[go: up one dir, main page]

JPS60226007A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS60226007A
JPS60226007A JP8114384A JP8114384A JPS60226007A JP S60226007 A JPS60226007 A JP S60226007A JP 8114384 A JP8114384 A JP 8114384A JP 8114384 A JP8114384 A JP 8114384A JP S60226007 A JPS60226007 A JP S60226007A
Authority
JP
Japan
Prior art keywords
layer
gap
thin film
magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8114384A
Other languages
Japanese (ja)
Other versions
JPH0524563B2 (en
Inventor
Masakatsu Saito
斉藤 正勝
Masamichi Yamada
雅通 山田
Takumi Sasaki
佐々木 卓美
Katsuo Konishi
小西 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8114384A priority Critical patent/JPS60226007A/en
Publication of JPS60226007A publication Critical patent/JPS60226007A/en
Publication of JPH0524563B2 publication Critical patent/JPH0524563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To prevent a contour effect by the linear change in the film thickness of a lower or upper magnetic layer in the transverse direction of tracks. CONSTITUTION:A film consisting of SiO2 or Al2O3 is formed as a non-magnetic layer 2 on a substrate 1 and is worked with a hole tapered at angle alpha1. The hole for embedding a lower core is made into such shape of which one side on the side for forming a front gap has an angle B to a cylindrical grinding surface C-C'. A magnetic material consisting of Fe-Al-Si, Ni-Fe, amorphous material or the like is then formed as a film thereon and is flattened by lapping. SiO2 or Al2O3 is thereafter formed to the prescribed thickness to control the gap and further the film consisting of Al or Cu is formed thereon and is etched to manufacture the coil 8. A film consisting of SiO or SiO2 is formed thereon and the part for the front and back gaps is etched away. An insulating layer 9 is formed thereon and the film of the magnetic material is again formed and is patterned at a taper angle d2 and thereafter the magnetic material is ground off by cylindrical grinding down to the line C-C'. The edges of the upper and lower cores are thus made non-parallel with the gap line and the reproduction with high fidelity is made possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜磁気ヘッドに関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a thin film magnetic head.

〔発明の背景〕[Background of the invention]

従来の薄膜ヘッドは、基板面上に2〜20μm程形成し
、その上にギャップ材としての非磁性膜を介在させ、さ
らにその上に磁性膜をたい積してヘラPの磁気ギャップ
を形成したものが殆んどであった。
A conventional thin film head is one in which a magnetic gap of about 2 to 20 μm is formed on the substrate surface, a nonmagnetic film is interposed as a gap material on top of the thin film, and a magnetic film is further deposited on top of that to form the magnetic gap of the spatula P. was the majority.

ヘッドのトラック幅はエツチング又は機械加工等の手法
により磁性膜を寸断することで得るものである。この場
合ヘッドのギャップ近傍の磁気コアの形状はギャップに
平行してその左右にコアのエツジ部があるために、この
エツジ部分でもチー、ゾ上の信号を拾ういわゆるコンタ
効果が発生し、忠実な信号再生を行う場合支障となるも
のであった。本来コンタ効果は、磁気ヘッドのギャップ
以外のコアのエツジ部等と磁気記録媒体に記録された信
号とが磁気的にカップルしヘッド巻線を通過することに
よってギャップの読信号と時間的にずれた信号を読むも
ので、この場合もヘッドのいわゆるアジマスロスの効果
があることは良く知られている。との効果を利用しギャ
ップと平行でないコアエツジを形成せしめコアエツジ部
での信号読シ砿+<+菫I/RL艙山1俵ν しネtJ
^−φ1〔発明の目的〕 本発明は、コンタ効果の発生しない薄膜磁気ヘッドを提
供することを目的とする。
The track width of the head is obtained by cutting the magnetic film into pieces using techniques such as etching or machining. In this case, the shape of the magnetic core near the gap of the head is parallel to the gap, and there are edges of the core on the left and right sides of the gap, so a so-called contour effect occurs that picks up signals on Chi and Zo, even at these edge parts, and faithful This was a problem when reproducing signals. Originally, the contour effect is a phenomenon in which signals recorded on the magnetic recording medium are magnetically coupled to the edges of the core other than the gap of the magnetic head and passed through the head winding, resulting in a temporal shift from the read signal of the gap. It is used to read signals, and it is well known that in this case too, there is an effect of so-called azimuth loss of the head. By using the effect of
^-φ1 [Object of the Invention] An object of the present invention is to provide a thin-film magnetic head that does not cause contour effects.

〔発明の概要〕[Summary of the invention]

本発明は、非磁性基板上に形成された非磁性層表面に下
部磁性層を埋設し、該下部磁性層上に、絶縁層、コイル
導体層、上部磁性層を順次積層してなる薄膜磁気ヘッド
において、該下部磁性層又は上部磁性層のうちの少なく
とも一方の膜厚が、トラック幅方向に直線的に変化して
いることを特徴とする薄膜磁気ヘッドである。
The present invention provides a thin film magnetic head in which a lower magnetic layer is buried in the surface of a nonmagnetic layer formed on a nonmagnetic substrate, and an insulating layer, a coil conductor layer, and an upper magnetic layer are sequentially laminated on the lower magnetic layer. A thin film magnetic head characterized in that the thickness of at least one of the lower magnetic layer and the upper magnetic layer varies linearly in the track width direction.

これによりコンタ効果を防止することができる。This can prevent contour effects.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を図面に基づいて説明する。本
例においては非磁性基板1上に形成された非磁性層2の
表面に下部磁性層3を埋設し、該下部磁性層3上に、絶
縁層4、コイル導体層8、上部磁性層5を順次積層して
なる薄膜磁気ヘッドにおいて、該下部磁性層3又は該上
部磁性層5のうちの少なくとも一方の膜厚が、トラック
幅方向に直線的に変化してbる。
An embodiment of the present invention will be described below based on the drawings. In this example, a lower magnetic layer 3 is buried in the surface of a non-magnetic layer 2 formed on a non-magnetic substrate 1, and an insulating layer 4, a coil conductor layer 8, and an upper magnetic layer 5 are formed on the lower magnetic layer 3. In a thin film magnetic head formed by sequentially laminating layers, the thickness of at least one of the lower magnetic layer 3 and the upper magnetic layer 5 varies linearly in the track width direction.

これにより、コンタ効果を防止する。This prevents contour effects.

以下、本発明の一実施例のより具体的内容を図面を用い
て説明する。
Hereinafter, more specific details of an embodiment of the present invention will be explained using the drawings.

第1図は、薄膜磁気ヘッドのヘッド摺動面より見た図、
第2図は第1図の磁路長方向の断面図である。1は非磁
性基板、2は非磁性層、3は非磁性薄層2の穴に埋込ま
れた下部コアとなる下部磁性層、4はヘッドギャップを
規定する絶縁層、5は上部コアとなる上部磁性層、8は
1ターンの信号コイル導体層、9は信号コイルの絶縁と
段差を埋めるための絶縁層、6は接着層、7は接着層6
で接着された保護板である。
Figure 1 is a view from the head sliding surface of a thin-film magnetic head.
FIG. 2 is a cross-sectional view of FIG. 1 in the magnetic path length direction. 1 is a nonmagnetic substrate, 2 is a nonmagnetic layer, 3 is a lower magnetic layer that becomes a lower core embedded in the hole of the nonmagnetic thin layer 2, 4 is an insulating layer that defines the head gap, and 5 is an upper core. Upper magnetic layer, 8 is a one-turn signal coil conductor layer, 9 is an insulating layer for insulating the signal coil and filling the steps, 6 is an adhesive layer, 7 is an adhesive layer 6
It is a protective plate glued with

以下、具体的な製造方法を説明する。最初に第3図、第
4図により、ギャップ形成面と上下薄膜コアのエツジ部
をギャッゾ線に対して非平行ならしめる方法を説明する
A specific manufacturing method will be described below. First, a method for making the gap forming surface and the edge portions of the upper and lower thin film cores non-parallel to the Gyazzo line will be explained with reference to FIGS. 3 and 4.

第3図はその方法を説明するための斜視図、第4図線第
3図のp−p’線断面を図面右方向から見た図である。
FIG. 3 is a perspective view for explaining the method, and a cross section taken along the line pp' of FIG.

第3図において、基板11上に2つ9薄膜層12 、1
3が、その境界面が基板表面に対してαなる角度で重な
るように形成しである。また2つの薄膜層12 、13
の表面は基板表面と平行になっている。
In FIG. 3, there are two 9 thin film layers 12, 1 on a substrate 11.
No. 3 is formed so that its boundary surface overlaps with the substrate surface at an angle α. In addition, two thin film layers 12 and 13
The surface of is parallel to the substrate surface.

このように形成した2つの薄膜層12 、13をその重
なりあう部分において、薄膜層12.13の境界面が基
板表面と接してできる直線AA’と角度βをなす直線P
P′で切断すると、第4図のような断面が得られる。
The two thin film layers 12 and 13 formed in this way are drawn at their overlapping portions by a straight line P that makes an angle β with the straight line AA' formed by the interface between the thin film layers 12 and 13 in contact with the substrate surface.
When cut at P', a cross section as shown in FIG. 4 is obtained.

第4図より明らかなように、上述の方法によれば薄膜層
12 、13の境界面のエツジがつくる直線RR′は、
基板表面および薄膜層表面のエツジがつくる直線PP’
、QQ’と非平行となる。
As is clear from FIG. 4, according to the above method, the straight line RR' formed by the edge of the interface between the thin film layers 12 and 13 is
Straight line PP' created by the edges of the substrate surface and thin film layer surface
, QQ' are non-parallel.

この方法を使って、第1図、第2図に示した実施例の薄
膜ヘッドを作るわけである。すなわち、第3図における
PP’線での切断は、円筒研削面に相当し、薄膜層12
 、13がそれぞれ第1図の非磁性層2、下部コア3に
相当し、薄膜層12 、13の表面がギャップ形成面と
すれば、第4図の直線RR’はノー−ちリ −71+ 
湛t aRズ L ヨヒ!;Q l;→−−星 −(4
−τ☆π −マ n)イツジに当る。また、第3図、第
4図の薄膜層12を上部コア5、基板表面をギャップ形
成面とすれば、第4図の直線RR’はギャップ形成面と
非平行ならしめた上部コアのエツジに当る(ただし、こ
の場合は薄膜層13はないものと考える)。
Using this method, the thin film head of the embodiment shown in FIGS. 1 and 2 is manufactured. That is, the cut along the PP' line in FIG. 3 corresponds to the cylindrical grinding surface, and the thin film layer 12
, 13 correspond to the nonmagnetic layer 2 and the lower core 3 in FIG. 1, respectively, and if the surfaces of the thin film layers 12 and 13 are the gap forming surfaces, then the straight line RR' in FIG.
TantaR's L Yohi! ;Q l;→−−star −(4
−τ☆π −ma n) Hits the spot. Furthermore, if the thin film layer 12 in FIGS. 3 and 4 is the upper core 5, and the substrate surface is the gap forming surface, then the straight line RR' in FIG. (However, in this case, it is assumed that there is no thin film layer 13).

次に、第5図、第6図により、より具体的な製造方法を
説明する。第5図は下部コアの形成方法を説明するため
の工程図、第6図はウェーハエ程終了後のヘッド素子の
正面図(ただし、上部コア5、絶縁層9は省略)および
断面図である。符号は第1図と第2図に同じである。以
下、工程に沿って説明する。
Next, a more specific manufacturing method will be explained with reference to FIGS. 5 and 6. FIG. 5 is a process diagram for explaining the method of forming the lower core, and FIG. 6 is a front view (however, the upper core 5 and the insulating layer 9 are omitted) and a cross-sectional view of the head element after the wafer processing is completed. The symbols are the same in FIG. 1 and FIG. 2. The process will be explained below.

1)基板1上に非磁性層2としてSiO2やAt、O。1) SiO2, At, or O as the nonmagnetic layer 2 on the substrate 1.

などをス/IPツタ、蒸着等で成膜し、第5図(a)に
示したようにチー/IP角αlをつけて穴加工を施す。
A film is formed by s/IP ivy, vapor deposition, etc., and a hole is formed with a chi/IP angle αl as shown in FIG. 5(a).

加工法としては、チーツクをつけたマスク(例えば、ポ
ストベーク条件の選定によりレジスト・母ターンエツジ
に傾斜をつける方法、レジストをグラズマエッチングで
等方性エツチングを行って/JPターンエツジに傾斜を
つける方法等がある)を使って、イオンエツチングでエ
ツチングする方法、あるいはイオンエツチングで基板を
傾けてエツチングする方法等がある。
Processing methods include a mask with a cheek (for example, a method in which the resist/base turn edge is sloped by selecting post-bake conditions, a method in which the resist is isotropically etched using glazma etching and a method in which the JP turn edge is sloped). There are two methods: etching using ion etching (e.g.), or etching by tilting the substrate using ion etching.

また、非磁性層2をリフトオフ法で形成し、下部コア埋
込み穴を作ってもよい。チー/4’角としては20’〜
60°程度が好盈しい。
Alternatively, the nonmagnetic layer 2 may be formed by a lift-off method to form a hole for embedding the lower core. Chi/4' angle is 20' ~
Around 60° is ideal.

なお、上述の下部コア埋込み用穴の形状は第3図、第4
図の説明で明らかであるが、第6図(a)に示したよう
に、フロントギャップ形成側の1辺は、円筒研削面c−
c’(コイルノリ−ン端と平行)と角度βをなすように
作る(バックギャップ側は平行でもよい)。
The shape of the hole for embedding the lower core mentioned above is shown in Figures 3 and 4.
As is clear from the explanation of the figure, as shown in FIG. 6(a), one side on the front gap forming side is the cylindrical grinding surface c-
It is made to form an angle β with c' (parallel to the coil noreen end) (the back gap side may be parallel).

2)次にFe −At−St、 Ni −Fe、アモル
ファス等の磁性材料をスフ4ツタで成膜し1、第5図(
b)に示したように、ラップ加工で平坦にする。
2) Next, a film of magnetic material such as Fe-At-St, Ni-Fe, amorphous, etc.
As shown in b), flatten by lapping.

3) 5to2. ALzOaなどを、ギャップを規定
する所定厚さにスパッタで形成する。
3) 5to2. ALzOa or the like is formed by sputtering to a predetermined thickness that defines the gap.

4)At、Cu などをスパッタ、蒸着等で成膜した後
に、第6図(a)に示したようにエツチングして、コイ
ル8を作る。
4) After forming a film of At, Cu, etc. by sputtering, vapor deposition, etc., etching is performed as shown in FIG. 6(a) to form the coil 8.

5)この上に810 、5i02 などをスフ4ツタ、
蒸着等で成膜し、フロントおよびバックギャップ部をエ
ツチングで除去し、絶縁層9を形成する。
5) Add 810, 5i02, etc. on top of this,
A film is formed by vapor deposition or the like, and the front and back gap portions are removed by etching to form an insulating layer 9.

6)再びFe −AL −St 、 Ni −FL 、
アモルファス等の磁性材料をス・母ツタで成膜し、1)
で述べたエツチング方法により、第6図(b)に示した
ようにテーバ角α2 をっけてノやターニングする。こ
の形状も先に述べた下部コアと同様に、円筒研削面C−
C’とβの角度をなす形状に作る。
6) Again Fe-AL-St, Ni-FL,
1)
By the etching method described above, the taper angle α2 is cut and turned as shown in FIG. 6(b). Similar to the lower core mentioned earlier, this shape also has a cylindrical grinding surface C-
Create a shape that forms an angle between C' and β.

7)このようにしてウェーハエ程を終わったあと、第6
図に示したように、c−c’線まで円筒研削で削り落す
ことによって、第1図、第2図に示した薄膜ヘッドがで
きる。
7) After completing the wafer processing in this way, the 6th
As shown in the figure, by cylindrical grinding down to line cc', the thin film head shown in FIGS. 1 and 2 can be obtained.

以上、本例によれば、上下コアのエツジをギャップ線と
非平行ならしむることかでき、コンタ効果を解決できる
As described above, according to this example, the edges of the upper and lower cores can be made non-parallel to the gap line, and the contour effect can be solved.

また、本実施例では単層膜のコアについて述べたが、多
層構造のコアについても同様の手段により適用ができる
。特に、下部コアについては、基板1上にチー・2角(
+;X)の絶縁層を74ターニングした後、軟磁性コア
材と絶縁層を所定の膜厚だけ順次積層する。その後、ラ
ップ等の手法により平面化し、ギャップ面を形成する。
Further, although this embodiment has been described with respect to a single-layer core, the same method can be applied to a core with a multilayer structure. In particular, for the lower core, two squares (
After turning the insulating layer of +; Thereafter, it is flattened by a technique such as lapping to form a gap surface.

この構成により、擬似磁気ギャップとなる上記コア層間
面が真の磁気ギャップ面とアジマス角度をもつので、コ
ア層間面の原因によるコンタ−効果を低減することがで
きる。一方、上部コアについては、該基板上にギャップ
材4を形成した後、第1層目の上部コアを形成し、第6
図(b)に示す様にテーノ4角度をα2として所定の形
状でパターニングする。次に、コア層間材と第2層目以
降の上部コアを順次積層し最終的に上部多層コアを一括
して・リーニングする。この手法により、第一層目の上
部コアのテーノ母角α2が第2層目以上の上部コアおよ
び眉間材に転写されることになるので、擬似磁気ギャッ
プとなる上記上部コア層間面が真の磁気ギャップ面に対
してアジマス角度を有することになるのでコンタ−効果
が低減できる。上記の多層構造コアの構成とすることに
より、単層構造コアに比較して渦電流損失が少なく(高
周波特性改善)、がっコンタ−効果を低減した薄膜磁気
ヘッドが実現できる。
With this configuration, the core interlayer plane that becomes the pseudo magnetic gap has an azimuth angle with respect to the true magnetic gap plane, so that the contour effect caused by the core interlayer plane can be reduced. On the other hand, regarding the upper core, after forming the gap material 4 on the substrate, the first layer of the upper core is formed, and the sixth layer is formed.
As shown in Figure (b), patterning is performed in a predetermined shape with the Theno 4 angle set to α2. Next, the core interlayer material and the second and subsequent layers of the upper core are sequentially laminated, and finally the upper multilayer core is stripped all at once. By this method, the Theno generating angle α2 of the upper core of the first layer is transferred to the upper core and glabella material of the second and higher layers, so that the interlayer plane of the upper core, which becomes a pseudo magnetic gap, becomes a true Since it has an azimuth angle with respect to the magnetic gap plane, the contour effect can be reduced. By adopting the above-mentioned structure of the multilayer structure core, it is possible to realize a thin film magnetic head with less eddy current loss (improved high frequency characteristics) and reduced contour effect compared to a single layer structure core.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によればコンタ−効果を解決でき。 As described above, according to the present invention, the contour effect can be solved.

高忠実度再生が可能な磁気ヘッドを作ることができるよ
うになった。
It became possible to create a magnetic head capable of high-fidelity playback.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例に係る薄膜磁気ヘ
ッドを示し、第1図は摺動面からの正面図であり、第2
図は断面図である。第3図は本発明の一実施例を説明す
るための要部斜視図、第4図は第3図のP−P’線断面
図、第5図は本発明の一実施例に係る薄膜磁気ヘッドの
下部コアの形成方法を説明するための工程図、第6図は
本発明の一実施例に係る薄膜磁気ヘッドのウェーハエ程
終了後の状態を示す図で、同図(a)はその正面図、同
図(b)はその断面図である。 1.11・・・基板、2・・・非磁性層、3・・・下部
磁性層(下部コア)、4・・・ギャップを規定する絶縁
層、5・・・上部磁性層(上部コア) 、 12 、1
3・・・薄膜層。 第1図 第2図 第3図 V\ 第4図 第5図 第6図
1 and 2 show a thin film magnetic head according to an embodiment of the present invention, FIG. 1 is a front view from the sliding surface, and FIG.
The figure is a sectional view. FIG. 3 is a perspective view of essential parts for explaining an embodiment of the present invention, FIG. 4 is a sectional view taken along the line P-P' in FIG. 3, and FIG. 5 is a thin film magnetic field according to an embodiment of the present invention. FIG. 6 is a process diagram for explaining the method for forming the lower core of the head. FIG. 6 is a diagram showing the state of a thin film magnetic head according to an embodiment of the present invention after the wafer etching process is completed, and FIG. 6(a) is a front view thereof. FIG. 3B is a sectional view thereof. 1.11...Substrate, 2...Nonmagnetic layer, 3...Lower magnetic layer (lower core), 4...Insulating layer that defines the gap, 5...Upper magnetic layer (upper core) , 12 , 1
3... Thin film layer. Figure 1 Figure 2 Figure 3 V\ Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、 非磁性基板上に形成された非磁性層表面に下部磁
性層を埋設し、該下部磁性層上に、絶縁層、コイル導体
層、上部磁性層を順次積層してなる薄膜磁気ヘッドにお
いて、該下部磁性層又は上部磁性層のうちの少なくとも
一方の膜厚が、トラック幅方向に直線的に変化している
ことを特徴とする薄膜磁気ヘッド。 2、下部磁性層が、間に非磁性絶縁層を有する多層膜で
あり、該非磁性絶縁層はトラック幅方向の絶縁層に対し
、非平行となっている特許請求の範囲第1項記載の薄膜
磁気ヘッド。
[Claims] 1. A lower magnetic layer is buried in the surface of a nonmagnetic layer formed on a nonmagnetic substrate, and an insulating layer, a coil conductor layer, and an upper magnetic layer are sequentially laminated on the lower magnetic layer. 1. A thin film magnetic head characterized in that the thickness of at least one of the lower magnetic layer and the upper magnetic layer varies linearly in the track width direction. 2. The thin film according to claim 1, wherein the lower magnetic layer is a multilayer film having a nonmagnetic insulating layer therebetween, and the nonmagnetic insulating layer is non-parallel to the insulating layer in the track width direction. magnetic head.
JP8114384A 1984-04-24 1984-04-24 Thin film magnetic head Granted JPS60226007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114384A JPS60226007A (en) 1984-04-24 1984-04-24 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114384A JPS60226007A (en) 1984-04-24 1984-04-24 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS60226007A true JPS60226007A (en) 1985-11-11
JPH0524563B2 JPH0524563B2 (en) 1993-04-08

Family

ID=13738187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114384A Granted JPS60226007A (en) 1984-04-24 1984-04-24 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS60226007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237215A (en) * 1985-04-15 1986-10-22 Nippon Telegr & Teleph Corp <Ntt> Thin film head
JPH03263603A (en) * 1990-03-13 1991-11-25 Alps Electric Co Ltd Thin-film magnetic head and production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880119A (en) * 1981-11-04 1983-05-14 Hitachi Ltd Composite magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880119A (en) * 1981-11-04 1983-05-14 Hitachi Ltd Composite magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237215A (en) * 1985-04-15 1986-10-22 Nippon Telegr & Teleph Corp <Ntt> Thin film head
JPH03263603A (en) * 1990-03-13 1991-11-25 Alps Electric Co Ltd Thin-film magnetic head and production thereof

Also Published As

Publication number Publication date
JPH0524563B2 (en) 1993-04-08

Similar Documents

Publication Publication Date Title
JP2000105906A (en) Production of thin film magnetic head
JPH04366411A (en) Thin-film magnetic head
JP2545596B2 (en) Thin film magnetic head
JPS60175208A (en) thin film magnetic head
JPS60226007A (en) Thin film magnetic head
JPH10269526A (en) Magnetic head
JPH09270105A (en) Thin film magnetic head and its production
JP2649671B2 (en) Thin film magnetic head and method of manufacturing the same
JPS6337811A (en) Yoke type magnetoresistance effect type thin film magnetic head
JPS62114113A (en) Thin film magnetic head
JP2002197612A (en) Method for forming embedded pattern, and method for manufacturing magnetic head
JPH04192105A (en) Thin-film magnetic head and magnetic disk device mounted therewith
JP3678434B2 (en) Manufacturing method of magnetoresistive head
JPS60226008A (en) Thin film magnetic head and its production
JPH03252906A (en) Thin-film head for perpendicular magnetic recording and reproducing
JPH03252909A (en) Magnetic substrate of groove structure for thin-film head for perpendicular magnetic recording and reproducing
JPH0589430A (en) Thin-film magnetic head
JPS62164203A (en) Production of thin film magnetic head
KR0134458B1 (en) Manufacturing method of head assembly for rotary head
JPS63138516A (en) Thin film magnetic head
JP3302876B2 (en) Manufacturing method of magnetic head
JP2664380B2 (en) Method for manufacturing thin-film magnetic head
JPH0546009B2 (en)
JPH0232686B2 (en)
JPS62110612A (en) Thin film magnetic head