JPS6024621B2 - Pseudo pull-in detection method for carrier wave regeneration circuit - Google Patents
Pseudo pull-in detection method for carrier wave regeneration circuitInfo
- Publication number
- JPS6024621B2 JPS6024621B2 JP51131888A JP13188876A JPS6024621B2 JP S6024621 B2 JPS6024621 B2 JP S6024621B2 JP 51131888 A JP51131888 A JP 51131888A JP 13188876 A JP13188876 A JP 13188876A JP S6024621 B2 JPS6024621 B2 JP S6024621B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- signal
- output
- carrier wave
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000008929 regeneration Effects 0.000 title claims description 15
- 238000011069 regeneration method Methods 0.000 title claims description 15
- 238000001514 detection method Methods 0.000 title claims description 8
- 239000013598 vector Substances 0.000 claims description 25
- 238000010586 diagram Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
【発明の詳細な説明】
本発明は無線通信方式もしくは導波管通信方式において
多相多値変調信号を二つの互いに直交する基準搬送波に
より検波してデータ信号を再生する復調装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a demodulation device that detects a multi-phase multi-level modulated signal using two mutually orthogonal reference carrier waves to reproduce a data signal in a wireless communication system or a waveguide communication system.
特に復調装置に供繋舎する基準搬送波再生回路の擬似引
込検出方式に関する。多相多値信号による情報伝送方式
において、その復調方式として二つの直交する基準搬送
波によって受信信号を同期検波し、各々の検波信号から
データ信号を再生する方式が有力な方式として知られて
いる。例えば第1図の信号ベクトル図に示すように16
個のベクトルを格子状に配置した多相多値変調信号に対
しては図のx軸およびy軸に対応する位相をもつ基準搬
送波により信号を同期検波するものである。ここで第1
図に示す変調信号を例として従来の復調方式を説明し、
どのような欠点があるかを述べる。In particular, it relates to a pseudo pull-in detection method for a reference carrier regeneration circuit connected to a demodulator. BACKGROUND ART In an information transmission system using a multi-phase multi-level signal, a known demodulation system is one in which a received signal is synchronously detected using two orthogonal reference carrier waves and a data signal is regenerated from each detected signal. For example, as shown in the signal vector diagram in Figure 1, 16
For a multi-phase, multi-value modulated signal in which vectors are arranged in a lattice pattern, the signal is synchronously detected using a reference carrier wave having phases corresponding to the x-axis and y-axis in the figure. Here the first
The conventional demodulation method will be explained using the modulated signal shown in the figure as an example.
State what drawbacks there are.
第2図は従来の復調装置の回路構成図を示す。図で1は
変調波の入力端子、2〜5は再生されたデータ信号の出
力端子、6,7は位相検波器、8はデータ信号再生回路
、9は基準搬送波再生回路、10はけ/2移相器である
。変調波101は位相検波器6および7に入力され、直
交する基準搬送波102および103により各々同期検
波される。位相検波信号104,105はデ−タ信号再
生回路8に入力され、ここで各々2ビットの二進符号に
符号化されデータ信号106〜109が出力される。基
準搬送波再生回路9は2m/4周期の位相比較特性をも
つ位相同期回路であり、よく知られたように種々の方式
が実用に供せられている。本図の例は逆変調方式または
再変調方式による構成を示すもので、分岐された入力変
調波101と、再生データ信号106および108を入
力して基準搬送波を再生する106,108は各々前記
二つの検波信号を磁性判別した出力である。この従来回
路の具体的構成については、下記文献〔1〕および〔2
〕に詳細な記述があるのでここでは省略する。FIG. 2 shows a circuit diagram of a conventional demodulator. In the figure, 1 is an input terminal for modulated waves, 2 to 5 are output terminals for reproduced data signals, 6 and 7 are phase detectors, 8 is a data signal regeneration circuit, 9 is a reference carrier wave regeneration circuit, and 10 is a scale/2 It is a phase shifter. The modulated wave 101 is input to phase detectors 6 and 7, and is synchronously detected by orthogonal reference carrier waves 102 and 103, respectively. The phase detection signals 104 and 105 are input to a data signal reproducing circuit 8, where they are each encoded into a 2-bit binary code and output as data signals 106-109. The reference carrier regeneration circuit 9 is a phase synchronization circuit having a phase comparison characteristic of 2 m/4 period, and as is well known, various systems have been put into practical use. The example in this figure shows a configuration using an inverse modulation method or a remodulation method, and the branched input modulated wave 101 and reproduction data signals 106 and 108 are inputted to reproduce the reference carrier wave 106 and 108, respectively. This is the output obtained by determining the magnetic properties of two detected signals. Regarding the specific configuration of this conventional circuit, see the following documents [1] and [2].
], so detailed descriptions are omitted here.
本明細書の説明では、この回路9が2m/4周期の位相
比較特性をもつことを認識すれば理解できる。〔1〕小
槍山他「2庇−40mM方式用送受信装置」電気通信研
究所 研究実用化報告第24登第1び号(1975)p
p.2193〜2195〔2〕石尾他「多相多値搬送波
ディジタル通信の一方式」電子通信学会通信方式研究会
資料
CS74−158,1973王1月
この基準波再生回路9に4相鴎K信号を加えた場合は2
m/4周期の鏡歯状位相比較特性が得られることは周知
であるが第1図に示した多相多値変調信号を加えた場合
には、この入力信号が4種類の位相または振幅の異なる
4相PSK波の合成と見なせることから、正確な鏡歯状
位相比較特性を示さなくなり第3図に示すような特性と
なる。The description in this specification can be understood by recognizing that this circuit 9 has a phase comparison characteristic of 2m/4 period. [1] Koyariyama et al. “Transmitter/receiver for 2-eaves-40mM system” Telecommunications Research Institute Research and Application Report No. 24 No. 1 (1975) p.
p. 2193-2195 [2] Ishio et al. “A method of multi-phase multi-value carrier digital communication” Institute of Electronics and Communication Engineers communication system research group material CS74-158, 1973 Wang January Added a 4-phase Ou K signal to this reference wave regeneration circuit 9. 2 if
It is well known that a mirror-tooth phase comparison characteristic with m/4 period can be obtained, but when the multi-phase multi-level modulation signal shown in Fig. 1 is added, this input signal has four types of phases or amplitudes. Since it can be regarded as a combination of different four-phase PSK waves, it no longer exhibits an accurate mirror-tooth phase comparison characteristic, resulting in a characteristic as shown in FIG. 3.
第3図で横鞠は基準搬送波と入力変調波との位相差であ
り、第1図のx軸およびy軸を基準として測った量での
eで示されている。縦軸は基準搬送波再生回路の内部に
ある電圧制御発振器(以下VCOと略称する。)に加え
られる制御信号の振幅を示す量であり、ごで示されてい
る。位相同期ループの理論でよく知られているようにV
COを入力信号との周波数差がないとすれば、第3図の
機軸を横切る点において静止し引込状態となる。すなわ
ち第3図の特性からわかるようにこのループでは−45
0<のeく十450の範囲で三つの引込状態があり、一
つはの8=0他はのe…±240である。いま、この装
置ではのe=0に引込むことを目的としているから、他
の二つの引込点は擬似引込点になる。これら二つの引込
点にループが引込んだ場合に、データ信号の再生が不可
能になることは第1図で信号ベクトルを固定したままx
軸およびy軸を士24o回転することにより理解できる
。本発明の目的はこれを改良するもので擬似引込現象の
ないループを実現し、常に正規引込状態にあるような回
路を制御するための方式を提供することにある。In FIG. 3, the horizontal axis is the phase difference between the reference carrier wave and the input modulated wave, and is indicated by e as a quantity measured with reference to the x-axis and y-axis in FIG. 1. The vertical axis is an amount indicating the amplitude of a control signal applied to a voltage controlled oscillator (hereinafter abbreviated as VCO) inside the reference carrier regeneration circuit, and is indicated by . As is well known in the theory of phase-locked loops, V
Assuming that there is no frequency difference between the CO and the input signal, the CO will come to a standstill and be in a retracted state at the point where it crosses the machine axis in FIG. In other words, as can be seen from the characteristics in Figure 3, in this loop -45
There are three retraction states in the range of 0<e×450, one being 8=0 and the other being e...±240. Now, since the purpose of this device is to pull in e=0, the other two pull-in points become pseudo pull-in points. If the loop is pulled into these two pull-in points, it becomes impossible to reproduce the data signal.
This can be understood by rotating the axis and y-axis by 24 degrees. The object of the present invention is to improve this and to provide a method for realizing a loop free of pseudo-pulling phenomena and controlling a circuit that is always in a normal pulling state.
すなわち、本発明は基準搬送波再生回路の位相同期ルー
プが、正規引込状態か擬似引込状態かを確実に判別する
検出回路を提供し、その出力によりVCOの制御端子に
掃引信号を与えることによりループが擬似引込状態で静
止しないように構成することを可能とする。第4図に本
発明実施例装置の構成図を示す。That is, the present invention provides a detection circuit that reliably determines whether the phase-locked loop of the reference carrier regeneration circuit is in a normal pull-in state or a pseudo pull-in state, and provides a sweep signal to the control terminal of the VCO using the output of the detection circuit. It is possible to configure the device so that it does not stand still in a pseudo-retracted state. FIG. 4 shows a configuration diagram of an apparatus according to an embodiment of the present invention.
この回路は前述の従来例の装置と対応させ、同一の符号
により表示されている。基準搬送波再生回路9の一部で
ある電圧制御発振器VCOに制御電圧を与えるための制
御回路に式発明の特徴があり、この部分の構成について
第5図にさらに詳しく説明する。第5図は本発明実施例
主要部の回路構成図で、擬似引込状態検出回路および掃
引回路を含む。This circuit corresponds to the conventional device described above and is designated by the same reference numeral. The invention is characterized by a control circuit for applying a control voltage to the voltage controlled oscillator VCO, which is a part of the reference carrier regeneration circuit 9, and the configuration of this part will be explained in more detail with reference to FIG. FIG. 5 is a circuit diagram of the main part of the embodiment of the present invention, including a pseudo-retraction state detection circuit and a sweep circuit.
第5図で1 1はAM検波器、12は閥値回路、13は
信号比較器、14は符号判別回路、15は積分回路、1
6は閥値回路、17は掃引信号発生器である。AM検波
器11は多相多値変調波101を入力として、その振幅
変調成分を検波する。この検波信号は閥値回路12に加
えられ予め定められた閥値によって選別される。すなわ
ち検波信号が閥値を越えた場合は「1」、閥値を越えな
ければ「0」に対応するディジタル信号を送出する。本
実施例においてはこの閥値は第1図における信号ベクト
ルSoo,S,.,S2およびS鑓を他と区別するよう
に設定される。すなわち第1図に示した信号ベクトル群
を同じ振幅をもつグループに層列すると、{SI}ニ(
Sの,SI・,S22,S33){Sロ} コ(S。In Figure 5, 11 is an AM detector, 12 is a threshold circuit, 13 is a signal comparator, 14 is a sign discrimination circuit, 15 is an integration circuit, 1
6 is a threshold circuit, and 17 is a sweep signal generator. The AM detector 11 receives the multiphase multilevel modulated wave 101 as an input and detects its amplitude modulation component. This detected signal is applied to a threshold value circuit 12 and is selected according to a predetermined threshold value. That is, if the detected signal exceeds the threshold value, a digital signal corresponding to "1" is transmitted, and if it does not exceed the threshold value, a digital signal corresponding to "0" is transmitted. In this embodiment, the threshold values are the signal vectors Soo, S, . , S2 and S pin are set to distinguish them from the others. In other words, if the signal vector group shown in Fig. 1 is layered into groups with the same amplitude, {SI}(
S's, SI・, S22, S33) {S ro} ko (S.
,,S。3,S,。,,S. 3.S.
,S.2,Sa,S湖S30,S32)および
{Sm}二(S伽SI3,S2のS31)の3つのグル
ープになる。,S. There are three groups: 2, Sa, S Lake S30, S32) and {Sm}2 (S SI3, S31 of S2).
ISIをもってベクトルSの振幅成分を表わすとすれば
、前述の闇値は{ISII+ISロl}/2の近傍に設
定し、このレベルよりも高い検波信号を{SI}に属す
るものと判定する。If the amplitude component of the vector S is expressed by ISI, the darkness value described above is set near {ISII+ISl}/2, and a detected signal higher than this level is determined to belong to {SI}.
一方、符号判別回路14は第2図におけるデータ信号再
生回路8の出力信号106〜109を入力して、このデ
ータ信号が二つの基準搬送波ベクトルによって構成され
る二次元信号空間のどの区域に属するかを判別する。す
なわち第2図において直交する一つの基準搬送波によっ
て同期検波された二つの検波信号の各々をかitに符号
化した操作は、二つの基準搬送波によって構成される二
次元空間を第6図に示した16ケの小区域に区分し、入
力信号ベクトルがこれらの小区域のどれに含まれるかを
判定していることに等しい。第5図においてデータ信号
再生回路の出力信号106〜109の各々をa,.,
a.2,a2,,a22(aij=+1または一1とし
、検波信号104,105を各s,,s2とし、これら
の量子化された信号を〔s,〕〔s2〕とすると、〔s
,〕={ぞ×a,.十〆×a,2}〔s2〕={ぞ×を
.十〆×a22}
の関係にある。On the other hand, the code discrimination circuit 14 inputs the output signals 106 to 109 of the data signal reproducing circuit 8 in FIG. Determine. In other words, the operation of encoding each of the two detected signals synchronously detected by one orthogonal reference carrier wave in Fig. 2 into IT creates a two-dimensional space constituted by the two reference carrier waves as shown in Fig. 6. This is equivalent to dividing into 16 sub-areas and determining which of these sub-areas the input signal vector is included in. In FIG. 5, each of the output signals 106 to 109 of the data signal reproducing circuit is a, . ,
a. 2, a2,, a22 (aij = +1 or -1, the detected signals 104, 105 are each s,, s2, and these quantized signals are [s,] [s2], then [s
,]={zo×a,. 〆〆×a,2}[s2]={zo×. The relationship is 10〆×a22}.
第6図の各区域に記した符号はaiiの十1を1に、一
1を0に対応させて(a,.,aa, a,2,a22
)の符号列に変換して託したものであり、信号ベクトル
が属する区域と、データ信号再生回路の出力符号列との
対応関係を示している。符号判別回路1 4は符号列(
0000),(0101),(1111)または(10
10)のいずれかを入力したとき「1ハその他の符号列
を入力したとき「0」に対応するディジタル信号を発生
する。信号比較器13は関値回路12と符号判別回路1
4の出力を入力し、両者が一致したとき「1ハ不一致の
とき「0」に対応した信号を出力する。すなわち信号比
較回路13は通常の論理積回路と同等である。信号比較
回路13の出力は積分回路15によって平均化され、閥
値回路16によって一定の閥値を越えるか否かを判別さ
れ、正親引込状態か否かを判定する。正規引込状態にな
いと判定した場合は、掃引信号発生回路を起動させて掃
引信号1 10を発生する。この掃引信号はVCOの制
御端子に加えられる。正規引込状態を判定したときは、
掃引信号発生回路を制御して縞引を停止させる。信号ベ
クトル群{SI}は正規引込状態において符号列(00
00),(0101),(1111)または(1010
)のいずれかに符号化されるが擬似引込状態においては
(0001),(0100),(0111),(110
1),・・・・・・等に符号化されるので、前者の場合
は信号比較器13の二つの入力は一致するが、後者の場
合は一致しない。この原理により上述の同期引込状態判
別を確実に行なうことができる。一方、入力変調波は通
信系では雑音を含んでいるが、このために上述のベクト
ル振幅の判別またはデータ信号再生操作が誤動作する可
能性がある。このために信号比較器13の出力は積分回
路15により一定時間平均化されたのち閥値回路16に
より最終的に同期状態を判定する。この動作はループの
引込過程が一定の時間を要し引込が完了するまでに、入
力変調波とVCO出力との位相差は時々核々変動してい
ることから、正規引込状態の判定のためには一定の観測
時間が必要なことからも要請されるものである。上記実
施例では、選別手段により選別されたベクトルは、最大
振幅のものSoo,S,.,S22,S33であり、選
別されたベクトルが正規引き込み時にとり得る符号群は
、第6図の(0000),(0101),(1111)
,(1010)に対応する正規引き込み時には上記ベク
トルSoo,S,.,S22,S幻を持つ入力変調波信
号の復調信号列は、それぞれ、(0000),(010
1),(1111),(1010)として復調されるが
、擬似引き込み時には基準搬送波の位相が回転している
ので、これとは別の復調信号列になる。The codes written in each area in Fig. 6 correspond to aii, 11 corresponds to 1, and 11 corresponds to 0 (a, ., aa, a, 2, a22).
), and shows the correspondence between the area to which the signal vector belongs and the output code string of the data signal reproducing circuit. The code discrimination circuit 1 4 is a code string (
0000), (0101), (1111) or (10
10) When any of the code strings ``1'' and other code strings are input, a digital signal corresponding to ``0'' is generated. The signal comparator 13 includes a function value circuit 12 and a sign discrimination circuit 1.
4 is input, and when the two match, it outputs a signal corresponding to "1" and "0" when they do not match. That is, the signal comparison circuit 13 is equivalent to a normal AND circuit. The output of the signal comparison circuit 13 is averaged by an integrating circuit 15, and a threshold value circuit 16 determines whether or not it exceeds a certain threshold value, thereby determining whether or not the parent is in a positive pull-in state. If it is determined that the normal pull-in state is not present, the sweep signal generation circuit is activated to generate sweep signals 1 to 10. This sweep signal is applied to the control terminal of the VCO. When determining the normal retraction state,
Controls the sweep signal generation circuit to stop striping. The signal vector group {SI} is the code string (00
00), (0101), (1111) or (1010
), but in the pseudo-retraction state, it is encoded as (0001), (0100), (0111), (110
1), . . . , etc., so in the former case the two inputs of the signal comparator 13 match, but in the latter case they do not match. Based on this principle, the above-described synchronous pull-in state determination can be performed reliably. On the other hand, the input modulated wave contains noise in the communication system, which may cause the above-mentioned vector amplitude discrimination or data signal reproduction operation to malfunction. For this purpose, the output of the signal comparator 13 is averaged for a certain period of time by an integrating circuit 15, and then a threshold circuit 16 finally determines the synchronization state. This operation requires a certain amount of time for the loop pull-in process, and by the time the loop pull-in is completed, the phase difference between the input modulated wave and the VCO output sometimes fluctuates, so it is necessary to determine the normal pull-in state. This is also required because a certain amount of observation time is required. In the above embodiment, the vectors selected by the selection means are those with maximum amplitudes Soo, S, . , S22, and S33, and the code groups that the selected vector can take during regular pull-in are (0000), (0101), and (1111) in FIG.
, (1010), the above vectors Soo,S, . , S22, the demodulated signal sequence of the input modulated wave signal with S illusion is (0000), (010
1), (1111), and (1010), but since the phase of the reference carrier wave is rotated during pseudo pull-in, the demodulated signal sequence is different from this.
したがって入力変調波信号をそのベクトルの振幅によっ
て選別し、かつ復調信号列についても上述の判別を行い
、これらを互いに比較することにより、正規の引き込み
か擬似引き込みかを比較することができる。上記実施例
では最大振幅のものについて選別を行ったが、振幅が二
番目に大きいベクトルについて選別を行うこととしても
、同様に本発明を実施することができる。Therefore, by sorting the input modulated wave signal according to the amplitude of its vector, performing the above-described determination on the demodulated signal sequence, and comparing these with each other, it is possible to compare whether the input modulation wave signal is a regular pull-in or a pseudo pull-in. In the above embodiment, the vector with the largest amplitude is selected, but the present invention can be similarly implemented by selecting the vector with the second largest amplitude.
以上の説明から明らかなように本発明によれば多相多値
変調波から基準搬送波を再生する基準搬送波再生回路に
おいて、信号ベクトル群の内、特定の振幅をもつベクト
ル群と、それらから再生したデータ信号符号列との間に
存在する相関関係が引込状態によって変化することを利
用して、ループの引込状態を判別しループが常に正規引
込状態において静止するように制御することを可能とす
ることができる。As is clear from the above description, according to the present invention, in a reference carrier regeneration circuit that regenerates a reference carrier wave from a multi-phase multilevel modulated wave, a vector group having a specific amplitude among a signal vector group, and a vector group regenerated from them. To make it possible to determine the retraction state of a loop and control the loop so that it always remains stationary in a normal retraction state by utilizing the fact that the correlation between the data signal code string and the data signal code string changes depending on the retraction state. I can do it.
これにより極めて信頼性の高い搬送波再生を行なうこと
ができる。なお、信号ベクトル群の振幅を検出する手段
は本実施例に限るものではなく、例えば検波信号s,(
104),s2(105)を利用してノS亭十S琴の演
算を行なうことによっても可能である。This allows extremely reliable carrier wave recovery. Note that the means for detecting the amplitude of the signal vector group is not limited to the present embodiment; for example, the means for detecting the amplitude of the signal vector group is
104), s2 (105) to perform the calculation of NoSuteijuSkoto.
また、前述したように基準搬送波再生回路の具体的構成
は本発明の範囲を制約するものではなく、無変調波に対
して2汀/4周期の位相比較特性をもつものであればよ
い。さらに以上の説明は第1図に示した1句固の信号ベ
クトルを格子状に配列した信号に対して説明したが他の
多相多億変調波に対しても本発明を同様に実施すること
ができる。Further, as described above, the specific configuration of the reference carrier regeneration circuit does not limit the scope of the present invention, and it may be any circuit that has a phase comparison characteristic of 2 phases/4 cycles with respect to an unmodulated wave. Furthermore, although the above explanation has been made for a signal in which single-phase signal vectors are arranged in a grid pattern as shown in FIG. 1, the present invention can be implemented in the same way for other multi-phase multi-billion modulated waves. I can do it.
第1図は多相多値変調信号のベクトル図。
第2図は従来例の復調回路を示す回路構成図、第3図は
第2図に示す復調回路の搬送波再生位相同期ループ位相
比較特性例を示す図。第4図は本発明の一実施例の構成
図。第5図はその要部の回路構成図。第6図は基準搬送
波と再生データ信号との関係を示す信号空間図。1・・
・・・・変調波信号端子、2〜5……再生データ信号の
出力端子、6,7・・…・位相検波器、8・・・・・・
データ信号再生回路、9・・・…基準搬送波再生回路、
1 0……中/2移相器、1 1……AM検波器、12
・・・・・・闇値回路、13・・・・・・信号比較器、
14・・・・・・符号判別回路、15・・・・・・積分
回路、16・・・・・・閥値回路、17・・・・・・掃
引信号発生器。
賄1図琉2図
新3図
第4図
姉5図
新6図FIG. 1 is a vector diagram of a multiphase multilevel modulation signal. FIG. 2 is a circuit configuration diagram showing a conventional demodulation circuit, and FIG. 3 is a diagram showing an example of carrier recovery phase-locked loop phase comparison characteristics of the demodulation circuit shown in FIG. 2. FIG. 4 is a configuration diagram of an embodiment of the present invention. FIG. 5 is a circuit configuration diagram of the main part. FIG. 6 is a signal space diagram showing the relationship between a reference carrier wave and a reproduced data signal. 1...
...Modulated wave signal terminal, 2 to 5...Regenerated data signal output terminal, 6,7...Phase detector, 8...
Data signal regeneration circuit, 9...Reference carrier wave regeneration circuit,
1 0...Medium/2 phase shifter, 1 1...AM detector, 12
... Dark value circuit, 13 ... Signal comparator,
14...Sign discrimination circuit, 15...Integrator circuit, 16...Block value circuit, 17...Sweep signal generator. Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, new figure.
Claims (1)
信号の搬送波に互いに位相が直交する二つの基準搬送波
を用いて位相検波を行う手段を含み、その手段の出力に
データ再生出力を得る復調回路の基準搬送波再生回路に
おいて、 前記入力変調波信号のベクトルの振幅を検出
する手段と、 この手段により検出された振幅を一定の
基準値にしたがつて選別することにより前記ベクトルを
選別する振幅選別手段と、 前記データ再生出力を入力
して、このデータ再生出力が前記選別手段により選別さ
れたベクトルが正規の引き込み時にとり得る符号群のい
ずれかと一致するか否かを判別する符号判別手段と、
この符号判別手段の出力および前記振幅選別手段の出力
を入力して、その両出力の一致を検出する比較手段と、
この比較手段の出力を積分する積分手段と、 この積
分手段の出力が所定の閾値を越えるか否かを判定する閾
値回路と、 を備えたことを特徴とする搬送波再生回路
の擬似引込検出方式。1. Contains means for performing phase detection on an input modulated wave signal subjected to polyphase multi-value modulation using two reference carrier waves whose phases are orthogonal to the carrier wave of the signal, and a data reproduction output as the output of the means. In the reference carrier regeneration circuit of the demodulation circuit for obtaining a reference carrier wave, a means for detecting the amplitude of the vector of the input modulated wave signal, and a means for selecting the vector by sorting the amplitude detected by the means according to a certain reference value. amplitude selection means; and code determination means that inputs the data reproduction output and determines whether the data reproduction output matches any of the code groups that the vector selected by the selection means can take during normal pull-in. and,
a comparison means for inputting the output of the sign discrimination means and the output of the amplitude selection means and detecting a match between the two outputs;
A pseudo pull-in detection method for a carrier wave regeneration circuit, comprising: an integrating means for integrating the output of the comparing means; and a threshold circuit for determining whether the output of the integrating means exceeds a predetermined threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51131888A JPS6024621B2 (en) | 1976-11-02 | 1976-11-02 | Pseudo pull-in detection method for carrier wave regeneration circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51131888A JPS6024621B2 (en) | 1976-11-02 | 1976-11-02 | Pseudo pull-in detection method for carrier wave regeneration circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5356959A JPS5356959A (en) | 1978-05-23 |
JPS6024621B2 true JPS6024621B2 (en) | 1985-06-13 |
Family
ID=15068483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51131888A Expired JPS6024621B2 (en) | 1976-11-02 | 1976-11-02 | Pseudo pull-in detection method for carrier wave regeneration circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6024621B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62130041A (en) * | 1985-11-30 | 1987-06-12 | Nec Home Electronics Ltd | Digital demodulation circuit |
JPH0810879B2 (en) * | 1986-02-20 | 1996-01-31 | 富士通株式会社 | Demodulator |
-
1976
- 1976-11-02 JP JP51131888A patent/JPS6024621B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5356959A (en) | 1978-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4347616A (en) | Digital multi-level multi-phase modulation communication system | |
GB2087177A (en) | Method and apparatus for stabilizing a carrier tracking loop | |
US4174505A (en) | Directional PSK modulation and demodulation system | |
Sundresh et al. | Maximum a posteriori estimator for suppression of interchannel interference in FM receivers | |
JPS6024621B2 (en) | Pseudo pull-in detection method for carrier wave regeneration circuit | |
US3883806A (en) | Demodulator circuit for phase modulated communication signals | |
CA1147840A (en) | Method and apparatus for demodulating signals in a logging while drilling system | |
EP0484914B1 (en) | Demodulator and method for demodulating digital signals modulated by a minimum shift keying | |
CA1176728A (en) | Arrangement for checking the synchronisation of a receiver | |
JPH0449822B2 (en) | ||
RU2019054C1 (en) | Device for reconstruction of carrier frequency of signals of sixteen-position quadrature on-off keying | |
JPS58221548A (en) | phase synchronized circuit | |
JPS58500344A (en) | Two-phase detection device | |
Chun et al. | Design of variable loop gains of dual-loop DPLL | |
US3840891A (en) | Time duration modulation and demodulation for storage or transmission of digital data | |
SE414360B (en) | PROCEDURE FOR PHASE SYNCHRONIZATION IN A SYNCRONIC DATA TRANSMISSION SYSTEM AND DEVICE FOR EXECUTING THE PROCEDURE | |
US4455680A (en) | Method and apparatus for receiving and tracking phase modulated signals | |
JPS6025938B2 (en) | Pseudo pull-in avoidance circuit in reference carrier regeneration circuit | |
JPH04233360A (en) | carrier wave regenerator | |
CA1269724A (en) | Phase-locked loop circuit | |
US3406255A (en) | Data transmission techniques using orthogonal fm signal | |
JP3919593B2 (en) | Clock reproduction apparatus, clock reproduction method and program | |
JPS6362931B2 (en) | ||
JP2543092B2 (en) | Digital data reproducing device | |
US4012696A (en) | Multiple rate digital command detection system with range clean-up capability |