[go: up one dir, main page]

JPH01141882A - Method for bonding ceramic to metallic member - Google Patents

Method for bonding ceramic to metallic member

Info

Publication number
JPH01141882A
JPH01141882A JP29620787A JP29620787A JPH01141882A JP H01141882 A JPH01141882 A JP H01141882A JP 29620787 A JP29620787 A JP 29620787A JP 29620787 A JP29620787 A JP 29620787A JP H01141882 A JPH01141882 A JP H01141882A
Authority
JP
Japan
Prior art keywords
ceramic
metal
groove
metal member
root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29620787A
Other languages
Japanese (ja)
Inventor
Yutaka Morimoto
裕 森本
Takashi Tanaka
隆 田中
Hiroyuki Honma
弘之 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29620787A priority Critical patent/JPH01141882A/en
Publication of JPH01141882A publication Critical patent/JPH01141882A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/64Forming laminates or joined articles comprising grooves or cuts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To firmly bond a ceramic to a metallic member without producing cracking, etc., by previously providing a protrudent root part having a groove on the bonding part of the ceramic, fitting the root part into the hole provided in the bonding part of the metallic member, and applying hot hydraulic press to fill the metallic member into the groove by a plastic flow. CONSTITUTION:The protrudent roof part 2 having a groove 3 is provided on the bonding part of the ceramic 1 (e.g., Al2O3 and ZrO2). The root part 2 is fitted into the hole 5 provided in the bonding part of the metallic member 4 (e.g., copper and aluminum). Hot isotactic press is then applied to plastic- deform the metallic member 4 and to fill the metallic member 4 into the groove 3 by a plastic flow, and the ceramic 1 and the metallic member 4 are bonded. By this method, for example, a ceramic rotor is firmly bonded to a metallic shaft, or a ceramic is bonded to the sliding part of a lock arm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックスと金属との接合方法に係わり、詳
しくは金属の塑性変形を利用した割れの無い健全な接合
部の作製方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for joining ceramics and metal, and more specifically to a method for producing a crack-free and sound joint using plastic deformation of metal. .

(従来の技術) 産業の進歩と技術の発展により、ますます高性能、高機
能な材料の必要性が高まっている。これらの要求からさ
まざまな新素材が開発され実用化に向けて研究されてい
る。セラミックスもその中の一つであり、耐熱性、耐摩
耗性あるいは、耐食性等に優れた機能を利用した、さま
ざまな分野への適用が考えられている。しかし、セラミ
ックスは加工性か乏しく脆いと言う共通した欠点をもっ
ており、これらの欠点がセラミックスの利用範囲を拡大
する上で妨げになっている場合も多い。
(Conventional Technology) With the progress of industry and the development of technology, the need for materials with higher performance and functionality is increasing. In response to these demands, various new materials are being developed and researched for practical use. Ceramics are one of them, and are being considered for application in various fields by utilizing their excellent properties such as heat resistance, wear resistance, and corrosion resistance. However, ceramics have common drawbacks such as poor workability and brittleness, and these drawbacks often hinder the expansion of the range of use of ceramics.

これらの欠点を補う方法として金属と接合複合化が考え
られ、現在色々な研究機関でその接合方法についての研
究か行われている。これらの方法として特開昭60−2
00871号公報、特開昭60−200872号公報、
特開昭60−204677号公報に記載の様にセラミッ
クスと接合用金属との間に第3のセラミックスと接合し
易い中間層を設けてそれを介して両者を接合する方法が
上げられる。また、セラミックスと金属の接合における
重大な問題として、セラミックスと金属との熱膨張率の
違いにより発生する熱応力のために接合部で破壊が生じ
る事があげられるが、この熱応力を緩和させる方法とし
て特開昭59−137378号公報に記載の様に、接合
面にスリット等を設は熱応力を緩和したり、特開昭59
−182282号公報に記載の様にセラミックスと金属
との間に、接合すべきセラミックスと金属の成分の混合
物あるいは両者の成分が段階的に変化するような中間層
をはさんで熱応力を緩和する方法が考えられている。し
かしこれらの方法では、加工性に乏しいセラミックスを
加工する必要が有り、また工程も複雑になる。さらに、
混合物の中間層を用いる場合ても、その中間層が完全に
焼結し強度的に満足すべき物になっている必要があり、
その点で成分設計が困難な場合もある。
Bonding composites with metals have been considered as a way to compensate for these shortcomings, and various research institutes are currently conducting research on this bonding method. As one of these methods, Japanese Patent Application Laid-Open No. 60-2
No. 00871, JP-A-60-200872,
As described in Japanese Unexamined Patent Publication No. 60-204677, there is a method in which an intermediate layer that is easily bonded to a third ceramic is provided between the ceramic and the bonding metal, and the two are bonded via the intermediate layer. In addition, a serious problem in joining ceramics and metals is that fractures occur at the joint due to thermal stress caused by the difference in coefficient of thermal expansion between ceramics and metals, but there are ways to alleviate this thermal stress. As described in Japanese Unexamined Patent Publication No. 59-137378, slits etc. are provided on the joint surface to relieve thermal stress.
- As described in Publication No. 182282, thermal stress is alleviated by sandwiching a mixture of ceramic and metal components to be bonded or an intermediate layer in which the components of both are changed in stages between the ceramic and metal. A method is being considered. However, with these methods, it is necessary to process ceramics that have poor workability, and the process is also complicated. moreover,
Even when using an intermediate layer of a mixture, it is necessary that the intermediate layer is completely sintered and has satisfactory strength.
In this respect, component design may be difficult.

また、特開昭61−215272号公報ではセラミック
スと金属を接合する際°に、銅あるいはセラミックスと
金属の中間の熱膨張係数を持つ金属を熱応力緩和材とし
て用いているが、これら単層では充分に熱応力が緩和さ
れない場合も考えられる。またこれらの中間層を用いた
方法では、一般に平面接合では有効であるが接合面が曲
面あるいは複雑な形状の場合、設計上に複雑な工程ある
いは困難な点か残る。
Furthermore, in JP-A No. 61-215272, when joining ceramics and metals, copper or a metal with a coefficient of thermal expansion between ceramics and metals is used as a thermal stress relaxation material, but these single-layer There may be cases where thermal stress is not sufficiently relaxed. Furthermore, methods using these intermediate layers are generally effective for plane bonding, but if the bonding surface is curved or has a complicated shape, there remain complex processes or difficulties in design.

(発明が解決しようとする問題点) 本発明はかかる現状に鑑み、耐熱性、#摩耗性、耐食性
等に優れたセラミックスを強固にかつ容易に金属に割れ
なく接合できる方法を提供するものである。
(Problems to be Solved by the Invention) In view of the current situation, the present invention provides a method for firmly and easily joining ceramics with excellent heat resistance, wear resistance, corrosion resistance, etc. to metal without cracking. .

(問題点を解決するための手段) 本発明者等は、上記の目的を達成すべく種々の実験検討
を重ねた結果、熱間静水圧加圧(HotIsostat
ic Press以後、略して旧Pと呼ぶ)処理方法を
用いて、金属の塑性変形を利用してセラミックスに突設
された根部にかみ込ませることにより、セラミックスと
金属部材を容易にかつ強固に接合する方法を見いだした
。またこの方法によりセラミックスには圧縮応力がかか
り、そのためにセラミックスに熱応力による割れが発生
するのを防ぐことか出来る。
(Means for Solving the Problems) As a result of various experimental studies in order to achieve the above object, the present inventors have developed a hot isostat method.
ic Press (abbreviated as old P hereafter) processing method, the plastic deformation of the metal is used to bite into the protruding root of the ceramic, thereby easily and firmly joining ceramics and metal parts. I found a way to do it. Furthermore, this method applies compressive stress to the ceramic, which can prevent the ceramic from cracking due to thermal stress.

本発明は上記の知見に基すいてなされたもってあり、そ
の要旨は以下に説明する様にセラミックスと金属部材を
接合する際に於て、セラミックスの接合部に予め溝を有
する根部を突設しておき。
The present invention has been made based on the above findings, and the gist of the invention is as described below.When joining ceramics and metal members, a grooved root portion is provided in advance at the joint of the ceramic to protrude. Keep it.

該根部を金属部材の接合部に設けられた穴または溝に嵌
合せしめ、熱間静水圧加圧処理により金属部材を塑性変
形させることにより該溝に金属部材を塑性流動により流
し込み接合することを特徴とするセラミックスと金属部
材の接合方法にある。
The root portion is fitted into a hole or groove provided in a joint portion of the metal member, and the metal member is plastically deformed by hot isostatic pressure treatment, whereby the metal member is poured into the groove by plastic flow and joined. The main feature lies in the method of joining ceramics and metal parts.

(作用) 本発明を以下に詳細に説明する。(effect) The present invention will be explained in detail below.

まず、金属部材と接合するセラミックスの接合面に接合
のための根部な加工等の方法により作製する。第1図は
その1例であるが、この様に根部には接合部にかかる荷
重(引っ張り、回転等)に対して妨げるような障害とな
る方向に溝を設ける。第1図において、1は接合用セラ
ミックス、2は接合用セラミックスに設けられた根部、
3は根部に設けられた溝である。第1図(a)、 (b
)の場合は矢印Wの方向に引っ張り荷重がかかり、第1
図(c)、(d)の場合は回転方向に荷重がかかること
を想定しである。この様な根部は、切削加工により作製
してもよいし、焼結時に予め設けておくこ   □とも
考えられる。またセラミックス本体の形状はほぼ最終必
要形状のもので良く、必要ならばHIP処理後、表面の
汚れを薄く削る程度の加工代を見積った形状でよい。ま
た、接合に用いるセラミックスは作製する接合継ぎ手に
必要な特性に応じて選択すればよく、例えばAl5o3
. ZrO2,Be01zrB2などかあげられる。
First, the bonding surface of the ceramic to be bonded to the metal member is fabricated by a method such as root processing for bonding. As shown in FIG. 1, a groove is provided in the root portion in a direction that is a hindrance to loads (pulling, rotation, etc.) applied to the joint portion. In Fig. 1, 1 is a bonding ceramic, 2 is a root provided in the bonding ceramic,
3 is a groove provided in the root portion. Figure 1 (a), (b)
), a tensile load is applied in the direction of arrow W, and the first
In the case of Figures (c) and (d), it is assumed that a load is applied in the rotational direction. Such a root portion may be produced by cutting, or it may be considered that it is provided in advance during sintering. Further, the shape of the ceramic body may be approximately the final required shape, and if necessary, the shape may be such that after HIP treatment, a machining allowance for removing dirt from the surface is estimated. In addition, the ceramics used for joining may be selected depending on the characteristics required for the joint to be manufactured, such as Al5o3
.. Examples include ZrO2 and Be01zrB2.

次に、セラミックスと金属部材の接合をより強固にする
方法として、セラミックスの根部の表面に、セラミック
スと接合性が良くかつセラミックスと接合する金属部材
で使用上において有害な反応生成物を生成しないような
金属をコーティングする。これらの金属は例えばCu、
 Tiなどがあげられる。コーティングの方法はイオン
ブレーティング、真空蒸着等、一般にセラミックスのコ
ーティングに用いられている方法でよい。
Next, as a method to strengthen the bond between ceramics and metal parts, we added a layer to the root surface of the ceramic that has good bonding properties with ceramics and that does not generate harmful reaction products during use in metal parts that bond with ceramics. coating metal. These metals include, for example, Cu,
Examples include Ti. The coating method may be a method generally used for coating ceramics, such as ion blasting or vacuum deposition.

次に、これらの根部が容易にはいるような穴あるいは溝
等を接合すべき金属部材の接合部分に作製する。第2図
には第1図のセラミックスに対する金属部材の接合部の
形状の1例を示す。第2図において、4は金属部材、5
はセラミックスに設けられた根部か入る穴である。第3
図には第1図(a)、(b)のセラミックス部材1を第
2図の金属部材4に組み入れた状態の斜視図及びその断
面図を示す。この金属部材の材質としては後の旧P処理
において該セラミックスの根部の溝に塑性流動により流
し込めるような塑性変形能を持つ金属であればよく、例
えばCu、 A1. Niなどがあげられる。
Next, holes or grooves, etc., into which these roots can easily fit are made in the joining parts of the metal members to be joined. FIG. 2 shows an example of the shape of the joint between the metal member and the ceramic shown in FIG. In FIG. 2, 4 is a metal member, 5
is a hole in the ceramics into which the root can be inserted. Third
The figure shows a perspective view and a sectional view of the ceramic member 1 of FIGS. 1(a) and 1(b) assembled into the metal member 4 of FIG. 2. The material for this metal member may be any metal that has a plastic deformability that allows it to be poured into the root groove of the ceramic by plastic flow in the subsequent old P treatment, such as Cu, A1. Examples include Ni.

次に、この組立品を旧P処理する。この場合、真空封入
し接合面を真空にする必要かある。これは第4図に示す
ように真空封入用の容器の中に、2次圧力媒体を充填し
この中に該組立品を埋設した後、所要の真空封入処理を
行う。第4図において、6は真空封入用容器、7(よ2
次圧力媒体、8は真空封入用容器に設けられた真空脱気
用バイブである。2次圧力媒体としては、A1.03 
、 BN等、後の旧P処理条件において反応しないセラ
ミックスの粉末が適当である。また、真空封入用の容器
の材質は後の、HIP処理において充分軟化しかつ気密
性を保つことが出来、さらに2次圧力媒体や処理物と反
応しないものである必要がある。
Next, this assembly is subjected to old P processing. In this case, it is necessary to evacuate the joint surface by vacuum sealing. As shown in FIG. 4, a vacuum sealing container is filled with a secondary pressure medium, the assembly is buried therein, and then the required vacuum sealing process is performed. In Fig. 4, 6 is a vacuum sealing container, 7 (Y2
Next, the pressure medium 8 is a vacuum degassing vibrator provided in the vacuum sealing container. As a secondary pressure medium, A1.03
, BN, and other ceramic powders that do not react under the subsequent old P treatment conditions are suitable. In addition, the material of the container for vacuum sealing must be sufficiently softened during the subsequent HIP treatment, be able to maintain airtightness, and must not react with the secondary pressure medium or the processed material.

また、この真空封入用容器の作製に用いる接合方法は、
後の旧P処理において充分変形に耐えかつ、気密性を保
てる方法であれば何によって6良い。さらに真空封入の
方法は、第4図に示すように容器に真空封入用のパイプ
8を設け、容器作製後、このパイプより脱気しつつこの
パイプを閉じる方法でも良く、また、第5図に示すよう
に容器の最終組立時に用いる接合方法を電子ビーム溶接
等の真空中で行う方法を用いて真空封入処理を行っても
良い。第5図において、9は゛電子ビーム溶接等により
真空中で行われた接合部である。
In addition, the joining method used to produce this vacuum sealing container is as follows:
Any method that can sufficiently withstand deformation and maintain airtightness during the subsequent old P treatment is good. Furthermore, the vacuum sealing method may be a method in which a pipe 8 for vacuum sealing is provided in the container as shown in FIG. As shown, the vacuum sealing process may be performed by using a joining method used in final assembly of the container in a vacuum such as electron beam welding. In FIG. 5, reference numeral 9 indicates a joint made in vacuum by electron beam welding or the like.

このようにして真空封入した組立品を旧P処理する。処
理条件は該金属部材が塑性変形し該セラミックスに設け
られた溝に流れ込み充填するに必要かつ充分な温度と圧
力と時間を用いる必要がある。また、該金属部材が超塑
性特性を有するTi合金の場合、その処理温度は超塑性
特性が起こる直上の温度を処理温度とする。さらには、
セラミックスの表面にコーティング処理を施した場合コ
ーティング層とセラミックスか接合し、かつコーティン
グ層の金属か金属部材中に拡散しうる温度と時間を選択
することがより強固な接合体を作成する上で重要である
。例えば、銅とAl2O:lの組合せの場合800度・
1000気圧て1時間保持すれば、充分銅は塑性変形し
Al2O3に設けられた溝に流れ込み充填する。 HI
P処理過程で軟化した金属部材は静水圧加圧により塑性
変形し、セラミックスに設けられた溝に流れ込み充填す
る。また、第1図に示すような形状の根部な用いた場合
、室温に冷却後金属の熱膨張係数がセラミックスの熱膨
張係数よりも大きい場合、金属部材とセラミックスの熱
膨張差によりセラミックスに圧縮応力かかかりセラミッ
クス内に割れが発生するのを防ぐことが出来る。
The thus vacuum-sealed assembly is subjected to old P treatment. As for the treatment conditions, it is necessary to use temperature, pressure, and time necessary and sufficient for the metal member to plastically deform and flow into and fill the grooves provided in the ceramic. Further, in the case where the metal member is a Ti alloy having superplastic properties, the processing temperature is a temperature immediately above where the superplastic properties occur. Furthermore,
When coating the surface of ceramics, it is important to select a temperature and time that will allow the coating layer and ceramic to bond and diffuse into the metal of the coating layer or metal components in order to create a stronger bonded body. It is. For example, in the case of a combination of copper and Al2O:l, the temperature
If the pressure is kept at 1000 atmospheres for 1 hour, the copper will be plastically deformed enough to flow into and fill the grooves provided in the Al2O3. HI
The metal member softened during the P treatment process is plastically deformed by hydrostatic pressure, and flows into and fills the grooves provided in the ceramic. In addition, when the root part of the shape shown in Figure 1 is used, if the coefficient of thermal expansion of the metal is larger than the coefficient of thermal expansion of the ceramic after cooling to room temperature, compressive stress will be applied to the ceramic due to the difference in thermal expansion between the metal member and the ceramic. It is possible to prevent cracks from occurring in the ceramics.

111P処理後、セラミックスと金属部材の接合体を容
器から取り出し、金属部材をさらに必要な形状に加工す
ることにより必要な形状のセラミックスと金属部材の接
合体を得る。
After the 111P treatment, the joined body of the ceramic and metal member is taken out from the container, and the metal member is further processed into a required shape, thereby obtaining a joined body of the ceramic and metal member in the required shape.

本説明は、棒状部材の接合体に付いて説明したが、本発
明による接合方法は例えば円筒状の金属管に円筒状のセ
ラミックス管を接合する場合にも適用できる。この場合
、セラミツ・クス管の接合部には環状の根部を突設し、
金属管の接合部には環状の溝を設ける。このように接合
部に根部を突設しうる形状のセラミックスと穴または溝
を設けうる金属部材の接合体であれば如何なる形状にも
応用しうる。
Although the present description has been made regarding a joined body of rod-shaped members, the joining method according to the present invention can also be applied to, for example, when joining a cylindrical ceramic tube to a cylindrical metal tube. In this case, an annular root is protruded at the joint of the ceramic/cushion pipe,
An annular groove is provided at the joint of the metal tube. As described above, the present invention can be applied to any shape as long as it is a joined body of a ceramic member having a shape that allows a root portion to protrude from the joint portion and a metal member that allows a hole or groove to be provided.

(実施例1) 第6図に、本実施例1で用いたセラミックス及び金属部
材の形状を示す。第6図において、10は本実施例1に
おける接合用のA1.03.11は本実施例1における
無酸素銅である。このように用いたセラミックスはAl
2O,で、対する金属部材は無酸素銅である。さらに同
時に、このセラミックスの根部にTiをイオンブレーテ
ィングによりコーティングした試験片も作製した。コー
ティング層の厚さは約1〜2gmになるように条件を設
定した。
(Example 1) FIG. 6 shows the shapes of the ceramic and metal members used in Example 1. In FIG. 6, 10 is A1 for bonding in this Example 1. 03.11 is oxygen-free copper in this Example 1. The ceramics used in this way were Al
2O, and the corresponding metal member is oxygen-free copper. Furthermore, at the same time, a test piece was also prepared in which the root of this ceramic was coated with Ti by ion blating. Conditions were set so that the thickness of the coating layer was approximately 1 to 2 gm.

これらのセラミックスと金属部材を第2図の様に組み合
わせて、第5図に示すように軟鋼部の容器中に充填され
た粒径的100μIのAl2O3粉末中に埋設した。そ
の後、電子ビーム溶接法により10−’Torrの真空
中で容器の封止処理を行い真空封入処理を行った。
These ceramics and metal members were combined as shown in FIG. 2, and embedded in Al2O3 powder with a grain size of 100 μI filled in a container of a mild steel section as shown in FIG. Thereafter, the container was sealed in a vacuum of 10-' Torr by electron beam welding, and vacuum encapsulation was performed.

この後、処理温度800℃、処理圧力1000気圧、保
持時間1時間の処理条件でA「ガスを圧力媒体として旧
P処理を行った。
Thereafter, the old P treatment was performed using A gas as a pressure medium under the treatment conditions of a treatment temperature of 800° C., a treatment pressure of 1000 atm, and a holding time of 1 hour.

111P処理後、真空封入用容器内の接合体において無
酸素銅は充分変形し、 Al2O:l粉末は圧力媒体と
して充分作用しかつ、 A120i粉末と無酸素銅及び
A1.03焼結体とは反応せず、A1*03粉末が2次
圧力媒体として有効であるといえる。出来た接合体は、
無酸素銅を切削加工して第7図に示すような接合体を得
た。切削加工後さらに切断し断面観察の結果いずれの寸
法、溝形状の接合体も、八1□03の溝中には塑性変形
により無酸素銅が充分充填されていた。かつセラミック
スの根部の表面をTiコーティングした物では、接合界
面にはTiによる反応生成物により強固にかつ充分接合
され、またAl2O3内には割れは発生しておらず、本
発明により健全で強固な接合体が得られる事が判明した
After the 111P treatment, the oxygen-free copper in the bonded body in the vacuum sealing container was sufficiently deformed, the Al2O:l powder sufficiently acted as a pressure medium, and the A120i powder, oxygen-free copper, and A1.03 sintered body reacted. It can be said that A1*03 powder is effective as a secondary pressure medium. The resulting zygote is
Oxygen-free copper was machined to obtain a joined body as shown in FIG. After the cutting process, further cutting was carried out and cross-sectional observation revealed that in all dimensions and groove shapes of the joined bodies, the grooves of 81□03 were sufficiently filled with oxygen-free copper due to plastic deformation. In addition, in the ceramic root surface coated with Ti, the bonding interface is firmly and sufficiently bonded by the reaction product of Ti, and no cracks occur in Al2O3, and the present invention provides a sound and strong bond. It was found that a zygote could be obtained.

(実施例2) 第8図に本実施例て用いたセラミックス及び金属部材の
形状を示す。第8図において、12は本実施例における
接合用の中空円筒状のAl2O3、13は本実施例のお
ける接合用の中空円筒状の無酸素銅、14は接合用の無
酸素銅に設けられたセラミックスの根部が入る溝である
。これを第9図に示すように組み合わせた後、実施例1
と同様真空封入用容器に充填されたAlz03粉末中に
埋設し、その後電子ビーム溶接法により10−’Tor
rの真空中で容器の封止処理を行った。
(Example 2) FIG. 8 shows the shapes of the ceramic and metal members used in this example. In FIG. 8, 12 is a hollow cylindrical Al2O3 for bonding in this example, 13 is a hollow cylindrical oxygen-free copper for bonding in this example, and 14 is an oxygen-free copper for bonding. This is the groove into which the root of the ceramic goes. After combining these as shown in FIG. 9, Example 1
Embedded in Alz03 powder filled in a vacuum sealing container in the same manner as above, and then heated to 10-'Tor by electron beam welding.
The container was sealed in a vacuum of r.

その後、800°C11000気圧、1時間の処理条件
でArガスを圧力媒体として旧P処理を行った。
Thereafter, old P treatment was performed under treatment conditions of 800° C., 11,000 atmospheres, and 1 hour using Ar gas as a pressure medium.

HIP処理の後、容器を解体しAl2O3と“銅の接合
体を取り出し無酸素銅を切削加工し、第10図に示すよ
うな中空円筒体のセラミックスと金属と接合体を得た。
After the HIP treatment, the container was dismantled, the Al2O3 and copper bonded body was taken out, and the oxygen-free copper was cut to obtain a hollow cylindrical ceramic-metal bonded body as shown in FIG.

(発明の効果) 以上の様に、セラミックスと金属部材を接合する際に於
て、セラミックスの接合部に予め溝を有する根部を作成
しておき、熱間静水圧加圧処理により金属部材を塑性変
形させることにより該溝に金属部材を塑性流動により流
し込み、このかみ込みの効果を利用することによりセラ
ミックスと金属部材を強固にかつ容易に割れなく接合す
ることができる。それによりセラミックスと金属部材と
の複合化を容易に行う4とが出来、例えばセラミックス
ローターと金属製軸との接合、ロックアームの摺動部に
セラミックスを接合することなど、自動車部品、a械部
品などに適用することが出来、産業上貢献するところは
大である。
(Effect of the invention) As described above, when joining ceramics and metal members, a grooved root is created in advance at the joint of the ceramics, and the metal member is plasticized by hot isostatic pressure treatment. By deforming, the metal member is poured into the groove by plastic flow, and by utilizing this biting effect, the ceramic and the metal member can be firmly and easily joined without cracking. As a result, it is possible to easily combine ceramics and metal parts, such as joining ceramic rotors and metal shafts, joining ceramics to the sliding part of lock arms, etc., for automobile parts, a machine parts, etc. It can be applied to such things, and it will make a great contribution to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1・図(a)、(e)は本発明における一実施態様の
接合用のセラミックスの斜視図、(b)、(d)はその
側面図、第2図(a)は本発明における1実施態様の金
属部材の接合部の斜視図、(b)はその縦断面図、第3
図(a)は本発明における金属部材とセラミックス部材
の組合せ品の斜視図、(b)はその断面図、第4図(a
)は金属部材とセラミックス部材の組合せ品の真空封入
の1例を示す斜視図、(b)はその縦断面図、第5図(
a)は金属部材とセラミックス部材の組合せ品の真空封
入の他の1例を示す斜視図、(b)はその縦断面図、第
6図は本実施例における接合用のセラミックス及び金属
の形状を示す縦断面図、第7図は本実施例により得られ
た接合体の斜視図、第8図は本実施例2における接合用
のセラミックス及び金属部材の形状を示す縦断面図、第
9図は本実施例2における接合用のセラミックスと金属
部材の組合せ品の縦断面図、第10図は本実施例2によ
り得られた中空円筒状のセラミックスと金属部材との接
合体の斜視図である。 l・・・接合用セラミックス、2・・・根部、3−・・
溝、4・・・金属部材、5・・・穴、6・・・真空封入
用容器、7・・・2次圧力媒体、8・・・真空脱気用パ
イプ、9・・・電子ビーム溶接接合部、10・・・接合
用A1.0! 、 11−・・接合用無酸素銅、 12
−・・接合用中空円筒状のAl2O3,13・・・接合
用中空円筒状の無酸素銅、14−・・溝、W・・・継ぎ
手の荷重方向。
Figures 1 (a) and (e) are perspective views of a ceramic for bonding according to one embodiment of the present invention, (b) and (d) are side views thereof, and Figure 2 (a) is a perspective view of a ceramic for bonding according to an embodiment of the present invention. A perspective view of a joint part of a metal member according to an embodiment, (b) is a vertical cross-sectional view thereof, the third
Figure (a) is a perspective view of a combination product of a metal member and a ceramic member in the present invention, (b) is a cross-sectional view thereof, and Figure 4 (a)
) is a perspective view showing an example of vacuum sealing of a combination product of a metal member and a ceramic member, (b) is a longitudinal sectional view thereof, and FIG.
a) is a perspective view showing another example of vacuum sealing of a combination product of a metal member and a ceramic member, (b) is a longitudinal sectional view thereof, and FIG. 6 shows the shapes of the ceramic and metal for joining in this example. FIG. 7 is a perspective view of the joined body obtained in this example, FIG. 8 is a vertical cross-sectional view showing the shapes of the ceramic and metal members for joining in Example 2, and FIG. FIG. 10 is a longitudinal cross-sectional view of a combination of a ceramic and a metal member for joining in Example 2, and a perspective view of a joined body of a hollow cylindrical ceramic and a metal member obtained in Example 2. l... Ceramics for joining, 2... Root, 3-...
Groove, 4... Metal member, 5... Hole, 6... Vacuum enclosure container, 7... Secondary pressure medium, 8... Vacuum degassing pipe, 9... Electron beam welding Joint part, 10... A1.0 for joining! , 11-...oxygen-free copper for bonding, 12
-...Hollow cylindrical Al2O3 for bonding, 13...Hollow cylindrical oxygen-free copper for bonding, 14-...Groove, W...Load direction of joint.

Claims (4)

【特許請求の範囲】[Claims] (1)セラミックスと金属部材を接合する際に於て、セ
ラミックスの接合部に予め溝を有する根部を突設してお
き、該根部を金属部材の接合部に設けられた穴また溝に
嵌合せしめ、熱間静水圧加圧処理により金属部材を塑性
変形させることにより該溝に金属部材を塑性流動により
流し込み接合することを特徴とするセラミックスと金属
部材の接合方法。
(1) When joining ceramics and metal members, a root with a groove is provided in advance at the joint of the ceramic, and the root is fitted into a hole or groove provided in the joint of the metal member. A method for joining ceramics and a metal member, characterized in that the metal member is plastically deformed by hot isostatic pressure treatment, and the metal member is poured into the groove by plastic flow and joined.
(2)セラミックスと金属部材を接合する際に於て、セ
ラミックスの接合部に予め溝を有する根部を突設してお
き、該根部の表面に予め金属をコーティングし、該根部
を金属の接合部に設けられた穴また溝に嵌合せしめ、熱
間静水圧加圧処理により金属部材を塑性変形させること
により該根部の溝に金属部材を塑性流動により流し込み
接合することを特徴とするセラミックスと金属部材の接
合方法。
(2) When joining ceramics and metal members, a root with a groove is provided in advance at the joint of the ceramic, the surface of the root is coated with metal in advance, and the root is connected to the joint of the metal. Ceramics and metal, characterized in that the metal member is fitted into a hole or groove provided in the root part, and the metal member is plastically deformed by hot isostatic pressure treatment, whereby the metal member is poured into the groove of the root part by plastic flow and joined. How to join parts.
(3)セラミックスはAl_2O_3、ZrO_2、B
eO、ZrB_2のいずれかであり、対する金属部材は
Cu、Cu合金、Al、Al合金、Ni、Ni合金のい
ずれかである特許請求の範囲第1項または第2項記載の
セラミックスと金属部材の接合方法。
(3) Ceramics are Al_2O_3, ZrO_2, B
eO, ZrB_2, and the corresponding metal member is Cu, Cu alloy, Al, Al alloy, Ni, Ni alloy. Joining method.
(4)金属部材は超塑性特性を有するTi合金で、熱間
静水圧加圧処理温度はその超塑性特性を示す温度直上で
ある特許請求の範囲第1項または第2項記載のセラミッ
クスと金属部材の接合方法。
(4) The ceramic and metal according to claim 1 or 2, wherein the metal member is a Ti alloy having superplastic properties, and the hot isostatic pressing temperature is just above the temperature exhibiting the superplastic properties. How to join parts.
JP29620787A 1987-11-26 1987-11-26 Method for bonding ceramic to metallic member Pending JPH01141882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29620787A JPH01141882A (en) 1987-11-26 1987-11-26 Method for bonding ceramic to metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29620787A JPH01141882A (en) 1987-11-26 1987-11-26 Method for bonding ceramic to metallic member

Publications (1)

Publication Number Publication Date
JPH01141882A true JPH01141882A (en) 1989-06-02

Family

ID=17830558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29620787A Pending JPH01141882A (en) 1987-11-26 1987-11-26 Method for bonding ceramic to metallic member

Country Status (1)

Country Link
JP (1) JPH01141882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385305A (en) * 1989-08-25 1991-04-10 Mazda Motor Corp Manufacture of valve lifter
WO2016022139A1 (en) * 2014-08-08 2016-02-11 Siemens Aktiengesellschaft Hot isostatic pressing system for the assembly of modular components usable in a turbine engine
WO2020254426A1 (en) * 2019-06-20 2020-12-24 Hiptec As A method for manufacturing a metal based component comprising a protrusion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385305A (en) * 1989-08-25 1991-04-10 Mazda Motor Corp Manufacture of valve lifter
WO2016022139A1 (en) * 2014-08-08 2016-02-11 Siemens Aktiengesellschaft Hot isostatic pressing system for the assembly of modular components usable in a turbine engine
US10315279B2 (en) 2014-08-08 2019-06-11 Siemens Aktiengesellschaft Hot isostatic pressing system for the assembly of modular components usable in a turbine engine
WO2020254426A1 (en) * 2019-06-20 2020-12-24 Hiptec As A method for manufacturing a metal based component comprising a protrusion
US11951548B2 (en) 2019-06-20 2024-04-09 Hiptec As Method for manufacturing a metal based component comprising a protrusion

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
JPS61111981A (en) How to join ceramic parts and metal parts
JPH0339993B2 (en)
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
CN113478062B (en) Reaction diffusion connection method for titanium-zirconium-molybdenum alloy high-temperature-resistant joint
JPS6045991B2 (en) Manufacturing method of tubular joint parts
US6131797A (en) Method for joining ceramic to metal
JPH01141882A (en) Method for bonding ceramic to metallic member
JP2519578B2 (en) Method of joining metal member and ceramics or cermet member
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
DeLeeuw Effects of Joining Pressure and Deformation on the Strength and Microstructure of Diffusion‐Bonded Silicon Carbide
JPS6130292A (en) Diffusion-joining method by hot isotropic pressure press
JPH02175014A (en) Composite sintered hard alloy roll and its manufacture
JPS62156088A (en) Dissimilar metal joint
JP3070121B2 (en) Method for joining Al2O3 / TiC composite material
JPH07300376A (en) Method for joining alumina to fe-ni-co alloy
JP3218873B2 (en) Solid phase diffusion bonding
JPS60251180A (en) Method of bonding ceramic member and metal member
JP3797637B2 (en) Composite
JPS60231473A (en) Method of bonding ceramic member and metal member
JPS60251179A (en) Method of bonding ceramic member and metal member
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH0573715B2 (en)
JPH06297162A (en) Thick clad material