[go: up one dir, main page]

JPS60241269A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS60241269A
JPS60241269A JP59097892A JP9789284A JPS60241269A JP S60241269 A JPS60241269 A JP S60241269A JP 59097892 A JP59097892 A JP 59097892A JP 9789284 A JP9789284 A JP 9789284A JP S60241269 A JPS60241269 A JP S60241269A
Authority
JP
Japan
Prior art keywords
thin film
film transistor
film
substrate
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097892A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP59097892A priority Critical patent/JPS60241269A/en
Publication of JPS60241269A publication Critical patent/JPS60241269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は4′膜トランジスタ(以下TPTと称する)に
関し、特に低温プロセスにおいて相互コンダクタンスが
大きく且つ安定性の優れたTPTの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 4' film transistor (hereinafter referred to as TPT), and in particular to a method for manufacturing a TPT which has high mutual conductance and excellent stability in a low temperature process.

TPTは大面積にわたってスイッチングアレイを形成し
易くそのためイメージセンサあるいはディスプレイ素子
用のスイッチングアレイを目的に研究が進められている
。このような目的に用いられるTPTは、高いオン・オ
フ比を有し且つ出来る限り低い動作電圧で駆動させるた
めに、高い相XD 互コンダクタンスfm(=、、、)を有する必要がある
。ドレイン電流が飽和している領域では2mと表わされ
る。ここでWはチャンネル幅、Lはチャンネル長、μは
チャンネル部のキャリアの移動度、CIはゲート絶縁膜
の容量、vGはゲート印加電圧、vTは閾値電圧を示し
ている。2mを島くするためにはいろいろ方法があるが
、ゲート絶縁膜の容量を大きくすることも一つの有効な
方法である。従来、ゲート絶縁膜には二酸化ノリコン(
SiO□)が最も多く用いられるが、大面積トランジス
タアレイを製作するには安価なガラス基板を用いる必要
があるため、CvD(化学的気相析出)法等により低温
でS I04薄膜を形成する必要があった。面乍らこの
ように形成した5i02膜中には欠陥密度が多く、絶縁
耐圧が低いため、ゲート絶縁膜の容量を上げるために、
Sin、膜の膜厚を薄くすることは限界がある。またゲ
ート絶琢膜の誘電率を上げる方法もあり、窒化硅素(S
t、N、)膜等の誘電率の比較的大きな材料を用いると
環境に対する安定性なども優れているが、半導体層との
間に界面準位を形成し易<TPTの安定性に問題がある
。また低温で形成する5i02膜には内部に高い欠陥密
度を有し、これがキャリアのトラップとして働き、TP
Tの閾値電圧やドレイン電流等の動作特性の安定性に問
題があった。
TPT is easy to form a switching array over a large area, and therefore research is progressing for the purpose of switching arrays for image sensors or display devices. The TPT used for this purpose needs to have a high phase XD transconductance fm (=, , , ) in order to have a high on-off ratio and be driven at as low an operating voltage as possible. The region where the drain current is saturated is expressed as 2m. Here, W is the channel width, L is the channel length, μ is carrier mobility in the channel portion, CI is the capacitance of the gate insulating film, vG is the gate applied voltage, and vT is the threshold voltage. There are various methods to make a 2m area into an island, and one effective method is to increase the capacitance of the gate insulating film. Conventionally, gate insulating film was made of silicon dioxide (
SiO□) is most often used, but since it is necessary to use an inexpensive glass substrate to fabricate large-area transistor arrays, it is necessary to form SiO4 thin films at low temperatures using chemical vapor deposition (CvD) methods, etc. was there. However, the 5i02 film formed in this way has a high defect density and a low dielectric breakdown voltage, so in order to increase the capacitance of the gate insulating film,
There is a limit to reducing the thickness of a Sin film. There is also a method to increase the dielectric constant of the gate insulation film, which is silicon nitride (S
Using a material with a relatively high dielectric constant, such as a t, N, ) film, has excellent stability against the environment, but it is easy to form interface states with the semiconductor layer, causing problems with the stability of TPT. be. In addition, the 5i02 film formed at low temperature has a high defect density inside, which acts as a carrier trap and causes the TP
There was a problem with the stability of operating characteristics such as the threshold voltage and drain current of T.

本発明はかかる状況を鑑みて成されたもので、従来に比
較して欠陥密度が低いゲート絶縁膜を提供しその結果と
して、高い相互コンダクタンスを有し且つ安定性の優れ
た薄膜トランジスタの製造方法を提供するものである。
The present invention has been made in view of such circumstances, and provides a gate insulating film with a lower defect density than conventional ones, and as a result, a method for manufacturing thin film transistors having high mutual conductance and excellent stability. This is what we provide.

以下図面に4づき本発明について具体重層説明する。第
1図(、)〜(e)に本発明に基づく薄膜トランジスタ
の製造工程を宗す。第1図(−)は絶縁性基板として超
硬質ガラス(1)を示している。基板としては軟化点の
低い並ガラスを使用してもトランジスタの製造は可能で
ある。第1図(b)はCVD法により基板上に多結晶ノ
リコン薄膜の堆積した状態を。
The present invention will be specifically explained below with reference to the drawings. FIGS. 1(a) to 1(e) show the manufacturing process of a thin film transistor according to the present invention. FIG. 1 (-) shows super hard glass (1) as an insulating substrate. It is possible to manufacture a transistor even if ordinary glass with a low softening point is used as the substrate. FIG. 1(b) shows a state in which a polycrystalline Noricon thin film is deposited on a substrate by the CVD method.

示す。多結晶シリコン薄膜(2)け1000〜50QQ
Aの膜厚で、形成する。第1図(c)は前記多結晶シリ
コン薄膜上に減圧CVD法によりゲート絶縁膜を堆積し
た状態を示す。ゲルト絶縁膜の厚さは100〜1ooo
Xにする。このあと上記基板を平行平板型の高周波プラ
ズマ発生装置、内に設置する。第2図は該高周波プラズ
マ発生装置の概要を示す。
show. Polycrystalline silicon thin film (2) 1000~50QQ
It is formed with a film thickness of A. FIG. 1(c) shows a gate insulating film deposited on the polycrystalline silicon thin film by low pressure CVD. The thickness of the gel insulating film is 100~1ooo
Make it X. After that, the above substrate is placed inside a parallel plate type high frequency plasma generator. FIG. 2 shows an outline of the high frequency plasma generator.

(10)の真空槽内の基板ホルタ−(11)に前記基板
を設置し、排気パルプ(18)を通して真空に排気する
The substrate is placed in the substrate holter (11) in the vacuum chamber (10) and evacuated to vacuum through the exhaust pulp (18).

しかる後ガス導入パルプ(15)を開放して、アンモニ
ア(NHs)ガスあるいは水素(H2)ガスをキャリア
ガスとする窒素(Nりガスを真空槽内に導入する。所定
の内圧にした後電極(12)に高周波4圧を印加し、前
記導入ガスを分解しプラズマ状態を電極間に誘起する。
After that, the gas introduction pulp (15) is opened and nitrogen (N2) gas using ammonia (NHs) gas or hydrogen (H2) gas as a carrier gas is introduced into the vacuum chamber. 12) Apply four high-frequency pressures to decompose the introduced gas and induce a plasma state between the electrodes.

この場合基板は加熱ヒータ(13)により加熱しておく
。こうして発生した窒素イオン/i前記グート絶ぺ模の
S + 02中に進入し別02膜は欠陥を理めながら次
第に窒素化されていく。
In this case, the substrate is heated by a heater (13). Nitrogen ions/i generated in this way enter into the S + 02 of the above-mentioned Gut's perfect model, and the other 02 film is gradually nitrogenized while removing defects.

本実施例における前記プラズマ窒化の条件は、NH。The conditions for the plasma nitriding in this example are NH.

ガスの内圧を1.0Torrとし、高周波(周波数15
.56MHz)電力を20Wとし、木板温度は550C
の低温で60分間の窒化を行なった。こうして5i01
膜のプラズマ窒化が終了した後、第1図(d)に示すよ
うにアルミニウムゲート(4)を形成し、該アルミニウ
ムゲート(4)をマスクにしてリンイオンを注入(5)
するセルファジィンメント方式でソース領域(6)、ド
レイン領域C)な形成した。第2図(、)けソース、ド
レイン領域へのアルばニウムコンタクトの形成状態を示
す。
The internal pressure of the gas was set to 1.0 Torr, and the high frequency (frequency 15
.. 56MHz) Power is 20W, wood board temperature is 550C
Nitriding was carried out for 60 minutes at a low temperature of . Thus 5i01
After the plasma nitridation of the film is completed, an aluminum gate (4) is formed as shown in FIG. 1(d), and phosphorus ions are implanted using the aluminum gate (4) as a mask (5).
A source region (6) and a drain region (C) were formed using a self-imbursement method. FIG. 2(a) shows the formation of aluminum contacts to the source and drain regions.

眉間絶#j、膜のS I O,(9)を堆積した後コン
タクトホールを形成し、所定の寸法のソース、ドレイン
電極配線(8)を形成する。本発明によるNチャンネル
型子結晶シリコンTPTのゲート絶縁膜の耐圧けSin
、膜中の欠陥を窒素イオンが補償したことにより従来に
比較■−で2倍以上増加し、その結果ゲート絶縁膜の膜
厚を薄くしても問題が発生ぜず、従来のプラズマ窒化な
しない素子に比べて相互コンダクタンスは10倍程度改
善された。またトレイン電流あるいけ閾値電圧の経時変
化も本発明による素子では?1とんどみられず、安定な
TPTの製造が可能であった。
After depositing the film SIO, (9) between eyebrows, contact holes are formed, and source and drain electrode wirings (8) of predetermined dimensions are formed. Withstand voltage Sin of gate insulating film of N-channel type crystalline silicon TPT according to the present invention
, the defects in the film were compensated by nitrogen ions, which resulted in an increase of more than twice that of the conventional method.As a result, there was no problem even if the gate insulating film was made thinner, and conventional plasma nitridation was not required. The mutual conductance was improved by about 10 times compared to the conventional device. Also, is it true that the train current and threshold voltage change over time in the device according to the present invention? However, it was possible to produce stable TPT.

本@明によれば高い相互コンダクタンスヲ有し且つ信頼
性の高い薄膜トランジスタを低温プロセスで製造でき、
大面積平面ディスグレイのフイッテング素子を提供する
ことができる。
According to the book @Akira, it is possible to manufacture thin film transistors with high mutual conductance and high reliability using a low-temperature process.
A fitting element with a large area planar display gray can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(、)は本発明にょるTF’l’の製造
行程の断面図を示す。 第2図は本発明によるプラズマ窒化装置の構成図である
。 1・・・絶縁性基板 2・・・半導体層 3・・・ゲー
ト絶縁膜 4・・ゲート電極 6.7・・・ソース、ド
レイン部 8・・・ソース、ドレイン電極 9・・・部
間絶縁膜 10・・・真空槽 11・・基板ホルタ−1
2・・・高周波成極 13・・・基板加熱ヒータ 14
・・・高周波1[源 15・・・ガス4人弁 16・・
・マスフローコントローラ 17・・ガスボンベ。 以上 出願人 株式会社 諏訪精工舎 代理人升埋士 最 上 務 j ↓ ↓ j ↓〜5 ユ 第1図
FIGS. 1(,) to (,) show cross-sectional views of the manufacturing process of TF'l' according to the present invention. FIG. 2 is a block diagram of a plasma nitriding apparatus according to the present invention. 1... Insulating substrate 2... Semiconductor layer 3... Gate insulating film 4... Gate electrode 6.7... Source, drain part 8... Source, drain electrode 9... Insulation between parts Membrane 10... Vacuum chamber 11... Substrate holder 1
2... High frequency polarization 13... Substrate heating heater 14
...High frequency 1 [source 15...gas 4-person valve 16...
・Mass flow controller 17...Gas cylinder. Applicant Suwa Seikosha Co., Ltd. Agent Tsutomu Mogami j ↓ ↓ j ↓~5 Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性基板上にシリコン薄膜を堆積する工程と該
シリコン薄膜上に絶縁性薄膜を堆積した後、前記基板を
プラズマ雰囲気中に保持する工程とを備えたことを特徴
とする薄膜トランジスタの製造方法。
(1) Manufacturing a thin film transistor characterized by comprising the steps of depositing a silicon thin film on an insulating substrate and holding the substrate in a plasma atmosphere after depositing the insulating thin film on the silicon thin film. Method.
(2)前記シリコン薄膜上の絶縁性/4膜は、膜厚10
0〜100OAの二酸化シリコンであることを特徴とす
る特許請求の範囲第1項記載の薄膜トランジスタの製造
方法。
(2) The insulating/4 film on the silicon thin film has a thickness of 10
2. The method for manufacturing a thin film transistor according to claim 1, wherein the thin film transistor is silicon dioxide having an OA of 0 to 100 OA.
(3)前記プラズマ4囲気が窒素及び水素を含むプラズ
マ雰囲気であることを特徴とする特許請求の範囲第1項
記載の薄膜トランジスタの製造方法。
(3) The method for manufacturing a thin film transistor according to claim 1, wherein the plasma atmosphere is a plasma atmosphere containing nitrogen and hydrogen.
JP59097892A 1984-05-16 1984-05-16 Manufacture of thin film transistor Pending JPS60241269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097892A JPS60241269A (en) 1984-05-16 1984-05-16 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097892A JPS60241269A (en) 1984-05-16 1984-05-16 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPS60241269A true JPS60241269A (en) 1985-11-30

Family

ID=14204401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097892A Pending JPS60241269A (en) 1984-05-16 1984-05-16 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS60241269A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251264A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Manufcture of thin film transistor
JPH01128572A (en) * 1987-11-13 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of thin film transistor
US5500380A (en) * 1993-04-16 1996-03-19 Goldstar Co., Ltd. Method for fabricating thin film transistor
EP0926710A2 (en) * 1997-12-18 1999-06-30 Texas Instruments Incorporated Method of manufacturing a gate electrode
EP0847079A3 (en) * 1996-12-05 1999-11-03 Texas Instruments Incorporated Method of manufacturing an MIS electrode
US6136654A (en) * 1996-06-07 2000-10-24 Texas Instruments Incorporated Method of forming thin silicon nitride or silicon oxynitride gate dielectrics
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
WO2003015151A1 (en) * 2001-08-02 2003-02-20 Tokyo Electron Limited Base material treating method and electron device-use material
EP1453083A1 (en) * 2001-12-07 2004-09-01 Tokyo Electron Limited Nitriding method for insulation film, semiconductor device and production method for semiconductor device, substrate treating device and substrate treating method
US8344378B2 (en) 2009-06-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566747B2 (en) * 1985-08-30 1993-09-22 Hitachi Ltd
JPS6251264A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Manufcture of thin film transistor
JPH01128572A (en) * 1987-11-13 1989-05-22 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of thin film transistor
US7329906B2 (en) 1992-08-27 2008-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7416907B2 (en) 1992-08-27 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5500380A (en) * 1993-04-16 1996-03-19 Goldstar Co., Ltd. Method for fabricating thin film transistor
US6136654A (en) * 1996-06-07 2000-10-24 Texas Instruments Incorporated Method of forming thin silicon nitride or silicon oxynitride gate dielectrics
EP0847079A3 (en) * 1996-12-05 1999-11-03 Texas Instruments Incorporated Method of manufacturing an MIS electrode
EP0926710A2 (en) * 1997-12-18 1999-06-30 Texas Instruments Incorporated Method of manufacturing a gate electrode
US6399445B1 (en) 1997-12-18 2002-06-04 Texas Instruments Incorporated Fabrication technique for controlled incorporation of nitrogen in gate dielectric
EP0926710A3 (en) * 1997-12-18 1999-11-03 Texas Instruments Incorporated Method of manufacturing a gate electrode
WO2003015151A1 (en) * 2001-08-02 2003-02-20 Tokyo Electron Limited Base material treating method and electron device-use material
US7250375B2 (en) 2001-08-02 2007-07-31 Tokyo Electron Limited Substrate processing method and material for electronic device
EP1453083A1 (en) * 2001-12-07 2004-09-01 Tokyo Electron Limited Nitriding method for insulation film, semiconductor device and production method for semiconductor device, substrate treating device and substrate treating method
EP1453083A4 (en) * 2001-12-07 2007-01-10 Tokyo Electron Ltd INSULATING FILM NITRIDING PROCESS, SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME, AND SURFACE TREATING DEVICE AND METHOD
US8344378B2 (en) 2009-06-26 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
US8956934B2 (en) 2009-06-26 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS60241269A (en) Manufacture of thin film transistor
JPS61263273A (en) Manufacture of thin film semiconductor device
JPS63304670A (en) Manufacture of thin film semiconductor device
CN107146756A (en) Method for preparing field effect transistor with diamond substrate
JP2635320B2 (en) Method for manufacturing semiconductor device
JPS6148979A (en) Manufacture of polycrystalline silicon thin-film transistor
JP3837938B2 (en) Method for manufacturing thin film semiconductor device
JP3221129B2 (en) Semiconductor device manufacturing method
JPS6146069A (en) Manufacture of semiconductor device
JPS59115564A (en) Thin film transistor
JP2874175B2 (en) Method for manufacturing semiconductor device
JPS58148458A (en) Thin film transistor
JPH07161996A (en) Insulated-gate field-effect device and its manufacture
JPS62200768A (en) Manufacture of thin film transistor
KR970011502B1 (en) Method of manufacturing polycrystalline silicon thin film transistor
JP3644977B2 (en) Method for manufacturing polycrystalline silicon thin film transistor
JPS60241268A (en) Manufacturing method of thin film transistor
JP3837937B2 (en) Method for manufacturing thin film semiconductor device
KR100297101B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR970053015A (en) Transistor manufacturing method of semiconductor device
JPH04243166A (en) Thin film transistor and its manufacturing method
JPH0281421A (en) Forming method for polycrystalline silicon film
JPH04268734A (en) Thin film transistor and manufacture thereof
JP2003234344A (en) Method for manufacturing semiconductor device
JP2000077672A (en) Method for manufacturing semiconductor device