JPS60241239A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS60241239A JPS60241239A JP9648684A JP9648684A JPS60241239A JP S60241239 A JPS60241239 A JP S60241239A JP 9648684 A JP9648684 A JP 9648684A JP 9648684 A JP9648684 A JP 9648684A JP S60241239 A JPS60241239 A JP S60241239A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- semiconductor device
- silicon carbide
- fin
- carbide substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 17
- 239000000758 substrate Substances 0.000 claims abstract description 21
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 15
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 7
- 229910000679 solder Inorganic materials 0.000 abstract description 6
- 239000008188 pellet Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 229910015365 Au—Si Inorganic materials 0.000 abstract 1
- 230000017525 heat dissipation Effects 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3731—Ceramic materials or glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、半導体装置に係り、特に大電力半導体素子を
搭載するのに好適な熱放散性に優れた半導体装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device with excellent heat dissipation properties suitable for mounting a high-power semiconductor element.
半導体装置において、半導体素子により生ずる熱の放散
を助け、半導体素子の搭載部における熱疲労を防止する
という目的で、高熱伝導、電気絶縁性炭化ケイ素セラミ
ックス(熱伝導率二0.6W/’C1熱膨張係数:4x
10−1′/℃以下)ヲ半導体素子支持基板として用い
ることは既に特開昭55−113042で報告されてい
る。しかし、さらにrす放散を効果的なものにするため
には、第1図に示すように炭化ケイ素基板にアルミニウ
ムや銅などで加工された放熱用のフィンをはんだや樹脂
接着剤などで接合しなければならない。しかし、一般的
に、はんだや樹脂接着剤は熱抵抗が大きく、しかも性能
ばらつきを生じ易い接着工程を必要とするため、第1図
の構造は十分とは言えない。さらに、放熱フィンとして
用いるアルミニウムや銅は前記炭化ケイ素基板に比べ熱
膨張係数が極めて大きいため、ヒートサイクルや熱衝撃
により接着層の劣化が生じ熱抵抗が大きくなるという問
題も生じる。In semiconductor devices, high thermal conductivity, electrically insulating silicon carbide ceramics (thermal conductivity 20.6 W/'C1 Expansion coefficient: 4x
10-1'/°C or less) The use of the material as a semiconductor element support substrate has already been reported in JP-A-55-113042. However, in order to make radiation even more effective, heat radiation fins made of aluminum or copper are bonded to a silicon carbide substrate using solder or resin adhesive, as shown in Figure 1. There must be. However, since solder and resin adhesives generally have high thermal resistance and require a bonding process that tends to cause variations in performance, the structure shown in FIG. 1 cannot be said to be sufficient. Furthermore, since aluminum and copper used as the heat dissipation fins have a much larger coefficient of thermal expansion than the silicon carbide substrate, there is also the problem that the adhesive layer deteriorates due to heat cycles and thermal shock, resulting in increased thermal resistance.
本発明の目的は、前述の欠点を改め、フィン構造を有す
る前記炭化ケイ素セラミックス基板を用いて半導体素子
において生ずる熱の放散を助け、半導体素子の搭載部に
おける熱疲労を防止して、高信頼性を有する半導体装置
を提供するものである。An object of the present invention is to correct the above-mentioned drawbacks, use the silicon carbide ceramic substrate having a fin structure to help dissipate heat generated in a semiconductor element, prevent thermal fatigue in the mounting part of the semiconductor element, and achieve high reliability. The present invention provides a semiconductor device having the following features.
第1図に示す前記炭化ケイ素セラミックス基板を用いた
半導体装置では、6に示すハンダもしくは樹脂接着剤の
熱抵抗が前記炭化ケイ素セラミックスや放熱フィンであ
るアルミニウム、銅の約10倍程度ある。そのため、1
の半導体素子において生ずる熱の放散性を向上させるた
めには、6の接着層を出来るたけ薄くするか、出来れば
無い方が良い。In the semiconductor device using the silicon carbide ceramic substrate shown in FIG. 1, the thermal resistance of the solder or resin adhesive shown in 6 is about 10 times that of the silicon carbide ceramic or the heat radiation fins such as aluminum or copper. Therefore, 1
In order to improve the dissipation of heat generated in the semiconductor device, it is better to make the adhesive layer 6 as thin as possible, or to eliminate it if possible.
さらに、前記炭化ケイ素基板は熱膨張係数が4X]、0
−’/℃以下であるのに対し、アルミニウムは23X1
0−’/℃、Cuは1.7 X 10− ’/℃である
ため、接着後ヒートサイクル、熱NMにより接着層劣化
が生じる恐れがある。Furthermore, the silicon carbide substrate has a thermal expansion coefficient of 4X], 0
-'/℃ or less, while aluminum is 23X1
0-'/°C, and Cu is 1.7 x 10-'/°C, so there is a risk that the adhesive layer will deteriorate due to heat cycles and thermal NM after adhesion.
そこで、本発明では第2図の2′に示すように片面をフ
ィン加工した前記炭化ケイ素基板を用いることにより、
熱抵抗の大きな接着層を無くして熱放散性を向上させる
とともに、熱膨張係数の著しく異なる放熱フィンを除去
することにより接着層劣化を防止することができ、高信
頼性を有する半導体装置を得ることができた。Therefore, in the present invention, as shown in 2' in FIG. 2, by using the silicon carbide substrate with fin processing on one side,
To improve heat dissipation by eliminating an adhesive layer with large thermal resistance, and to prevent deterioration of the adhesive layer by removing heat dissipating fins having significantly different coefficients of thermal expansion, thereby obtaining a highly reliable semiconductor device. was completed.
本発明における半導体装置は、第2図に示すようにシリ
コントランジスタペレット1と片面にフィン加工された
前記炭化ケイ素セラミックス基板2′との間に半田層5
を介して一体化したものである。このような構造で得ら
れた半導体装置の熱放散性は、第1図の構造で示される
金属放熱フィンを用いた場合に比べ約20%向上するこ
とがわかった。これは、熱抵抗の大きな接着層6が除去
できたためであると考える。As shown in FIG. 2, the semiconductor device of the present invention has a solder layer 5 between the silicon transistor pellet 1 and the silicon carbide ceramic substrate 2' having fins on one side.
It is integrated through . It has been found that the heat dissipation performance of the semiconductor device obtained with such a structure is improved by about 20% compared to the case where metal heat dissipation fins shown in the structure of FIG. 1 are used. It is believed that this is because the adhesive layer 6, which has a large thermal resistance, was removed.
SiC焼結体からなるセラミックス基板では、Beとし
て0.1〜3重景%のBe又はBe化合物(B eo、
B e、C等を)を含むSac焼結体からなる組成を有
し、図に示す構造のフィンを有する。焼結は生成形した
後、2000℃で真空中300にα/dの加圧下で行な
われ、室温の熱伝導率0.20CaQ/an ・sec
・℃以上、室温の電気抵抗率1010Ω■以上を有する
。In a ceramic substrate made of a SiC sintered body, Be or a Be compound (Be o,
It has a composition consisting of a Sac sintered body containing (Be, C, etc.), and has a fin having the structure shown in the figure. After forming the product, sintering is carried out at 2000°C in vacuum under a pressure of 300°C/d, and the thermal conductivity at room temperature is 0.20CaQ/an sec.
・Has electrical resistivity of 1010 Ω or more at room temperature or higher.
シリコンペレット1と基板2′とはAu−8i牛田が用
いられる。Siは3〜10原子%を含むものが好ましい
。これらの接合に当り、シリコンペレットにAuを蒸着
したもの又はそれを施さないもののいずれでもよく、基
板には同様にAuを蒸着したもの、Auと1〜5重量%
のガラス又は酸化鋼とからなるペーストを焼付して厚膜
としたものが用いられる。Au-8i Ushida is used for the silicon pellet 1 and the substrate 2'. It is preferable that Si contains 3 to 10 atomic %. For these connections, silicon pellets may be made with or without Au vapor-deposited, and the substrate may be made with Au vapor-deposited in the same way, or 1 to 5% by weight of Au.
A paste made of glass or oxidized steel is baked into a thick film.
本発明によれば、ブイン一体棺造の炭化ケイ素基板を用
いるため、熱放散性及び耐熱疲労向上に効果があるばか
りでなく、放熱フィン接着工程の除去もでき工数低減の
効果もある。According to the present invention, since a silicon carbide substrate having a single-piece structure is used, it is not only effective in improving heat dissipation performance and thermal fatigue resistance, but also the process of bonding heat dissipation fins can be eliminated, thereby reducing the number of man-hours.
第1図は従来の高熱伝導炭化ケイ素基板と金屈放然フ′
インとを組み合わせた半導体装置の説明図。
第2図は本発明によるフィン加工された産熱伝導炭化ケ
イ素基板を用いた半導体装置の説明図である。Figure 1 shows a conventional high thermal conductivity silicon carbide substrate and a gold-plated silicon carbide substrate.
FIG. FIG. 2 is an explanatory diagram of a semiconductor device using a fin-processed heat-generating conductive silicon carbide substrate according to the present invention.
Claims (1)
体装置において、前ill!ti>化ケイ素基板がフィ
ン構造を有することを特徴とする半導体装置。1. In semiconductor devices using high thermal conductivity and electrically insulating silicon carbide substrates, the previous ill! A semiconductor device characterized in that a silicon oxide substrate has a fin structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9648684A JPS60241239A (en) | 1984-05-16 | 1984-05-16 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9648684A JPS60241239A (en) | 1984-05-16 | 1984-05-16 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60241239A true JPS60241239A (en) | 1985-11-30 |
Family
ID=14166394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9648684A Pending JPS60241239A (en) | 1984-05-16 | 1984-05-16 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60241239A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6489448A (en) * | 1987-06-23 | 1989-04-03 | Texas Instruments Inc | High-performance heat sink and mounting member of semiconductor products, and manufacture thereof |
JPH0160545U (en) * | 1987-10-12 | 1989-04-17 | ||
WO1999025022A1 (en) * | 1997-11-10 | 1999-05-20 | Parker-Hannifin Corporation | Non-electrically conductive thermal dissipator for electronic components |
US6705388B1 (en) | 1997-11-10 | 2004-03-16 | Parker-Hannifin Corporation | Non-electrically conductive thermal dissipator for electronic components |
JP2019207992A (en) * | 2018-05-30 | 2019-12-05 | 京セラ株式会社 | Package for mounting electrical element and electrical apparatus |
-
1984
- 1984-05-16 JP JP9648684A patent/JPS60241239A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6489448A (en) * | 1987-06-23 | 1989-04-03 | Texas Instruments Inc | High-performance heat sink and mounting member of semiconductor products, and manufacture thereof |
JPH0160545U (en) * | 1987-10-12 | 1989-04-17 | ||
JPH0543483Y2 (en) * | 1987-10-12 | 1993-11-02 | ||
WO1999025022A1 (en) * | 1997-11-10 | 1999-05-20 | Parker-Hannifin Corporation | Non-electrically conductive thermal dissipator for electronic components |
US6705388B1 (en) | 1997-11-10 | 2004-03-16 | Parker-Hannifin Corporation | Non-electrically conductive thermal dissipator for electronic components |
JP2019207992A (en) * | 2018-05-30 | 2019-12-05 | 京セラ株式会社 | Package for mounting electrical element and electrical apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0363824B2 (en) | ||
JPH0261539B2 (en) | ||
JPH04162756A (en) | Semiconductor module | |
JPS62287649A (en) | Semiconductor device | |
JPH03211860A (en) | Semiconductor package | |
JPS60241239A (en) | Semiconductor device | |
JPH03218031A (en) | Semiconductor integrated circuit device and preform bonding material used in the same | |
JP3419642B2 (en) | Power module | |
JPS6315430A (en) | Manufacture of semiconductor device | |
JPH08222670A (en) | Package for mounting semiconductor devices | |
JPS6381956A (en) | Package for semiconductor device | |
JP2761995B2 (en) | High heat dissipation integrated circuit package | |
JP3222348B2 (en) | Manufacturing method of ceramic package | |
JPS5835956A (en) | Hybrid integrated circuit device | |
JPH0321092B2 (en) | ||
JPS61256746A (en) | semiconductor equipment | |
JPS58103144A (en) | Semiconductor device | |
JPH0763080B2 (en) | Semiconductor package structure | |
JPS5952853A (en) | Semiconductor device | |
JPH0794623A (en) | Circuit board | |
JPH0515439U (en) | Semiconductor device | |
JPS60241240A (en) | Semiconductor device | |
JPS63179734A (en) | Good thermal conductive substrate | |
JPS61150251A (en) | semiconductor equipment | |
JPH04116960A (en) | Semiconductor circuit device |