[go: up one dir, main page]

JPS60237655A - Optomagnetic recording medium - Google Patents

Optomagnetic recording medium

Info

Publication number
JPS60237655A
JPS60237655A JP9373184A JP9373184A JPS60237655A JP S60237655 A JPS60237655 A JP S60237655A JP 9373184 A JP9373184 A JP 9373184A JP 9373184 A JP9373184 A JP 9373184A JP S60237655 A JPS60237655 A JP S60237655A
Authority
JP
Japan
Prior art keywords
magneto
recording medium
rare earth
optical recording
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9373184A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Kazutaka Haniyu
和隆 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9373184A priority Critical patent/JPS60237655A/en
Publication of JPS60237655A publication Critical patent/JPS60237655A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide high saturation magnetization and coercive force and to improve C/N by using 15-25atom% Dy as a rare earth element and FeCo contg. 5-20atom% Co as a transition metal. CONSTITUTION:Rare earth metal layers 4 and transition metal layers 5 are alternately laminated in a way as to be mixed with each other on a disk base body 1 consisting of, for example, glass, etc. to form an optomagnetic recording medium 3 having an optomagnetic recording layer 2. 15-25atom% Dy is used for the layers 4 and the FeCo contg. 5-20atom% Co is used for the layer 5. The optomagnetic recording medium by Curie point recording is formed in the above- mentioned way, by which the high saturation magnetization and coercive force are provided and the C/N is improved. The reduction in the diameter of recording bits is also possible and high-density recording is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、書き換え可能な光磁気記録媒体に係わる。[Detailed description of the invention] Industrial applications The present invention relates to a rewritable magneto-optical recording medium.

背景技術とその問題点 レーザー光、例えば夫々半導体レーザー光による書き込
み、すなわち磁気バブルの形成と、これによるカー回転
角に基く読み出しとを行うことができ、書き換え可能な
光磁気ディスク等の光磁気記録媒体としてTbFe、 
GdCo、 GdTbFeなどの希土類金属−遷移金属
系の非晶質材料によるものがある。
Background Art and Problems Magneto-optical recording, such as a rewritable magneto-optical disk, is capable of writing with laser light, for example semiconductor laser light, that is, formation of a magnetic bubble, and reading based on the Kerr rotation angle. TbFe as a medium,
Some are made of rare earth metal-transition metal based amorphous materials such as GdCo and GdTbFe.

この非晶質材料による光磁気記録媒体は、結晶粒界に因
る、いわゆるグレインノイズがないという利点を有する
This magneto-optical recording medium made of an amorphous material has the advantage of being free from so-called grain noise caused by crystal grain boundaries.

そして、この種の光磁気記録媒体に対する記録は、キュ
リ一点記録によるものと補償点記録によるものとがあり
、キュリ一点記録による記録材はFeを主成分としてい
るが、未だ充分な特性、特にC/Hにおいて充分満足す
るものが提案されていない。
There are two types of recording on this type of magneto-optical recording medium: Curie single-point recording and compensation point recording.The recording material for Curie single-point recording has Fe as its main component, but it still has sufficient characteristics, especially C. /H has not been proposed to be fully satisfactory.

発明の目的 本発明は、特に希土類金属−遷移金属系磁気記録材料に
より、キュリ一点記録による光磁気記録媒体において、
C/Nの向上をはかるものである。
OBJECTS OF THE INVENTION The present invention provides a magneto-optical recording medium based on Curie single point recording using a rare earth metal-transition metal magnetic recording material.
This is intended to improve C/N.

発明の概要 本発明は、希土類金属−遷移金属系光磁気記録材料によ
る光磁気記録媒体において、希土類金属として15〜2
5原子%のOyが、遷移金属としてCoを5〜20原子
%含むPeCoが用いられた光磁気記録媒体である。
Summary of the Invention The present invention provides a magneto-optical recording medium using a rare earth metal-transition metal based magneto-optical recording material.
This is a magneto-optical recording medium in which PeCo containing 5 at % of Oy and 5 to 20 at % of Co as a transition metal is used.

実施例 実施例l FeCo5 (5原子%Co−残部Pa)の遷移金属と
、希土類金属Dyによる光磁気記録材料によって光磁気
記録媒体を作製した。この媒体は、第1図に示すように
、基体(11、例えばガラス、或いはアクリル、ポリカ
ーボネイト等より成るディスク基体上に上記希土類金属
oyと、遷移金属FeCoとを含む光磁気記録層(2)
を有する光磁気記録媒体(3)を構成するが、この記録
層(2)における上述の希土類金属と遷移金属との組成
比が記録層(2)の厚さ方向に関して周期的に変化する
ようにする。すなわち、第2図A及びBに、希土類金属
の含有量と遷移金属の含有量の記録層(2)の厚さ方向
に関する各分布を対比して示すように、一方が大のとき
、他方が小となるように周期的に変化させる。この構成
の光磁気記録媒体を得るには、希土類金属と遷移金属と
を夫々異なるスパッター源として設け、両スパッター源
から基体(11に向って同時に夫々の金属をスパツタリ
ングする。この場合、両スパッタリング源から基体il
lに対する主たるスパッタリング位置が互いに異なるよ
うに、両スパッタリング源と基体との位置関係と、更に
両スパッタリング源と基体との間に配置するマスクを選
定する。そして、これら各子バッター源と基体とを相対
的に回転移動させることによって基体(1)上に、希土
類金属層(4)と、遷移金属層(5)とを、第1図に示
すように交互に且つ相互に混入するように積層し、前述
したように、希土類金属と遷移金属との組成比が膜厚方
向に関して周期的に変化するようにする。この場合、各
希土類金属層及び遷移金属層は、これより先に堆積形成
された遷移金属層及び希土類金属層と相互に各金属が少
なくとも拡散するようにして、希土類金属のみ、或いは
遷移金属のみによる層が存在することがないようにする
Examples Example 1 A magneto-optical recording medium was prepared using a magneto-optical recording material made of a transition metal of FeCo5 (5 at. % Co - balance Pa) and a rare earth metal Dy. As shown in FIG. 1, this medium has a magneto-optical recording layer (2) containing the rare earth metal oy and the transition metal FeCo on a disk base (11, for example, glass, acrylic, polycarbonate, etc.).
constitutes a magneto-optical recording medium (3) having the following properties, and the composition ratio of the above-mentioned rare earth metal and transition metal in this recording layer (2) changes periodically in the thickness direction of the recording layer (2). do. That is, as shown in FIGS. 2A and B, which compare and contrast the respective distributions of the rare earth metal content and the transition metal content in the thickness direction of the recording layer (2), when one is large, the other is large. Change it periodically so that it becomes smaller. In order to obtain a magneto-optical recording medium with this configuration, a rare earth metal and a transition metal are provided as different sputtering sources, and the respective metals are simultaneously sputtered from both sputtering sources toward the substrate (11. In this case, both sputtering sources from the substrate il
The positional relationship between both sputtering sources and the substrate and the mask to be placed between both sputtering sources and the substrate are selected so that the main sputtering positions with respect to l are different from each other. Then, by relatively rotating and moving these child batter sources and the substrate, a rare earth metal layer (4) and a transition metal layer (5) are formed on the substrate (1) as shown in FIG. The layers are stacked alternately and intermixed with each other, so that the composition ratio of the rare earth metal and the transition metal changes periodically in the film thickness direction, as described above. In this case, each rare earth metal layer and transition metal layer is made of only a rare earth metal or only a transition metal so that each metal at least diffuses into the transition metal layer and rare earth metal layer deposited before it. Make sure there are no layers.

尚、この場合、基体に対するスパツタリングによる各金
属層の成長速度は、2〜25人/秒、就中5〜20人/
秒となるように基体とスパッタリング源との相対的回転
速度、そのほかのスパッタリング条件を選定することが
望ましい。すなわち、基体とスパッタリング源との相対
的回転速度が速すぎて、その成長速度が2人/秒未満と
なると、遷移金属と希土類金属とが夫々層状に形成され
難くなり、また20人/秒を超えると磁気的特性が低下
してくることが認められた。
In this case, the growth rate of each metal layer by sputtering on the substrate is 2 to 25 people/second, especially 5 to 20 people/second.
It is desirable to select the relative rotational speed of the substrate and sputtering source and other sputtering conditions so that the sputtering time is within seconds. That is, if the relative rotational speed between the substrate and the sputtering source is too high and the growth rate is less than 2 per second, it becomes difficult to form layers of the transition metal and the rare earth metal, and if the growth rate is less than 20 per second. It was observed that when the temperature exceeds 100%, the magnetic properties deteriorate.

尚、このスパツタリングを実施するスパッタリング装置
としては、マグネトロン型構成をとり得るが、これを特
殊の構成とする。第3図はスパッタリング装置の一例の
路線的構成を示すもので、この場合、ベルジャ(図示せ
ず)内に、軸心〇−〇′を中心として回転する基台(6
)を設け、これの例えば下面に目的とする光磁気配・録
媒体を構成するガラス板、樹脂板等より成る基体(1)
が配置される。そして、この基体(11に対向して軸心
0−0′を中心に等角間隔、すなわち180°の角間隔
を保持して2個のスパッター源17)及び(8)を配置
する。
The sputtering apparatus for performing this sputtering may have a magnetron type structure, but this is a special structure. FIG. 3 shows the linear configuration of an example of a sputtering device. In this case, a base (6
), and for example, on the bottom surface thereof, there is a base (1) made of a glass plate, a resin plate, etc. that constitutes the intended magneto-optical distribution/recording medium.
is placed. Two sputter sources 17 and (8) are arranged facing the base body (11) at equal angular intervals, that is, at an angular interval of 180°, about the axis 0-0'.

これらスパッター源(7)及び(8)と基台(6)、す
なわち基体+11との間には、スパッター源(7)及び
(8)より夫々スパッターされる金属のスパッター位置
を規制するマスク(9)を配置する。この例では、スパ
ッター源(7)は希土類金属Dyの板状体より成るター
ゲットOIを有し、スパッター源(8)は、遷移金属F
eCo5の板状体より成るターゲット(11)を有して
成る。
Between these sputtering sources (7) and (8) and the base (6), that is, the base +11, there is a mask (9) for regulating the sputtering position of the metal sputtered from the sputtering sources (7) and (8), respectively. ). In this example, the sputter source (7) has a target OI consisting of a plate of the rare earth metal Dy, and the sputter source (8) has a target OI consisting of a plate of the rare earth metal Dy.
It has a target (11) made of a plate-shaped body of eCo5.

(12)及び(13)は、夫々マグネットを示す。(12) and (13) each indicate a magnet.

マスク(9)は、例えば第4図に示すように、ターゲッ
トO1及び(11)に対向する部分にこれらターゲット
01及び(11)の中心を通る直線X方向に外側に向っ
て広がる例えばいちょう形の窓(14)及び(15)が
穿設されて成る。第4図においては内窓(14)及び(
15)の大きさは、同一に選ばれているが、これら窓(
14)及び(15)の面積は、基体(1)上に形成する
記録層の希土類金属と、遷移金属との割合に対応する比
率をもって形成し得る。
For example, as shown in FIG. 4, the mask (9) has, for example, a ginkgo-shaped portion extending outward in the direction of a straight line Windows (14) and (15) are drilled therein. In Fig. 4, the inner window (14) and (
15) are chosen to be the same size, but these windows (
The areas of 14) and (15) can be formed at a ratio corresponding to the ratio of rare earth metal and transition metal in the recording layer formed on the substrate (1).

尚、両スパッター源(8)のターゲット(11)は、合
金によって構成する場合に限らず、目的とする組成比に
応した面積比をもってはり合せた構造とすることもでき
る。
Note that the targets (11) of both sputtering sources (8) are not limited to being made of an alloy, but may also have a structure in which they are glued together with an area ratio that corresponds to the intended composition ratio.

そして基台(6)を回転させながらターゲット001及
び(11)を負極側として直流スパッタリングを行った
Then, while rotating the base (6), DC sputtering was performed with the targets 001 and (11) on the negative electrode side.

このようにして形成された金属層は、第2図で説明した
ようにDν、すなわち希土類金属に冨んだ層と、Fe及
びCo、すなわち遷移金属に冨んだ層とが順次交互に層
構造となった。
The metal layer thus formed has a layer structure in which Dν, that is, a layer rich in rare earth metals, and layers rich in Fe and Co, that is, transition metals, are sequentially alternately formed as explained in FIG. It became.

このようにして得た光磁気記録媒体即ちディスクは、カ
ー回転角θに=0.3°で、半導体レーザー光によって
ディスク回転数180Orpmで2 MHzの信号を記
録した場合、再生特性はC/Nが54dBとなった。
When a 2 MHz signal is recorded on the magneto-optical recording medium, that is, a disk obtained in this way, at a Kerr rotation angle θ = 0.3° and a disk rotation speed of 180 rpm using a semiconductor laser beam, the reproduction characteristic is C/N. was 54dB.

実施例2 実施例1と同様にして光磁気記録媒体(ディスク)を得
たが、この実施例2においてはその記録材料の組成をD
y−FeC+oとした。この場合、θに#0.35°で
180orpm 、 2 MHzの信号記録で、C/N
は55dBであった。
Example 2 A magneto-optical recording medium (disk) was obtained in the same manner as in Example 1, but in this Example 2, the composition of the recording material was changed to D.
y-FeC+o. In this case, the C/N is
was 55 dB.

実施例3 実施例1と同様にして光磁気記録媒体(ディスク)を得
たが、この実施例3においては、その記録材料の組成を
Dy−FeC+5とした。この場合、θに#0.4°で
、1800rpm 、 2 MHzの信号記録で、C/
Nは54dBであった。
Example 3 A magneto-optical recording medium (disc) was obtained in the same manner as in Example 1, but in this Example 3, the composition of the recording material was Dy-FeC+5. In this case, C/
N was 54 dB.

第5図は、実施例1に示した方法によって光磁気記録媒
体を作製し、その記録材料の組成においてoyを変化さ
せた場合の飽和磁化Ms、保持力He。
FIG. 5 shows the saturation magnetization Ms and coercive force He when a magneto-optical recording medium was produced by the method shown in Example 1 and oy was varied in the composition of the recording material.

キュリ一温度Tcの各測定結果を示したもので、同図中
、曲線(51M )、(52M )及び(53M)は夫
々Gy−Fe (すなわちCoを含有量oのもの)の場
合、Dy −FeCo5oの場合及びDy −FeCo
2oの場合の旧の測定結果を示し、曲線(51M ) 
(52H)及び(53M)は夫々同様のDy−pEll
 Dy−FeCo+o及びDy −FeCo2゜の場合
のHeの測定結果を示し、曲線(51T ) (52T
 )及び(53T )は夫々同様のDy −Fe+ D
y −FeCo+o及びDy−FeCo2oの場合のT
cの測定結果を示す。
The curves (51M), (52M), and (53M) indicate the curves (51M), (52M), and (53M) for Gy-Fe (i.e., Co content o) and Dy-Fe, respectively. In the case of FeCo5o and Dy-FeCo
Showing the old measurement results for 2o, the curve (51M)
(52H) and (53M) are respectively similar Dy-pEl
The measurement results of He in the case of Dy-FeCo+o and Dy-FeCo2° are shown, and the curve (51T) (52T
) and (53T) are similar Dy −Fe+ D
T for y-FeCo+o and Dy-FeCo2o
The measurement results of c are shown.

また、第6図は実施例1と同様の方法で作製した光磁気
記録媒体において、その光磁気記録材料の組成をDV 
Fet−yCoyとしてそのyの値、即ちC。
Further, FIG. 6 shows a magneto-optical recording medium manufactured by the same method as in Example 1, with the composition of the magneto-optical recording material being DV.
The value of y as Fet-yCoy, ie C.

量を変えた場合の特性の測定結果を示したもので、曲線
(60M ) 、(60θ) 、(60T )及び(6
0x)は夫々飽和磁化Ms、カー回転角θに、キュリ一
温度Tc及び結晶化の始まる温度Txの測定結果である
It shows the measurement results of the characteristics when the amount is changed, and the curves (60M), (60θ), (60T) and (60T) are shown.
0x) are the measurement results of the saturation magnetization Ms, the Kerr rotation angle θ, the Curie temperature Tc, and the temperature Tx at which crystallization begins, respectively.

更にまた、第7図は、実施例1と同様の方法で作製した
光磁気記録媒体において、その光磁気記録材料が、Dy
 peloo−X Coxで、x = 5 、x = 
IQ。
Furthermore, FIG. 7 shows a magneto-optical recording medium manufactured by the same method as in Example 1, in which the magneto-optical recording material is Dy.
peloo-X Cox, x = 5, x =
I.Q.

x−20及びx=30としたときのDyの量を変えた場
合の保持力Heを測定したもので、図中黒丸印はX−5
のとき、白丸印はX=10のとき、三角印はX−20の
とき、四角印はx=30のときの測定結果を示す。
The holding force He was measured when the amount of Dy was changed when x-20 and x=30, and the black circles in the figure indicate X-5
In this case, the white circle indicates the measurement result when X=10, the triangle mark indicates the measurement result when X-20, and the square mark indicates the measurement result when x=30.

本発明においては、前述したように光記録材料としてD
y−FeCo構成をとり、希土類金属としての口yを1
2〜25原子%とし、遷移金属としてのCo −Feに
おいてCOを4〜20原子%とするものであるが、ここ
に、oyを15〜25原子%に選定するのは、次の理由
に因る。即ち、光磁気記録媒体は、本来小さいカー回転
角を有効に利用するために、角型比が良いこと、記録が
容易に消えることがないようにする必要があることなど
から、その保持力Hcは、1kOe以上であることが望
まれるがOyの含有量が15原子%未満では、第6図よ
り明らかなようにHeが1kOeより低くなり、またo
yが25原子%を超えるとHcが高くなり過ぎ、消去及
び書き換えが困難となり、25原子%以下が望ましいこ
とを確めたことに因る。因みにoyが26原子%のとき
は補償組成となりHcは無限大となった。
In the present invention, as described above, D is used as an optical recording material.
y-FeCo configuration, and the rare earth metal y is 1
In Co-Fe as a transition metal, CO is 4 to 20 atom%, but the reason why oy is selected to be 15 to 25 atom% is due to the following reason. Ru. In other words, magneto-optical recording media need to have a good squareness ratio in order to make effective use of the originally small Kerr rotation angle, and must prevent records from being easily erased. It is desired that He is 1 kOe or more, but if the Oy content is less than 15 at%, as is clear from Figure 6, He will be lower than 1 kOe, and the o
This is because if y exceeds 25 atom %, Hc becomes too high, making erasing and rewriting difficult, so it was confirmed that y is desirably 25 atom % or less. Incidentally, when oy was 26 atomic %, the composition became a compensation composition and Hc became infinite.

また、FeCoにおいて、Coを5〜20原子%に選定
するのは、DyFeの光磁気材料ではカー回転角θkが
小さく、キュリ一点Tcが低いが遷移金属としてFeC
oを用い、これにおいてCoを5原子%以上添加するこ
とによってこれらの改善がなされることが認められ、2
0原子%を超えると、第6図かられかるように結晶化が
始まる温度Txが、キュリ一温度Tcより低くなって、
キュリ一点記録に不都合となることに因る。
In addition, the reason for selecting 5 to 20 atomic % of Co in FeCo is that the Kerr rotation angle θk is small in the magneto-optical material of DyFe, and the Curie point Tc is low, but as a transition metal, FeCo is
It has been recognized that these improvements can be made by adding 5 atomic % or more of Co to this using 2.
When it exceeds 0 atomic %, the temperature Tx at which crystallization begins becomes lower than the Curie temperature Tc, as shown in Figure 6.
This is because it would be inconvenient to record only one curri.

そして、本発明による光磁気記録媒体では、例えば従来
のTb FeCo系、 TbGd−Fe系の光磁気記録
材料による場合に比し、C/Nが2〜5dB向上した。
In the magneto-optical recording medium according to the present invention, the C/N is improved by 2 to 5 dB compared to, for example, a case using a conventional magneto-optical recording material such as TbFeCo or TbGd-Fe.

発明の効果 上述したように本発明によれば、高い飽和磁化Msと保
持力Heが得られ、しかもC/Nの向上をはかることが
できるものである。
Effects of the Invention As described above, according to the present invention, high saturation magnetization Ms and coercive force He can be obtained, and C/N can be improved.

尚、記録ピントの径はMs、 Hcに反比例することか
らこのビット径の縮少をも、はかることかでき、これに
よって高密度記録をはかることができる。
Incidentally, since the diameter of the recording focus is inversely proportional to Ms and Hc, it is possible to reduce the bit diameter, thereby achieving high-density recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光磁気記録媒体の路線的拡大断面
図、第2図はその成分分布図、第3図は本発明製法を実
施するスパッタリング装置の一例の路線的構成図、第4
図はその要部の平面図、第5〜7図は光磁気記録媒体の
各特性の測定曲線図である。 (11は基体、(2)は光磁気記録層である。 同 松隈秀盛、I・′ン云1 一1j 第1図 第2図 第3図 第4図 第5図 Y(C6戚介)
FIG. 1 is an enlarged linear sectional view of a magneto-optical recording medium according to the present invention, FIG. 2 is a component distribution diagram thereof, FIG. 3 is a linear configuration diagram of an example of a sputtering apparatus for implementing the manufacturing method of the present invention, and FIG.
The figure is a plan view of the main part, and FIGS. 5 to 7 are measurement curve diagrams of each characteristic of the magneto-optical recording medium. (11 is the substrate, and (2) is the magneto-optical recording layer. Hidemori Matsukuma, I. N. 1-1j Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Y (C6 Kaisuke)

Claims (1)

【特許請求の範囲】[Claims] 希土類金属−遷移金属系光磁気記録材料による光磁気記
録媒体において、希土類金属として15〜25原子%の
hが、遷移金属としてCoを5〜20原子%含むPaC
oが用いられた光磁気記録媒体。
In a magneto-optical recording medium using a rare earth metal-transition metal based magneto-optical recording material, PaC contains 15 to 25 atom % h as a rare earth metal and 5 to 20 atom % Co as a transition metal.
Magneto-optical recording medium using o.
JP9373184A 1984-05-10 1984-05-10 Optomagnetic recording medium Pending JPS60237655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9373184A JPS60237655A (en) 1984-05-10 1984-05-10 Optomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9373184A JPS60237655A (en) 1984-05-10 1984-05-10 Optomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60237655A true JPS60237655A (en) 1985-11-26

Family

ID=14090553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9373184A Pending JPS60237655A (en) 1984-05-10 1984-05-10 Optomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60237655A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224853A (en) * 1988-07-13 1990-01-26 Matsushita Electric Ind Co Ltd Magneto-optical recording medium
JPH0316049A (en) * 1990-04-19 1991-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Magneto-optical recording medium
US5473582A (en) * 1993-09-02 1995-12-05 Nikon Corporation Magneto-optical recording method having constant recording sensitivity and magneto-optical recording medium used therefor
US5565830A (en) * 1989-09-08 1996-10-15 Kabushiki Kaisha Toshiba Rare earth-cobalt supermagnetostrictive alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224853A (en) * 1988-07-13 1990-01-26 Matsushita Electric Ind Co Ltd Magneto-optical recording medium
US5565830A (en) * 1989-09-08 1996-10-15 Kabushiki Kaisha Toshiba Rare earth-cobalt supermagnetostrictive alloy
JPH0316049A (en) * 1990-04-19 1991-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Magneto-optical recording medium
JPH0465523B2 (en) * 1990-04-19 1992-10-20 Kokusai Denshin Denwa Co Ltd
US5473582A (en) * 1993-09-02 1995-12-05 Nikon Corporation Magneto-optical recording method having constant recording sensitivity and magneto-optical recording medium used therefor

Similar Documents

Publication Publication Date Title
JPH0670858B2 (en) Magneto-optical recording medium and its manufacturing method
JPH0740380B2 (en) Magneto-optical recording material
JPS60231306A (en) Amorphous magnetooptical layer
JPS60243840A (en) magneto-optical recording medium
JPS60237655A (en) Optomagnetic recording medium
EP0310680A1 (en) Photomagnetic recording membrane
JP2703587B2 (en) Magneto-optical recording medium and recording method
US5100741A (en) Magneto-optic recording systems
JPH0351082B2 (en)
JPS59185052A (en) Photomagnetic recording medium
JPS59217249A (en) Photomagnetic recording medium
JPH0528555A (en) Magneto-optical recording medium
US6048597A (en) Optical device and manufacturing method thereof
JPH01178151A (en) Magneto-optical recording medium
KR970010942B1 (en) Optical recording medium
JP3592399B2 (en) Magneto-optical recording medium
JP3079308B2 (en) Magneto-optical recording medium
JPS63104243A (en) magneto-optical recording element
JPS5996713A (en) Magnetic recording medium
JPH0259603B2 (en)
JPS63224054A (en) Production of magneto-optical recording medium
JPS61144743A (en) Optomagnetic recording medium and its production
JPS623449A (en) Optical magnetic recording media
JPH05290417A (en) Magneto-optical recording medium
JPS62298044A (en) magneto-optical disk