JPS60235096A - Manufacturing method for neutron shielding and absorption materials - Google Patents
Manufacturing method for neutron shielding and absorption materialsInfo
- Publication number
- JPS60235096A JPS60235096A JP8928484A JP8928484A JPS60235096A JP S60235096 A JPS60235096 A JP S60235096A JP 8928484 A JP8928484 A JP 8928484A JP 8928484 A JP8928484 A JP 8928484A JP S60235096 A JPS60235096 A JP S60235096A
- Authority
- JP
- Japan
- Prior art keywords
- boron carbide
- copper
- powder
- nickel
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
発明の目的
本発明は炭化ホウ素が均一に分散した中性子遮蔽吸収材
料の製造を提供することを目的とする。DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION It is an object of the present invention to provide for the production of neutron shielding and absorbing materials in which boron carbide is uniformly dispersed.
従来技術 炭化ホウ素は優れた熱中性子吸収材料であるが。Conventional technology Although boron carbide is an excellent thermal neutron absorbing material.
通常は粉末として供給され、使用上程々の制限があった
。また、高密度な製品を得るためには、ホットプレスに
よるかあるいは高温での焼結を必要とするなど製造条件
が厳しく、高価になるため多量に用いられない。この問
題点を解決する方途としてプラスティクや金属に炭化ホ
ウ素が分散した製品を製造する研究が行なわれており、
その狙いは所定量の炭化ホウ素全いかに均一に分散させ
得ることが出来るかということと、製品の強度を可及的
に高くすることである。It is usually supplied as a powder, and there are some restrictions on its use. In addition, in order to obtain a high-density product, manufacturing conditions are severe, such as requiring hot pressing or high-temperature sintering, and the product is expensive, so it is not used in large quantities. As a way to solve this problem, research is being conducted to manufacture products in which boron carbide is dispersed in plastics and metals.
The aim is to find out how uniformly a given amount of boron carbide can be dispersed and to make the product as strong as possible.
強度を高くするためにはマトリックスとなる材質の選定
が重要であル、プラスティクでは強度が弱く、さらに温
度が高くなるにつれて強度の低下が顕著となる欠点があ
る。さらに熱伝導率が低いのもこの種の中性子遮蔽材と
して用いるにプラスティクでは満足な結果は得られない
。プラスティクに代わる材料として、鉛あるいはアルミ
ニウム等の金属を使用することが考えられ、これらの材
料はプラスティクよりも強度あるいは熱伝導率において
改善される可能性がある。しかしながらこれらの材料は
融点が低いことが共通であシ、使用される条件において
十分な信頼を得ることは出来ない。特に火災等の事故の
際に問題が多いと考えられる。プラスティク、鉛、アル
ミニウム等よシも強度が高く、融点が高く、同時に熱伝
導率にも優れる材料を選定することが重要となる。In order to increase the strength, it is important to select the material that will serve as the matrix, and plastic has the disadvantage that it has low strength, and furthermore, the strength decreases more significantly as the temperature increases. Furthermore, plastics have low thermal conductivity, making it difficult to achieve satisfactory results when used as this type of neutron shielding material. Metals such as lead or aluminum may be used as an alternative to plastic, and these materials may have improved strength or thermal conductivity over plastic. However, these materials commonly have a low melting point, and cannot be sufficiently reliable under the conditions in which they are used. This is thought to cause many problems, especially in the event of an accident such as a fire. It is important to select materials such as plastic, lead, and aluminum that have high strength, a high melting point, and at the same time excellent thermal conductivity.
本発明においては、マトリックス材料として。In the present invention, as a matrix material.
ニッケルあるいはそれらの合金を選定することにより上
記欠点を除くことが出来た。すなわら1本発明の要点は
、銅、ニッケルの1種または2種をマトリックス材とし
て使用することを特徴とし。By selecting nickel or an alloy thereof, the above drawbacks could be eliminated. In other words, one key point of the present invention is that one or both of copper and nickel are used as the matrix material.
これら銅および/またはニッケルのマトリックス中に炭
化ホウ素が均一に分散した製品を工業的に合理的な価格
で製造する方法を示したものである。The present invention shows a method for producing products in which boron carbide is uniformly dispersed in a matrix of copper and/or nickel at an industrially reasonable price.
炭化ホウ素金銅および/またはニッケルのマトリックス
中に分散させる方法として、従来の技術からすれは、炭
化ホウ素粉末と銅粉末あるいはニッケル粉末と全混合し
、混合した粉末を成形、焼結する方法、まfCFi混合
した粉末をホットプレスする方法等の通常の粉末冶金法
が考えられる。しかしながらこのような方法で製造した
複合体について炭化ホウ素の分散の均一性を調べたとこ
ろ。Conventional methods for dispersing boron carbide in a gold-copper and/or nickel matrix include a method in which boron carbide powder is completely mixed with copper powder or nickel powder, and the mixed powder is molded and sintered. Conventional powder metallurgy methods such as hot pressing of mixed powders are conceivable. However, when we investigated the uniformity of dispersion of boron carbide in composites produced by this method.
十分な均一性が得られないことが確認された。この理由
は炭化ホウ素の密度が2.5117/ct/l、銅の密
度が8.6&/cr/l、ニッケルの密度が8.9.!
if/cIItであり、炭化ホウ素とマトリックス材と
の密度差が大きいために、これらの粉末を混合しても均
一に分散させることが困難なことによる。中性子遮蔽材
として使用する時、炭化ホウ素がマトリックス中に均一
に分散していることは重要な因子であることから、この
ような通常の粉末冶金法による製造方法は適当でない。It was confirmed that sufficient uniformity could not be obtained. The reason for this is that the density of boron carbide is 2.5117/ct/l, the density of copper is 8.6&/cr/l, and the density of nickel is 8.9. !
if/cIIt, and the difference in density between boron carbide and the matrix material is large, so even if these powders are mixed, it is difficult to disperse them uniformly. When used as a neutron shielding material, uniform dispersion of boron carbide in the matrix is an important factor, so such a conventional powder metallurgy manufacturing method is not suitable.
通常の粉末冶金以外の方法として、銅めるいけニッケル
をルツボ中に融解しておき、その中に炭化ホウ素粉末を
投入し醇湯を撹拌しつつ固化させることが考えられる。As a method other than the usual powder metallurgy, it is conceivable to melt copper and nickel in a crucible, put boron carbide powder into the crucible, and solidify while stirring the molten liquid.
この方法は将来の大量生産を想定した時には興味ある技
術と言えるが、eq。This method can be said to be an interesting technology when assuming future mass production, but eq.
ニッケルの融点が1000度以上の高いことからも、こ
のような高温の湯浴中に炭化ホウ素粉末を分散させるこ
とが現段階では技術的に十分確立されてない。さらに、
粉末冶金法の場合と同様に炭化ホウ素と銅あるいは炭化
ホウ素とニッケルの密度の差が大きいことから、この方
法によっても十分均一な炭化ホウ素の分散した製品を得
ることは困難であると考えられる。Since the melting point of nickel is as high as 1000 degrees or more, it is not technically well established at this stage to disperse boron carbide powder in such a high-temperature water bath. moreover,
As with the powder metallurgy method, there is a large difference in density between boron carbide and copper or boron carbide and nickel, so it is considered difficult to obtain a product in which boron carbide is sufficiently uniformly dispersed even by this method.
発明の構成
本発明は炭化ホウ素粒子金銅またはニッケルあるいはそ
れらの合金で被覆し、被覆粒子を圧縮し焼結するかまた
はホットプレスすることからなる炭化ホウ素を均一に分
散した中性子遮蔽吸収材料の製法を提供する。Structure of the Invention The present invention provides a method for producing a neutron shielding and absorbing material in which boron carbide is uniformly dispersed, which comprises coating boron carbide particles with gold copper or nickel or an alloy thereof, and compressing and sintering or hot pressing the coated particles. provide.
本発明によれば、以下詳細に述べる方法で銅。According to the invention, copper is produced in the manner described in detail below.
ニッケルあるいはそれらの合金全マトリックスとし、炭
化ホウ素が均一に分散した製品を製造することが出来る
。It is possible to manufacture products in which boron carbide is uniformly dispersed using nickel or an alloy thereof as an entire matrix.
炭化ホウ素粉末に銅、ニッケルあるいはそれらの合金を
被覆する方法として、気相成長法あるいは液相成長法が
可能であシ、いずれの方法によっても本発明を達成でき
るが、生産性、コストの観点から無電解メッキあるいは
無電解メッキ後電解メッキを採用することが好ましい。Vapor phase growth or liquid phase growth can be used as a method for coating boron carbide powder with copper, nickel, or their alloys, and the present invention can be achieved by either method, but from the viewpoint of productivity and cost. Therefore, it is preferable to adopt electroless plating or electrolytic plating after electroless plating.
本発明では。In the present invention.
気相成長法では真空蒸着法が、液相成長法では無電解メ
ッキ法が特に好ましい。Among the vapor phase growth methods, vacuum evaporation is particularly preferred, and among the liquid phase growth methods, electroless plating is particularly preferred.
気相成長法あるいは液相成長法によシ、銅、ニッケルあ
るいはそれらの合金を炭化ホウ素粉末の裏面に被覆する
場合、粉末の粒度が粗すぎると粉末表面積が小さいだめ
に所定量の金属を被覆するのに長い時間を要し、製造の
面から好ましくない。When coating copper, nickel, or their alloys on the back side of boron carbide powder by vapor phase growth or liquid phase growth, if the particle size of the powder is too coarse, it may be difficult to coat the specified amount of metal due to the small surface area of the powder. It takes a long time to complete the process, which is unfavorable from a manufacturing standpoint.
さらに炭化ホウ素粉末の粒度が極端に粗すぎると。Furthermore, the particle size of the boron carbide powder is extremely coarse.
製品中にこの粗い炭化ホウ素が島状に分布する組織とな
勺、これは中性子遮蔽体として要求される炭化ホウ素が
可能な限り均一に全面分布するという観点から不利にな
るっこれらのことを勘案して試験を行った結果、炭化ホ
ウ素粉末の平均粒径は500ミクロン以Fが好ましいこ
とがわかった。If a product has a structure in which this coarse boron carbide is distributed in islands, this is disadvantageous from the viewpoint of distributing boron carbide as uniformly as possible over the entire surface, which is required as a neutron shield. As a result of conducting tests, it was found that the average particle size of the boron carbide powder is preferably 500 microns or more.
カお、平均粒径に対する粒度分布はシャープなほど好ま
しいと考えられるが1%に粒度分布を指定する必要はな
い。Although it is considered that the sharper the particle size distribution with respect to the average particle diameter is, the better it is, but it is not necessary to specify the particle size distribution at 1%.
以上で述べたように炭化ホウ素粉末の表面に銅あるいは
ニッケルを所定量コーティングした粉末を成形、焼結す
ることによシ炭化ホウ素が均一に分散した製品を得るこ
とができた。しかしながら。As described above, by molding and sintering boron carbide powder whose surface was coated with a predetermined amount of copper or nickel, a product in which boron carbide was uniformly dispersed could be obtained. however.
この管通焼結の方法では十分高い焼結密度の複合体を得
ることが困難であることがわかった。焼結密度が低いと
、一般に強度の低下、熱伝導率の低下が生じ、この種の
材料の使用条件下では、好ましくない。さらに焼結密度
の低下は、製品体積あたりの炭化ホウ素含有量の低下を
招き、結果的にはホウ素含有濃度が低下し、中性子の遮
蔽・吸収能力が低下するっこのことから製品密度は可及
的に高いことが望ましく、かつ炭化ホウ素含有量の高い
ことが必要である。本発明では、炭化ホウ素粉末に銅、
ニッケルあるいはそれらの合金をコーティングし、ホッ
トプレスすることにより、高密度であると同時に炭化ホ
ウ素がマトリックス中に均一に分散した複合体を、製造
することができる。It was found that it was difficult to obtain a composite with sufficiently high sintered density using this tube sintering method. A low sintered density generally results in a decrease in strength and a decrease in thermal conductivity, which is undesirable under the conditions in which this type of material is used. Furthermore, a decrease in sintered density leads to a decrease in boron carbide content per product volume, which results in a decrease in boron content concentration and a decrease in neutron shielding and absorption ability. It is desirable that the carbon content is high, and it is necessary that the boron carbide content be high. In the present invention, copper is added to the boron carbide powder.
By coating with nickel or an alloy thereof and hot pressing, it is possible to produce a composite with high density and uniform dispersion of boron carbide in the matrix.
本発明において、炭化ホウ素粉末にj(nl 、ニッケ
ルあるいはそれらの合金をコーティングした粉末の。In the present invention, boron carbide powder is coated with j(nl, nickel or an alloy thereof).
金属の占める体積が低くなると十分高密度な焼結体を得
るととが困難となるL試験の結果、金属の体積割合が複
合体の理論体積の25チ未満になるとホットプレスを行
っても複合体の密度は95%に達することが困難となり
、しかも強度についても十分高いものが得られなかった
へ一方、炭化ホウ素量については、特に制限はないが、
少なすぎると遮蔽・吸収効果を上げるため複合体の使用
量を多くしなければならないので、工業的に使用するに
はこの量は40容惜チ以上が望ましい。As a result of the L test, it becomes difficult to obtain a sufficiently dense sintered body when the volume occupied by the metal becomes low. Even if hot pressing is performed, the composite is difficult to obtain when the volume ratio of the metal is less than 25 cm of the theoretical volume of the composite. It became difficult to reach a body density of 95%, and it was not possible to obtain a sufficiently high strength.On the other hand, there is no particular limit to the amount of boron carbide, but
If it is too small, the amount of the composite must be increased to enhance the shielding/absorbing effect, so for industrial use, it is desirable that this amount be 40 volumes or more.
本発明では、ホットプレスによる方法以外にホットアイ
ンスタテイクプレス法でも、満足な製品が得られる。さ
らに本発明では、大量にかつ安価に製造する方法として
1通常の焼結法により得られた複合体を圧延すると、密
度が高くなシ、圧延温度を300℃以上にすることによ
シ良い結果が得られる。In the present invention, a satisfactory product can be obtained not only by the hot press method but also by the hot insta-take press method. Furthermore, in the present invention, as a method for manufacturing in large quantities and at low cost, 1. rolling a composite obtained by a normal sintering method results in a high density, and a rolling temperature of 300°C or higher yields good results. is obtained.
発明の効果
本発明方法によれば理論密度の98%以上の密度を有す
る炭化ホウ素中性子遮蔽吸収用材料を容易に製造するこ
とができる。Effects of the Invention According to the method of the present invention, a boron carbide neutron shielding/absorbing material having a density of 98% or more of the theoretical density can be easily produced.
実施態様 次に本発明を実施例によシ詳細に説明する。Implementation mode Next, the present invention will be explained in detail using examples.
実施例1
平均粒径50μmのB、C粉末100gを60℃のPd
Cl、(0,005fj、/1. pH4,() )液
で5分間活性化処理し、水洗し、50℃のCuめつきi
(奥野裂薬工業製OPCカッパー、pi−110,5)
で6時間浸漬し、水洗し、中和しく H2SO41rd
/ l)水洗、乾燥した。尚、Cuめつき液中の全Cu
イオン濃度は360yであシ、6時間のめつきによシそ
の995%が、 B、C粉末表面に析出した。被覆層の
厚さは炭化ホウ素の体積と銅の体積が同じにした(複合
体の空隙部分の体積のうち銅の体積が50チ)であった
。この銅で被覆した粉末をグラファイトモールドを使用
し、圧力150 kg/Cd。Example 1 100 g of B, C powder with an average particle size of 50 μm was heated to Pd at 60°C.
Activated with Cl, (0,005fj,/1.pH4, () ) solution for 5 minutes, washed with water, and plated with Cu at 50°C.
(OPC copper manufactured by Okuno Riyaku Kogyo, pi-110,5)
Soak for 6 hours in H2SO41rd, wash with water, and neutralize.
/ l) Washed with water and dried. In addition, the total Cu in the Cu plating solution
The ion concentration was 360y, and after 6 hours of plating, 995% of the ions precipitated on the surface of the B and C powders. The thickness of the coating layer was such that the volume of boron carbide and the volume of copper were the same (the volume of copper was 50 cm in the volume of the void portion of the composite). This copper-coated powder was placed in a graphite mold under a pressure of 150 kg/Cd.
温度/800℃でホットプレスした。この複合体の密度
は理論密度に対して98%であった。顕微鏡観察の結果
、マトリックス中の炭化ホウ素は均一に分布しているこ
とが確認された。この炭化ホウ素/銅複合体の特性とし
て熱伝導率および抗折強度を測定した。熱伝導率は90
kcal /CwL−h−に、 。Hot pressing was carried out at a temperature of 800°C. The density of this composite was 98% of the theoretical density. As a result of microscopic observation, it was confirmed that boron carbide in the matrix was uniformly distributed. Thermal conductivity and bending strength were measured as characteristics of this boron carbide/copper composite. Thermal conductivity is 90
kcal/CwL-h-.
抗折強度は15#/−であり、中性子遮蔽体として使用
されるに十分な特性であった。The bending strength was 15#/-, which was sufficient to be used as a neutron shield.
実施例2
平均粒径120μmのB、C粉末100gを60℃のp
dcl、 (0,003g/ CpH4,0)液で5分
間活性化処理し、水洗し、60℃のNiめっき液(日本
カニゼン裂、5B−55,pH6,9)5時間浸漬し、
水洗し、乾燥した。Niめつきよシ370gNiがB4
C粉表面上に析出した。被覆層の厚さは実施例1と同様
に被覆後の製品体積の50チであった。このニッケルで
粉末をグラファイトモールドを使用し、圧力150 k
g/Cr/1.温度950℃でホットプレスした。この
製品の密度は理論密度に対して98チであった。Example 2 100 g of B and C powders with an average particle size of 120 μm were heated at 60° C.
dcl, (0,003 g/C pH 4,0) solution for 5 minutes, washed with water, and immersed in Ni plating solution (Nippon Kanigen Sakai, 5B-55, pH 6,9) at 60°C for 5 hours.
Washed with water and dried. 370g Ni is B4
It precipitated on the surface of C powder. As in Example 1, the thickness of the coating layer was 50 inches of the product volume after coating. Using this nickel powder in a graphite mold, the pressure was 150 k.
g/Cr/1. Hot pressing was carried out at a temperature of 950°C. The density of this product was 98 cm compared to the theoretical density.
実施例6
実施例1および実施例2と同じ方法で得た銅またはニッ
ケルを無電解メッキした炭化ホウ素粉末を重量パーセン
トで等しくなるように混合し、混合した粉末をグラファ
イトモールドを使用し、圧力150kg/cI/l、温
度900℃でホットプレスした。この製品の組織を観察
した結果、銅およびニッケルでコーティングした粉末は
均一に分散していることが確認され、また焼結密度は理
論密度に対して99%以上を示した。高密度の得られた
原因として異種粉末の混合の効果、即ち、銅およびニッ
ケルをコーティングした粉末の粒度が異なることによっ
て緻密化し、銅とニッケルが固溶したことによる焼結が
促進されたと考えられる。Example 6 Boron carbide powder electrolessly plated with copper or nickel obtained by the same method as Example 1 and Example 2 was mixed to have an equal weight percentage, and the mixed powder was heated using a graphite mold under a pressure of 150 kg. /cI/l and hot-pressed at a temperature of 900°C. As a result of observing the structure of this product, it was confirmed that the powder coated with copper and nickel was uniformly dispersed, and the sintered density was 99% or more of the theoretical density. The reason for the high density is thought to be the effect of mixing different types of powder, that is, the different particle sizes of the powder coated with copper and nickel lead to densification, and the solid solution of copper and nickel promotes sintering. .
実施例4
平均粒径20 ttmのB4C粉10,9.35gのC
uを真空蒸着した。真空蒸着条件は2 X 10−’
Torrで、蒸発源としては黒鉛るっほを用い、高周波
誘導加熱により加熱を行なった。蒸着時間は2.5時間
であった。このときのB、C粉上へのCu析出量は、3
5.5gであった。被覆層の厚さは実施例1と同様に被
覆後の製品体積の50チであった。この銅で被覆した粉
末をグラファイトモールドを使用し、圧力1501c9
/Cr/l、温度800℃でホットプレスした。この製
品の密度は理論密度に対して9日チであった。Example 4 B4C powder 10, 9.35 g of C with an average particle size of 20 ttm
u was vacuum evaporated. Vacuum deposition conditions are 2 x 10-'
Torr, graphite Ruho was used as the evaporation source, and heating was performed by high frequency induction heating. The deposition time was 2.5 hours. At this time, the amount of Cu precipitated on the B and C powders was 3
It was 5.5g. As in Example 1, the thickness of the coating layer was 50 inches of the product volume after coating. This copper-coated powder was heated using a graphite mold at a pressure of 1501c9.
/Cr/l and hot pressed at a temperature of 800°C. The density of this product was 9 days higher than the theoretical density.
実施例5
実施例1と同じ方法で被覆した炭化ホウ素/銅粉末をス
テンレス銅の容器に充填し温度900℃。Example 5 A stainless copper container was filled with boron carbide/copper powder coated in the same manner as in Example 1, and the temperature was 900°C.
到達圧力1000気圧でホットアイソスタテイクプレス
した。この製品の密度は理論密度に対して98%であっ
た。Hot isostatic pressing was carried out at an ultimate pressure of 1000 atm. The density of this product was 98% of the theoretical density.
実施例6
実施例1と同じ方法で被覆した炭化ホウ素/銅粉末を1
t/mの圧力で成形した後、960℃で6時間真空雰囲
気で焼結した。この焼結体の密度は理論密度に対して7
5チであった。さらに高密度製品を得るためにこの焼結
体をステンレス缶に真空封入し、800℃の温度で圧延
した。圧延後の製品の密度は96%であった。Example 6 Boron carbide/copper powder coated in the same manner as Example 1 was
After molding at a pressure of t/m, it was sintered at 960° C. for 6 hours in a vacuum atmosphere. The density of this sintered body is 7 compared to the theoretical density.
It was 5chi. In order to further obtain a high-density product, this sintered body was vacuum sealed in a stainless steel can and rolled at a temperature of 800°C. The density of the product after rolling was 96%.
以上の実施例で示した製品はいずれも炭化ホウ素が均一
に分散しており、高密度であることから中性子遮蔽用材
料として有用であることがわかった。In all of the products shown in the examples above, boron carbide was uniformly dispersed and had a high density, so they were found to be useful as neutron shielding materials.
実施例7
平均粒径50μの炭化ホウ素粉末1ooyを実施例1の
方法で活性化処理したのち。Example 7 After activating 100 boron carbide powder with an average particle size of 50 μm by the method of Example 1.
のめつき液を用いてNi−Cu合金の無電解めっきを実
施し、被覆後の製品体積の55%の金属被覆を得た。こ
の炭化ホウ素/ Ni −Cu粉末をステンレス鋼の容
器に充填し温度1000℃、到達圧力1000気圧でホ
ットアイソスタテイクプレスした。この製品の密度は理
論密度に対し99%であった。Electroless plating of Ni--Cu alloy was performed using a plating solution to obtain a metal coating covering 55% of the product volume after coating. This boron carbide/Ni-Cu powder was filled into a stainless steel container and hot isostatically pressed at a temperature of 1000°C and an ultimate pressure of 1000 atm. The density of this product was 99% of the theoretical density.
実施例8
モ均粒径120μの炭化ホウ素粉末10ilに実施例2
と同様な方法で5μのNi被覆を行なったのち。Example 8 Example 2 was added to 10 il of boron carbide powder with an average particle size of 120μ.
After coating with 5μ of Ni in the same manner as above.
のめつき液を用いてNi10w%Co合金′市気めNi
被覆したB、C粉へのNi −Co合金電気めっきは、
被覆B、C粉をめっき液に分散させ、陰極上に周期的磁
場を形成することによ、!7 * N+被覆B4C粉を
陰極上に吸着させ、その吸着時に電解を行なうことによ
り、Ni被覆B、C粉上にNi −C。Ni 10w%Co alloy' plating using plating solution
Ni-Co alloy electroplating on coated B and C powders is as follows:
By dispersing the coating B and C powders in the plating solution and creating a periodic magnetic field on the cathode,! 7 * By adsorbing the N+ coated B4C powder onto the cathode and performing electrolysis during the adsorption, Ni-C is formed on the Ni coated B and C powders.
合金被覆を得た。An alloy coating was obtained.
このように作成した金属被& B4C粉を実施例7と同
様にホットアイソスタティックプレスを実施し、理論密
p(に対して98チの一叫品を得た。The thus prepared metal coated & B4C powder was subjected to hot isostatic pressing in the same manner as in Example 7, and a product with a theoretical density of 98 cm was obtained.
時許出1舶人 iづシミ金JyiK株式会仕代理人 弁
理± 1公 井 政 広Masahiro I
Claims (1)
らの合金で被覆し、被覆粒子を圧縮し焼結するかまたは
ホットプレスすることからなる炭化ホウ素を均一に分散
した中性子遮蔽吸収材料の製法。 2、特許請求の範囲第1項に記載の製法であって。 被覆を無電解めっきあるいFi無電解めっき後に電解め
っきによって行なう方法。 6、特許請求の範囲第1項に記載の方法であって。 被覆を真空蒸着法によって行なう方法。 4、特許請求の範囲第1項に記載の方法であって。 圧縮を1イノスタチツクプレス法によって行なう方法。 5、特許請求の範囲第1〜4項の何れかの項に記載の製
法であって、炭化ホウ素粒子の粒径が500μ(32メ
シユ)以下である製法。 6、特許請求の範囲第1〜5項の何れかの項に記載の製
法であって、銅被覆炭化ホウ素粒子およびニッケル被覆
炭化ホウ素粒子が圧縮成形される製法。 Z 炭化ホウ素粒子を銅またはニッケルで被覆し。 被覆粒子を圧縮成形し焼結し、さらに得られる焼結体を
圧延することからなる炭化ホウ素を均一に分散した中性
子遮蔽吸収材料の製法。[Claims] 1. A neutron shielding and absorbing material in which boron carbide is uniformly dispersed, which is obtained by coating boron carbide particles with copper or nickel or an alloy thereof, and compressing and sintering or hot pressing the coated particles. manufacturing method. 2. The manufacturing method according to claim 1. A method in which coating is performed by electroless plating or electrolytic plating after Fi electroless plating. 6. The method according to claim 1. A method in which coating is performed by vacuum evaporation. 4. The method according to claim 1. A method in which compression is performed using an inostatic press method. 5. The manufacturing method according to any one of claims 1 to 4, wherein the boron carbide particles have a particle size of 500 μm (32 mesh) or less. 6. A manufacturing method according to any one of claims 1 to 5, in which copper-coated boron carbide particles and nickel-coated boron carbide particles are compression-molded. Z Boron carbide particles coated with copper or nickel. A method for producing a neutron shielding and absorbing material in which boron carbide is uniformly dispersed, which comprises compressing and sintering coated particles and rolling the resulting sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8928484A JPS60235096A (en) | 1984-05-07 | 1984-05-07 | Manufacturing method for neutron shielding and absorption materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8928484A JPS60235096A (en) | 1984-05-07 | 1984-05-07 | Manufacturing method for neutron shielding and absorption materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60235096A true JPS60235096A (en) | 1985-11-21 |
JPH0263199B2 JPH0263199B2 (en) | 1990-12-27 |
Family
ID=13966404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8928484A Granted JPS60235096A (en) | 1984-05-07 | 1984-05-07 | Manufacturing method for neutron shielding and absorption materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60235096A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032695A (en) * | 1989-05-31 | 1991-01-09 | Nisshin Steel Co Ltd | Radiation shielding material with high heat removal efficiency |
EP1087408A1 (en) * | 1999-09-27 | 2001-03-28 | Metallveredlung GmbH & Co. KG | Process for producing a neutron-absorbing coating |
US7295646B1 (en) | 1999-09-27 | 2007-11-13 | Metallveredlung Gmbh & Co. Kg | Method for producing a coating for absorption of neutrons produced in nuclear reactions of radioactive materials |
CN105970262A (en) * | 2016-07-13 | 2016-09-28 | 中南大学 | Wear-resistant and corrosion-resistant material with Ni-P-Ce-B4C (Cu) composite coating and preparation technology of material |
-
1984
- 1984-05-07 JP JP8928484A patent/JPS60235096A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032695A (en) * | 1989-05-31 | 1991-01-09 | Nisshin Steel Co Ltd | Radiation shielding material with high heat removal efficiency |
EP1087408A1 (en) * | 1999-09-27 | 2001-03-28 | Metallveredlung GmbH & Co. KG | Process for producing a neutron-absorbing coating |
WO2001024198A1 (en) * | 1999-09-27 | 2001-04-05 | Metallveredlung Gmbh & Co. Kg | Method for producing a coating for absorption of neutrons produced in nuclear reactions of radioactive materials |
US7295646B1 (en) | 1999-09-27 | 2007-11-13 | Metallveredlung Gmbh & Co. Kg | Method for producing a coating for absorption of neutrons produced in nuclear reactions of radioactive materials |
CN105970262A (en) * | 2016-07-13 | 2016-09-28 | 中南大学 | Wear-resistant and corrosion-resistant material with Ni-P-Ce-B4C (Cu) composite coating and preparation technology of material |
CN105970262B (en) * | 2016-07-13 | 2018-06-26 | 中南大学 | A kind of the wear-and corrosion-resistant material and its preparation process of band Ni-P-Ce-B4C@Cu composite deposites |
Also Published As
Publication number | Publication date |
---|---|
JPH0263199B2 (en) | 1990-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4557766A (en) | Bulk amorphous metal alloy objects and process for making the same | |
US5184662A (en) | Method for clad-coating ceramic particles | |
KR0180769B1 (en) | High strength and high wear resistant diamond sintered body and manufacturing method thereof | |
US5070591A (en) | Method for clad-coating refractory and transition metals and ceramic particles | |
US20210270706A1 (en) | Preparation method for iron-based alloy powder ebsd test sample | |
US4227928A (en) | Copper-boron carbide composite particle and method for its production | |
US4548774A (en) | Method for preparing a SiC whisker-reinforced composite material | |
US4183746A (en) | Cermets | |
RU2714151C1 (en) | Method of applying graphene coating on metal powders | |
US4012230A (en) | Tungsten-nickel-cobalt alloy and method of producing same | |
Saida et al. | Preparation of ultra-fine amorphous powders by the chemical reduction method and the properties of their sintered products | |
US3856580A (en) | Air-stable magnetic materials and method | |
JPS60235096A (en) | Manufacturing method for neutron shielding and absorption materials | |
JPS5923835A (en) | Method for manufacturing boride dispersed alloy | |
US3892600A (en) | Annealed coated air-stable cobalt-rare earth alloy particles | |
US3902861A (en) | Composite material | |
US4836979A (en) | Manufacture of composite structures | |
CN117340261A (en) | A bimodal structure tungsten copper alloy and its preparation method | |
CN111763843A (en) | A preparation method of multi-component doped high-specific gravity tungsten-copper-nickel alloy and high-specific gravity tungsten-copper-nickel alloy prepared | |
US4073647A (en) | Preparation of cermets | |
US3856581A (en) | Annealing air-stable magnetic materials having superior magnetic characteristics and method | |
CN113199024B (en) | Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof | |
JPH08225865A (en) | Method for producing three-dimensional network metal porous body | |
US3892601A (en) | Coated air-stable cobalt-rare earth alloy particles and method | |
US3100167A (en) | Magnetic material |