材との接合方法。(3) Cujo, NIo, 8101, Peo on the joint surface of the ceramic member or the inner surface of the metal pipe.
, AfO. Mu740s, MOO, T10! e ZnO, Muo, 0
rlO1, Cod. Zr01. Tag, 'wo,, M'bO, MP,
, Cab, y, o, and Ou, M
l, sf,' Fe, AP, MU L, Mo. TI, Zn, Mu, Or, Co, Zr, Ta,
The method for joining a ceramic member and a metal member according to claim 1, which comprises coating a composite insert material containing any one of W, Nb, and MW.
内面に、Ni、 Ou、 Or をインサート材として
コーティングする特許請求の範囲第1項記載のセラミッ
ク部材と金属部材との接合方法。(4) The method for joining a ceramic member and a metal member according to claim 1, wherein the joint surface of the ceramic member or the inner surface of the metal pipe is coated with Ni, Ou, Or as an insert material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10372984A JPS60251180A (en) | 1984-05-24 | 1984-05-24 | Method of bonding ceramic member and metal member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10372984A JPS60251180A (en) | 1984-05-24 | 1984-05-24 | Method of bonding ceramic member and metal member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60251180A true JPS60251180A (en) | 1985-12-11 |
Family
ID=14361736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10372984A Pending JPS60251180A (en) | 1984-05-24 | 1984-05-24 | Method of bonding ceramic member and metal member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60251180A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156088A (en) * | 1985-12-27 | 1987-07-11 | Mitsubishi Heavy Ind Ltd | Dissimilar metal joint |
JPS6330379A (en) * | 1986-02-06 | 1988-02-09 | 工業技術院長 | Ceramic silver-soldering treatment and method of joining ceramic to metal |
WO2009060954A1 (en) * | 2007-11-08 | 2009-05-14 | Aida Chemical Industries Co., Ltd. | Thermoformed metallic object, process for producing the same, and process for producing patterned metallic sheet material |
-
1984
- 1984-05-24 JP JP10372984A patent/JPS60251180A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156088A (en) * | 1985-12-27 | 1987-07-11 | Mitsubishi Heavy Ind Ltd | Dissimilar metal joint |
JPS6330379A (en) * | 1986-02-06 | 1988-02-09 | 工業技術院長 | Ceramic silver-soldering treatment and method of joining ceramic to metal |
WO2009060954A1 (en) * | 2007-11-08 | 2009-05-14 | Aida Chemical Industries Co., Ltd. | Thermoformed metallic object, process for producing the same, and process for producing patterned metallic sheet material |
JP5132685B2 (en) * | 2007-11-08 | 2013-01-30 | 相田化学工業株式会社 | Metal thermoformed body, method for producing the same, and method for producing patterned metal sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62104696A (en) | Metallic ceramics junction body and metallic ceramics coupling body formed by using said body | |
JPH0367986B2 (en) | ||
JPS61111981A (en) | How to join ceramic parts and metal parts | |
JPS60131874A (en) | Method of bonding ceramic and metal | |
EP0109814B1 (en) | Joining silicon nitride to metals | |
US4580714A (en) | Hard solder alloy for bonding oxide ceramics to one another or to metals | |
US3793705A (en) | Process for brazing a magnetic ceramic member to a metal member | |
JPS60251180A (en) | Method of bonding ceramic member and metal member | |
JPS60231473A (en) | Method of bonding ceramic member and metal member | |
JPS60251179A (en) | Method of bonding ceramic member and metal member | |
JPS5891088A (en) | How to join ceramic and metal | |
JPS62182169A (en) | Method of joining ceramic member to metal member | |
JPS60246275A (en) | Method of bonding ceramic member and metal member | |
JPH0339030B2 (en) | ||
JPS59207885A (en) | Method of bonding ceramic member to metal member | |
JPH01179768A (en) | Method of joining ceramic materials and metal materials | |
JPH01141882A (en) | Method for bonding ceramic to metallic member | |
JPS61222965A (en) | Method of joining ceramic and metal | |
JPS6277186A (en) | Solid phase joining method | |
JPH0351321Y2 (en) | ||
Lugscheider et al. | Joining of Ceramics | |
JPH0580434B2 (en) | ||
JPH01179769A (en) | Method of joining ceramic materials and metal materials | |
JPS61219766A (en) | Joint structure of ceramic shaft and metal shaft | |
JPH061672A (en) | Joining structure for ceramic shaft and metallic shaft |