[go: up one dir, main page]

JPH0566747B2 - - Google Patents

Info

Publication number
JPH0566747B2
JPH0566747B2 JP60189838A JP18983885A JPH0566747B2 JP H0566747 B2 JPH0566747 B2 JP H0566747B2 JP 60189838 A JP60189838 A JP 60189838A JP 18983885 A JP18983885 A JP 18983885A JP H0566747 B2 JPH0566747 B2 JP H0566747B2
Authority
JP
Japan
Prior art keywords
gas
film
silicon
silicon nitride
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60189838A
Other languages
Japanese (ja)
Other versions
JPS6251264A (en
Inventor
Eiji Matsuzaki
Yoshifumi Yoritomi
Akihiro Kenmochi
Takao Takano
Kazuo Sunahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60189838A priority Critical patent/JPS6251264A/en
Publication of JPS6251264A publication Critical patent/JPS6251264A/en
Publication of JPH0566747B2 publication Critical patent/JPH0566747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜トランジスタ(シン・フイルム・
トランジスタ、Thin Film Transistor、以下
TFTと略すこともある)の製造方法に係り、特
にシリコンを主成分とした薄膜を半導体層とし、
シリコンと窒素を主成分としたシリコン窒化膜を
ゲート絶縁膜としたTFTの製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to thin film transistors (thin film transistors).
Transistor, Thin Film Transistor, below
(sometimes abbreviated as TFT), in which a thin film mainly composed of silicon is used as a semiconductor layer,
This invention relates to a method for manufacturing a TFT whose gate insulating film is a silicon nitride film containing silicon and nitrogen as main components.

〔発明の概要〕[Summary of the invention]

最近、薄膜トランジスタの分野では、半導体層
に非晶質シリコン膜(a−Si:H膜)を用いたも
のの研究開発、発表が活発である。第1図は、こ
のようなTFTの一般的な断面構造の一例である。
すなわち、ガラス等の絶縁性基板11上に、クロ
ムやモリブデン等の金属からなるゲート電極1
2、シリコン窒化膜よりなるゲート絶縁膜13が
順次形成され、このゲート絶縁膜13上に非晶質
シリコン膜よりなる半導体層14、クロムやアル
ミニウム等の金属よりなるドレイン電極15とソ
ース電極16とが形成されている。そして、第1
図の場合は、液晶パネル等の表示デバイスに用い
るために、前記ソース電極16はsnO2(酸化ス
ズ)、In2O3(酸化インジウム)やSnO2−In2O3
(ITO)合金からなる透明導電膜17に接続され
ている。
Recently, in the field of thin film transistors, there has been active research, development, and publication of products using amorphous silicon films (a-Si:H films) as semiconductor layers. FIG. 1 is an example of a general cross-sectional structure of such a TFT.
That is, a gate electrode 1 made of metal such as chromium or molybdenum is placed on an insulating substrate 11 made of glass or the like.
2. A gate insulating film 13 made of a silicon nitride film is sequentially formed, and on this gate insulating film 13, a semiconductor layer 14 made of an amorphous silicon film, a drain electrode 15 and a source electrode 16 made of metal such as chromium or aluminum are formed. is formed. And the first
In the case of the figure, the source electrode 16 is made of snO 2 (tin oxide), In 2 O 3 (indium oxide), or SnO 2 −In 2 O 3 in order to be used in a display device such as a liquid crystal panel.
It is connected to a transparent conductive film 17 made of (ITO) alloy.

このような構造のTFTは、非晶質シリコン窒
化膜の形成にグロー放電法が使えるため低温で大
面積形成が容易である。また、従来のホトエツチ
ング技術をそのまま使えるので、高集積化に対し
ても有利である。その他、非晶質シリコン膜の高
抵抗に基づいて、オフ電流を抑えることができる
等の特性的にもすぐれた点をもつている。従つ
て、安価な透明ガラス基板も使用できるようにな
り、カラー化に有利な透過型の液晶パネルを高精
細で実用できる可能性をもつている(特開昭59−
15561号公報、特開昭59−115564号公報、特開昭
59−172774号公報)。
TFTs with this structure can be easily formed in large areas at low temperatures because the glow discharge method can be used to form an amorphous silicon nitride film. Furthermore, since conventional photoetching technology can be used as is, it is advantageous for higher integration. In addition, it has excellent characteristics such as being able to suppress off-current due to the high resistance of the amorphous silicon film. Therefore, it has become possible to use inexpensive transparent glass substrates, and there is a possibility that high-definition transmissive liquid crystal panels, which are advantageous for colorization, can be put to practical use (Japanese Patent Application Laid-Open No. 1983-1999).
Publication No. 15561, Japanese Patent Application Publication No. 115564/1983, Publication No. 115564, Japanese Patent Publication No.
59-172774).

しかし、ゲート絶縁膜と半導体層が欠陥(局本
準位)の存在する非晶質膜で構成されているた
め、しきい値電圧が変動する等、その信頼性にお
いて問題があつた。
However, since the gate insulating film and the semiconductor layer are composed of amorphous films with defects (local level), there have been problems with reliability, such as fluctuations in threshold voltage.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をな
くししきい値電圧の変動幅が少さく、信頼性にす
ぐれたTFTの製造方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a TFT which eliminates the above-mentioned drawbacks of the prior art, has a small threshold voltage fluctuation range, and is highly reliable.

〔発明の概要〕[Summary of the invention]

上記目的はシリコンを主成分とする半導体層
と、シリコン窒素を主成分とする窒化膜をゲート
絶縁膜との接する部分を改質したTFTによつて
達成される。
The above object is achieved by a TFT in which a semiconductor layer containing silicon as a main component and a nitride film containing silicon nitrogen as a main component are modified at the portion in contact with a gate insulating film.

このTFTの特性は、半導体層の移動度、局在
準位(トラツプも含む)、ゲート絶縁膜の局在準
位(トラツプも含む)、及び半導体層とゲート絶
縁膜間の界面状態に大きく依存する。ゲート絶縁
膜を構成するシリコン窒化膜の不完全さは、シリ
コンを主成分とする半導体層との間の界面状態を
劣化させる。従つて、ゲート絶縁膜を構成するシ
リコン窒化膜と、シリコンを主成分とする半導体
層の接する部分を改質することによつて界面状態
を改善でき、界面状態の不安定さに基づくしきい
値電圧の変動を抑えることができる筈である。本
発明者は、この考えに従つてシリコン窒化膜のプ
ラズマ処理を検討した結果、シリコンに対して窒
化作用のあるガスを用いることによつて良好な結
果を得た。すなわち、本発明ではシリコン窒化膜
を、(a)窒素ガスと水素ガスからなる混合ガス、(b)
水素ガス、不活性ガス及びアンモニアからなる混
合ガス、もしくは(c)アンモニア、不活性ガスから
なる混合ガスを用いたプラズマ処理を施してから
半導体層を積層することによつてTFTのしきい
値電圧の変動幅を小さく抑えることができた。な
お上記の不活性ガスとは窒素ガスのほかに、アル
ゴンガス、ヘリウムガス、キセノンガス、水素等
である。これらの不活性ガスは単独または二種類
以上混合して用いる。
The characteristics of this TFT largely depend on the mobility of the semiconductor layer, localized levels (including traps), localized levels of the gate insulating film (including traps), and the state of the interface between the semiconductor layer and the gate insulating film. do. Incompleteness of the silicon nitride film constituting the gate insulating film deteriorates the state of the interface between the gate insulating film and the semiconductor layer mainly composed of silicon. Therefore, by modifying the contact area between the silicon nitride film constituting the gate insulating film and the semiconductor layer mainly composed of silicon, the interface state can be improved, and the threshold value based on the instability of the interface state can be improved. It should be possible to suppress voltage fluctuations. The inventor of the present invention investigated plasma treatment of a silicon nitride film based on this idea, and obtained good results by using a gas that has a nitriding effect on silicon. That is, in the present invention, the silicon nitride film is coated with (a) a mixed gas consisting of nitrogen gas and hydrogen gas, and (b)
The threshold voltage of the TFT can be improved by laminating semiconductor layers after performing plasma treatment using a mixed gas consisting of hydrogen gas, an inert gas and ammonia, or (c) a mixed gas consisting of ammonia and an inert gas. We were able to keep the range of fluctuations small. Note that the above-mentioned inert gas includes argon gas, helium gas, xenon gas, hydrogen, etc. in addition to nitrogen gas. These inert gases may be used alone or in combination.

なお、プラズマ処理におけるN2とH2の混合範
囲は、H2がN2の1%〜300%、好ましくは30〜
150%である。アンモニアと不活性ガスの混合範
囲は、アンモニアを1%以上混合すれば良く、放
電の安定性等から不活性ガスの100%以下とする
ことが望ましい。
In addition, the mixing range of N 2 and H 2 in plasma treatment is such that H 2 is 1% to 300% of N 2 , preferably 30 to 300%.
It is 150%. The mixing range of ammonia and inert gas should be 1% or more of ammonia, and desirably 100% or less of inert gas from the viewpoint of discharge stability.

また、水素、不活性ガス、アンモニアの混合範
囲は、アンモニアを不活性ガスの1%以上、水素
をアンモニアの1〜100倍程度に混合すれば良く、
好ましくは水素の導入量はアンモニアの1〜3倍
である。
In addition, the mixing range of hydrogen, inert gas, and ammonia is as follows: ammonia should be mixed at 1% or more of the inert gas, and hydrogen should be mixed at about 1 to 100 times the amount of ammonia.
Preferably, the amount of hydrogen introduced is 1 to 3 times that of ammonia.

プラズマ処理条件は、電力密度が0.3〜
0.72W/cm2、好ましくは、0.4〜0.55W/cm2、処理
温度が150〜350℃、好ましくは300〜350℃であ
る。
The plasma processing conditions include a power density of 0.3~
0.72 W/cm 2 , preferably 0.4 to 0.55 W/cm 2 , and a treatment temperature of 150 to 350°C, preferably 300 to 350°C.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図のTFTに適用した場合
を例にとり説明する。
Hereinafter, the present invention will be explained by taking as an example a case where the present invention is applied to the TFT shown in FIG.

まず、ガラス製の絶縁性基板11上にスパツタ
リング法によりクロム(Cr)膜を100nmの厚み
で蒸着し、ホトエツチング法によりゲート電極1
2を形成した。これをプラズマCVD装置にセツ
トし、モノシラン(SiH4)15SCOOMと窒素
(N2)300SCCM、水素(H2)210SCCMの混合ガ
スを導入し、グロー放電によりシリコン窒化膜を
300nmの厚みで形成した。この場合、アンモニ
ア(NH3)をモノシラン(SiH4)の1.5〜3倍に
した、SiH4とNH3、N2の混合ガスを反応ガスと
しても良い。次いで、モノシラン(SiH4)を反
応室より追い出してから、H2210SCCMと
N2300SCCMの混合ガスを導入してグロー放電を
発生させることにより、前記シリコン窒化膜表面
のプラズマ処理(電極400mmφ、600W、310℃)
を行いゲート絶縁膜13とした。その後、反応室
の真空破壊を行わずにモノシラン(SiH4)とH2
を導入してグロー放電を発生させることにより
400nm厚みの非晶質シリコン(a−Si:H)膜か
らなる半導体層14を形成し、更に反応ガス中に
ホスフイン(PH3)を添加して、ドレイン電極1
5、ソース電極16とのオーミツク接触を得るた
めにn形の非晶質シリコン((a−Si:H)膜を
30nmの厚みで形成した。ホトエツチングやドラ
イエツチングによつて半導体層14の素子分離を
行つてから、アルミニウム(Al)を真空蒸着法
によつて蒸着し、ホトエツチング法によりドレイ
ン電極15とソース電極16を形成した。この場
合、チヤネルの幅Wと長さLとの比W/Lを、10
とした。ドライエツチングにより、チヤネル部の
n形のa−Si:H膜を除去した。次いで、透明導
電膜(たとえばITO膜)をスパツタリング法で蒸
着し、ホトエツチングにより透明電極膜17を形
成した。これで、第1図に示したTFTが完成し
た。
First, a chromium (Cr) film with a thickness of 100 nm is deposited on an insulating substrate 11 made of glass by a sputtering method, and a gate electrode 1 is formed by a photoetching method.
2 was formed. This was set in a plasma CVD equipment, a mixed gas of 15 SCOM of monosilane (SiH 4 ), 300 SCCM of nitrogen (N 2 ), and 210 SCCM of hydrogen (H 2 ) was introduced, and a silicon nitride film was formed by glow discharge.
It was formed with a thickness of 300 nm. In this case, the reaction gas may be a mixed gas of SiH 4 , NH 3 , and N 2 in which the amount of ammonia (NH 3 ) is 1.5 to 3 times that of monosilane (SiH 4 ). The monosilane (SiH 4 ) is then expelled from the reaction chamber before adding H 2 210SCCM.
Plasma treatment of the silicon nitride film surface was performed by introducing a mixed gas of N 2 300SCCM and generating glow discharge (electrode 400mmφ, 600W, 310℃)
A gate insulating film 13 was obtained by doing this. After that, monosilane (SiH 4 ) and H 2 were added without breaking the vacuum in the reaction chamber.
By introducing a glow discharge
A semiconductor layer 14 made of an amorphous silicon (a-Si:H) film with a thickness of 400 nm is formed, and phosphine (PH 3 ) is added to the reaction gas to form a drain electrode 1.
5. In order to obtain ohmic contact with the source electrode 16, an n-type amorphous silicon ((a-Si:H) film is formed.
It was formed with a thickness of 30 nm. After element isolation of the semiconductor layer 14 was performed by photoetching or dry etching, aluminum (Al) was deposited by vacuum evaporation, and a drain electrode 15 and a source electrode 16 were formed by photoetching. In this case, the ratio W/L of the width W and length L of the channel is 10
And so. The n-type a-Si:H film in the channel portion was removed by dry etching. Next, a transparent conductive film (for example, an ITO film) was deposited by sputtering, and a transparent electrode film 17 was formed by photoetching. The TFT shown in Figure 1 is now completed.

このようにして得たTFTのドレーン電流ゲー
ト電圧特性の測定結果を第2図に、本発明の特徴
である水素ガス(H2)と窒素ガス(N2)の混合
ガスを用いたプラズマ処理を施さずに、従来法に
よつて得たTFTに対する測定結果を第3図に示
した。ドレイン電極−ソース電極間には、10Vの
バイアスをしている。図中のは、TFT作製直
後の特性を、は繰り返し測定後あるいはVg≧
10Vで長時間バイアスした後の特性を示してい
る。第2図、第3図から、本発明による水素ガス
(H2)と窒素ガス(N2)の混合ガスによるプラ
ズマ処理を施した方が繰り返し測定及び長時間バ
イアスに対してしきい値電圧が変動せず安定であ
ることがわかつた。
Figure 2 shows the measurement results of the drain current gate voltage characteristics of the TFT obtained in this way. FIG. 3 shows the measurement results for TFTs obtained by the conventional method without applying the irradiation. A bias of 10V is applied between the drain electrode and the source electrode. In the figure, the characteristics are immediately after TFT fabrication, and those after repeated measurements or Vg≧
This shows the characteristics after being biased at 10V for a long time. From Figures 2 and 3, it is clear that plasma treatment using a mixed gas of hydrogen gas (H 2 ) and nitrogen gas (N 2 ) according to the present invention results in a lower threshold voltage for repeated measurements and long-term bias. It was found to be stable without fluctuation.

この本発明の機構は現在のところ正確にはわか
つていないが、プラズマ処理によつてシリコン窒
化膜の表面の膜質が絶縁体として良好なものとな
り界面準位を減少させたことによると考えられて
いる。第4図は、上記の機構を支持する一つのデ
ータである。第4図は、クロム(Cr)膜の上に、
シリコン窒化膜、非晶質シリコン(a−si:H)
膜、アルミニウム(Al)膜を順次積層して形成
したセル(MNSセル)の10KHzにおける容量−
電圧特性である。たて軸のCsiNはシリコン窒化
膜が寄与する容量を、Cはセル全体の容量を示
し、横軸のVaはクロム(Cr)に印加した電圧を
示している。また、同図中の矢印は測定の方向を
示し、(A)は本発明による製造方法で作製したセル
に対する結果であり、(B)は従来法で作製したセル
に対する結果である。第4図から、(A)の方のヒス
テリシスが(B)のそれに比較して大変小さくなつて
いることがわかつた。これは、(A)の方が、半導体
層に対する界面のトラツプ密度の低いことをしめ
しているものと思われる。
Although the mechanism of the present invention is not precisely understood at present, it is believed that the plasma treatment improves the quality of the surface of the silicon nitride film as an insulator, reducing the interface states. There is. FIG. 4 is one piece of data that supports the above mechanism. Figure 4 shows that on the chromium (Cr) film,
Silicon nitride film, amorphous silicon (a-si:H)
Capacity at 10KHz of a cell (MNS cell) formed by sequentially stacking a film and an aluminum (Al) film
It is a voltage characteristic. CsiN on the vertical axis indicates the capacitance contributed by the silicon nitride film, C indicates the capacitance of the entire cell, and Va on the horizontal axis indicates the voltage applied to chromium (Cr). Further, the arrows in the figure indicate the direction of measurement, and (A) is the result for a cell manufactured by the manufacturing method according to the present invention, and (B) is the result for a cell manufactured by the conventional method. From Figure 4, it was found that the hysteresis in (A) was much smaller than that in (B). This seems to indicate that (A) has a lower trap density at the interface with the semiconductor layer.

シリコン窒化膜の電気的な欠陥は、シリコン
(Si)のダングリングボンドによると考えられて
いるから、これを水素(H)やフツ素(F)で終端化して
やれば良いとも思われるが、必ずしもそうではな
い。この例を第5図に示した。第5図は、シリコ
ン窒化膜のシリコン(Si)のダングリグボンドの
終端化を行うために、水素プラズマ処理を施して
形成したシリコン窒化膜を用いて作製したTFT
に対する結果である。繰り返し測定や長時間のゲ
ートバイアスに対して、しきい値電圧が大きく変
動していることは明白である。
Electrical defects in silicon nitride films are thought to be caused by dangling bonds of silicon (Si), so it may be possible to terminate them with hydrogen (H) or fluorine (F), but this is not necessarily the case. it's not. An example of this is shown in FIG. Figure 5 shows a TFT fabricated using a silicon nitride film formed by hydrogen plasma treatment to terminate the silicon (Si) dangling bonds of the silicon nitride film.
This is the result for It is clear that the threshold voltage fluctuates significantly with repeated measurements and long-term gate bias.

以上をまとめると次のようになる。 The above can be summarized as follows.

電圧印加に対して安定なTFTを得るという本
発明の効果を出すためには、シリコン(Si)に対
してプラズマ窒化作用のあるガスを処理ガスとし
て用いなければならない。そのためには、処理ガ
スの中に水素ガス(H2)と窒素ガス(N2)の両
方が必ず存在するか、アンモニア(NH3)が存
在している必要がある。また、この効果は処理温
度が250〜350℃でより有効的であるが、150℃以
上とすれば出てくる。
In order to achieve the effect of the present invention of obtaining a TFT that is stable against voltage application, a gas that has a plasma nitriding effect on silicon (Si) must be used as a processing gas. For this purpose, both hydrogen gas (H 2 ) and nitrogen gas (N 2 ) or ammonia (NH 3 ) must be present in the processing gas. Further, this effect is more effective when the treatment temperature is 250 to 350°C, but it becomes apparent when the treatment temperature is 150°C or higher.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、TFTの電
圧印加に対するしきい値電圧変動を抑えることが
できるので、安定なTFTを提供できるという効
果がある。
As described above, according to the present invention, it is possible to suppress fluctuations in the threshold voltage with respect to voltage application to the TFT, and therefore it is possible to provide a stable TFT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTFTの断面図、第2図、第3図、第
5図はTFTの特性を示す図、第4図はMNSセル
の容量−電圧特性を示す図である。 11……絶縁性基板、12……ゲート電極、1
3……ゲート絶縁膜、14……半導体層、15…
…ドレイン電極、16……ソース電極、17……
透明導電膜。
FIG. 1 is a sectional view of the TFT, FIGS. 2, 3, and 5 are diagrams showing the characteristics of the TFT, and FIG. 4 is a diagram showing the capacitance-voltage characteristics of the MNS cell. 11... Insulating substrate, 12... Gate electrode, 1
3... Gate insulating film, 14... Semiconductor layer, 15...
...Drain electrode, 16... Source electrode, 17...
Transparent conductive film.

Claims (1)

【特許請求の範囲】 1 ゲート電極として働く導電膜上にシリコンと
窒素を主成分とするシリコン窒化膜をゲート絶縁
膜として形成し、更にシリコンを主成分とするシ
リコン薄膜を半導体層として積層してなる薄膜ト
ランジスタの製造方法において、上記シリコン窒
化膜を下記(a)〜(c)のいずれか一種類の混合ガスに
よりプラズマ処理することを特徴とする薄膜トラ
ンジスタの製造方法。 (a) 水素ガス−窒素ガスからなる混合ガス、 (b) 水素ガス−不活性ガス−アンモニアからなる
混合ガス、 (c) 不活性ガス−アンモニアからなる混合ガス。 2 特許請求の範囲第1項において、プラズマ処
理を150℃ないし350℃の温度で行うことを特徴と
する薄膜トランジスタの製造方法。
[Claims] 1. A silicon nitride film containing silicon and nitrogen as main components is formed as a gate insulating film on a conductive film serving as a gate electrode, and a silicon thin film containing silicon as a main component is further laminated as a semiconductor layer. A method for manufacturing a thin film transistor, characterized in that the silicon nitride film is subjected to plasma treatment with a mixed gas of any one of the following (a) to (c). (a) Mixed gas consisting of hydrogen gas-nitrogen gas, (b) Mixed gas consisting of hydrogen gas-inert gas-ammonia, (c) Mixed gas consisting of inert gas-ammonia. 2. The method for manufacturing a thin film transistor according to claim 1, characterized in that the plasma treatment is performed at a temperature of 150°C to 350°C.
JP60189838A 1985-08-30 1985-08-30 Manufcture of thin film transistor Granted JPS6251264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189838A JPS6251264A (en) 1985-08-30 1985-08-30 Manufcture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189838A JPS6251264A (en) 1985-08-30 1985-08-30 Manufcture of thin film transistor

Publications (2)

Publication Number Publication Date
JPS6251264A JPS6251264A (en) 1987-03-05
JPH0566747B2 true JPH0566747B2 (en) 1993-09-22

Family

ID=16248051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189838A Granted JPS6251264A (en) 1985-08-30 1985-08-30 Manufcture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS6251264A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640550B2 (en) * 1987-06-09 1994-05-25 沖電気工業株式会社 Method of manufacturing thin film transistor
DE69228868D1 (en) * 1991-01-30 1999-05-12 Minnesota Mining & Mfg Method of manufacturing a polysilicon thin film transistor
US5254480A (en) * 1992-02-20 1993-10-19 Minnesota Mining And Manufacturing Company Process for producing a large area solid state radiation detector
JP2752582B2 (en) * 1994-05-20 1998-05-18 株式会社フロンテック Electronic element and manufacturing method thereof
JP4856297B2 (en) * 1997-12-02 2012-01-18 公益財団法人国際科学振興財団 Manufacturing method of semiconductor device
KR100344777B1 (en) 2000-02-28 2002-07-20 엘지.필립스 엘시디 주식회사 method for forming device having a thin film transistor
JP4987206B2 (en) * 2000-03-13 2012-07-25 公益財団法人国際科学振興財団 Method for manufacturing flash memory device
JP3501793B2 (en) * 2001-05-16 2004-03-02 Nec液晶テクノロジー株式会社 Thin film transistor and method of manufacturing the same
AU2003303136A1 (en) * 2002-12-20 2004-07-14 Applied Materials, Inc. A method and apparatus for forming a high quality low temperature silicon nitride layer
US7972663B2 (en) * 2002-12-20 2011-07-05 Applied Materials, Inc. Method and apparatus for forming a high quality low temperature silicon nitride layer
US7172792B2 (en) * 2002-12-20 2007-02-06 Applied Materials, Inc. Method for forming a high quality low temperature silicon nitride film
US7365029B2 (en) 2002-12-20 2008-04-29 Applied Materials, Inc. Method for silicon nitride chemical vapor deposition
JP5477303B2 (en) * 2011-01-12 2014-04-23 信越化学工業株式会社 Manufacturing method of solar cell
JP6733516B2 (en) * 2016-11-21 2020-08-05 東京エレクトロン株式会社 Method of manufacturing semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241269A (en) * 1984-05-16 1985-11-30 Seiko Epson Corp Manufacture of thin film transistor

Also Published As

Publication number Publication date
JPS6251264A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
JP3277548B2 (en) Display board
JPH0566747B2 (en)
EP0051940B1 (en) Annealing process for a thin-film semiconductor device and obtained devices
KR100272260B1 (en) Thin film transistor using pseudo diamond and its manufacturing method
JPS59141271A (en) Thin-film transistor
JP3348531B2 (en) Method for hydrogenating thin film transistor and method for forming thin film transistor
JPH08242005A (en) Amorphous silicon thin film transistor and manufacturing method thereof
JPS6165477A (en) semiconductor equipment
JPS61263273A (en) Manufacture of thin film semiconductor device
JPH01309378A (en) thin film semiconductor device
JPH0564862B2 (en)
JPH01268060A (en) Thin film transistor
JPS62219574A (en) Semiconductor device
JPS59189676A (en) Semiconductor device
JPH0554271B2 (en)
JPH10177968A (en) Thin film device, forming method thereof, and manufacturing method of this film transistor and liquid crystal display device
Murthy et al. Effect of NH3/SiH4 gas ratios of top nitride layer on stability and leakage in a-Si: H thin film transistors
JPS5919378A (en) Insulated gate type transistor and manufacture thereof
JPS58148458A (en) Thin film transistor
JPH0996836A (en) Liquid crystal display device
JP2635950B2 (en) Method for manufacturing semiconductor device
JPS62105474A (en) thin film transistor
JPH0348670B2 (en)
JPH02150067A (en) thin film semiconductor device
JPH04268734A (en) Thin film transistor and manufacture thereof